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Abstract: Spontaneous type 2 diabetes mellitus (T2DM) macaques are valuable resources for our
understanding the pathological mechanism of T2DM. Based on one month’s fasting blood glucose
survey, we identified seven spontaneous T2DM macaques and five impaired glucose regulation (IGR)
macaques from 1408 captive individuals. FPG, HbA1c, FPI and IR values were significant higher in
T2DM and IGR than in controls. 16S rRNA sequencing of fecal microbes showed the significantly
greater abundance of Oribacterium, bacteria inhibiting the production of secondary bile acids, and
Phascolarctobacterium, bacteria producing short-chain fatty acids was significantly lower in T2DM
macaques. In addition, several opportunistic pathogens, such as Mogibacterium and Kocuria were
significantly more abundant in both T2DM and IGR macaques. Fecal metabolites analysis based on
UHPLC-MS identified 50 differential metabolites (DMs) between T2DM and controls, and 26 DMs
between IGR and controls. The DMs were significantly enriched in the bile acids metabolism, fatty
acids metabolism and amino acids metabolism pathways. Combining results from physiochemical
parameters, microbiota and metabolomics, we demonstrate that the imbalance of gut microbial
community leading to the dysfunction of glucose, bile acids, fatty acids and amino acids metabolism
may contribute to the hyperglycaemia in macaques, and suggest several microbes and metabolites
are potential biomarkers for T2DM and IGR macaques.

Keywords: rhesus macaque; type 2 diabetes mellitus; IGR macaques; microbiota; metabolome

1. Introduction

Type 2 diabetes mellitus (T2DM) is one of many complex diseases that significantly
threatens human health and is challenging to investigate. T2DM is characterized by
impaired insulin secretion and chronic hyperglycemia, ultimately leading to serious com-
plications [1]. Approximately 463 million adults have diabetes worldwide, and the number
of diabetes-related deaths in 2019 was approximately 4.2 million [2]. Prediabetes or im-
paired glucose regulation (IGR) is diagnosed when one has a blood glucose level higher
than normal yet not as high as diabetes. IGR is even more prevalent than T2DM in the
population [3]. And there is an important warning line between the IGR and T2DM that
indicates whether an individual is going to develop diabetes. Many researches recognize
that T2DM is a complex process involving genetic susceptibility and environmental factors,
or interaction between genetic susceptibility and environmental factors [4,5]. Recently, gut
microbes and their metabolites have been thought to be important environmental factors in
the development of T2DM [6,7]. However, the comprehensive changes of compositions
and functions including gut microbes and fecal metabolites in T2DM is still not fully clear.

Non-human primates, such as rhesus macaques (Macaca mulatta), are genetically, phys-
iologically and behaviorally similar to humans and are advantageous in many human
complex diseases research compared to other animals such as rodents. For instance, rhesus
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macaque models have played important roles in autism [8], AIDS [9], Ebola infection [10],
obesity [11], non-alcoholic fatty liver [12] and diabetes [11,13] research. Rhesus macaque
model also has been used for T2DM either induced by low-dose streptozotocin or by
surgical resection of pancreas [14,15]. Through the comparison of various clinical indi-
cators between T2DM macaques and T2DM patients, it is clearly found that all of them
have experienced obesity, compensatory increase in fasting insulin, reduced postprandial
glucose clearance, and decreased insulin secretion, significantly [16]. Furthermore, rhesus
macaques can better simulate the self-regulation characteristics of glucagon in response to
hypoglycemia than the rodents [17]. They also show similar pharmacokinetic characteris-
tics of leptin to human [18]. The use of rhesus macaque models also assists in studying the
mechanism of food-induced insulin self-secretion [19], the effects of fructose and glucose on
endocrine and metabolism [20], and the treatment of insulin resistance [21]. Like humans,
rhesus monkeys can develop T2DM spontaneously. In particular, the spontaneous T2DM
macaques can simulate the pathogenesis of human T2DM to the greatest extent in all types
of diabetic models [22]. Unfortunately, spontaneous T2DM macaques are extremely rare in
macaque populations even they were induced by high carbohydrate food or high fat food.
Wang et al. (2018) only found nine spontaneous T2DM macaques and 16 IGR macaques
from 1988 captive macaques [11]. Another research conducted by Bremer et al. (2011) only
obtained four T2DM macaques after 29 macaques had been fed a high carbohydrate diet for
a year [23]. Similarly, Gong et al. (2013) fed 50 macaques with a high-fat diet for two years
and finally obtained only eight T2DM macaques [16]. Thus, spontaneous T2DM macaques
are considered to be a highly valuable resource of animal model worthy of comprehe-
nsive investigations.

We conducted a long-term blood glucose survey in a captive population of 1408 rhesus
macaques to identify spontaneous T2DM and IGR macaques. We investigated the changes
of gut microbes and corresponding fecal metabolites in T2DM and IGR macaques based
on 16S ribosomal RNA (16S rRNA) gene sequencing and UHPLS-MS based metabolomics.
This study is of great significance for constructing a T2DM rhesus macaque model, and for
identifying a pathological mechanism and potential diagnosis biomarkers of T2DM.

2. Materials and Methods
2.1. Subjects

Physiological sampling was conducted at the Greenhouse Biotechnology Co., Ltd. in
Sichuan Province, China, a company specialized in experimental rhesus monkey supply. To
identify the T2DM and IGR macaque individuals, fasting plasma glucose (FPG) concentra-
tions of a total of 1408 captive macaques were measured with a portable blood glucose meter
(ISO 15197:2013). The criteria for screening spontaneous T2DM and IGR macaques were
guided by the American Diabetes Association (ADA). T2DM subjects were diagnosed with
FPG of ≥7.0 mmol/L. Individuals with 6.1 ≤ FPG < 7 mmol/L were diagnosed as IGR
subjects, and individuals with FPG < 6.1 mmol/L were healthy controls. Based on FPG values,
only seven individuals were identified to be spontaneous T2DM and five to be spontaneous
IGR out of 1408 individuals, and the remaining 1396 were healthy individuals. We then
randomly selected 10 individuals with normal FPG, together with the seven T2DM and five
IGR individuals to perform subsequent analysis. For the identified 22 subjects, a total of
four times of FPG tests were employed using the portable blood glucose meter, with an
interval of 10 days to reduce the possible reading error. After the four test results meet the
relevant standards, venous blood was collected for FPG testing to ensure the reliability of the
data to the greatest extent. FPG values of three time in the selected 22 subjects were list in
the Supplementary Table S1. Then these individuals were raised in a single cage, and blood
samples were collected after an overnight fast at least 8 h. FPG and fasting plasma insulin (FPI)
concentrations were measured by the hexokinase method and electrochemiluminescence im-
munoassay, respectively. Glycosylated hemoglobin A1c (HbA1c) percentages higher than 6.5%
were used as an auxiliary diagnostic index for diabetic macaques and were determined by a
high performance liquid chromatography [24]. Serum total cholesterol (TC), triglycerides (TG),
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low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C)
were measured using an automatic biochemical analyzer. Insulin resistance index (IR) was
calculated from the FPG (mmol/L) and FINS (mU/mL) concentrations as: FPG*FPI/22.5. An
IR ≥ 2.67 indicated the possibility of insulin resistance, which is used in clinical diagnosis [25].
Body mass index (BMI) was calculated from the length (m) and weight (kg): kg/m2.

None of the macaques had been given pharmacological doses of antibiotics at least
1 month prior to the study. To avoid confound factors affect the investigated macaques,
several measures were applied. Firstly, each of the 22 individuals had been kept in a
single-cage at least for 30 days before blood and feces samples were collected, so that they
completely adapt to the environment. Secondly, food or diet of the macaques did not change
during the experiment. Thirdly, before taking blood samples, the professional veterinarian
was habituation of the macaques to avoid the stress response, and no anesthetic was used
during the process. We also collected fresh fecal samples of the 22 subjects and stored them
aseptically at −80 ◦C until analysis. One of the T2DM macaques, the individual MA-13 did
not include for metabolomics analysis because fecal sample of MA-13 was too little to do
UHPLC-MS analysis.

2.2. 16S rRNA Gene Sequencing Analysis

Total genome DNA from feces was extracted using the CTAB/SDS method. DNA
concentration and purity were monitored on 1% agarose gels. According to the concen-
trations, DNA was diluted to 1 ng/µL using sterile water. The V3-V4 region of 16S rRNA
gene was amplified by primers: 515F: CCTAYGGGRBGCASCAG and 806R: GGACTAC-
NNGGGTATCTAAT with barcode sequence. Sequencing libraries were generated using
TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, San Diego, CA, USA) following
manufacturer’s recommendations and index codes were added. The library quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and
Agilent Bioanalyzer 2100 system. The library was sequenced by Applied Protein Tech-
nology, Shanghai, China on an IlluminaHiSeq2500 platform and 250 bp paired-end reads
were generated.

The raw data obtained from sequencing was a paired-end sequence saved in the “Fastq”
format. The raw reads were demultiplexed, quality-filtered and merged by Quantitative
Insights into Microbial Ecology version 2 (QIIME2) software (version 2020.2) [26] to obtain
Amplicon sequence variants (ASVs). Matching of ASVs to bacteria was then conducted
using the reference Greengenes taxonomies (version 13.8) with a 99% similarity cut-off [27].
α diversity and β diversity analyses were performed with q2-diversity plugin in QIIME2,
and a principal coordinate analysis (PCoA) was used to visualize the β diversity of the
microbiome by using custom R scripts. To detect bacterial taxa and KEGG pathways
with significantly different abundances between T2DM, IGR and Control groups, a linear
discriminant analysis (LDA) effect size (LEfSe) was used according to the online protocol
(https://huttenhower.sph.harvard.edu/galaxy/ (accessed on 1 August 2020)) [28]. For
functional prediction of our data set, the functional profiles of microbial communities
were predicted using PICRUSt according to the online protocol (http://picrust.github.io/
picrust/ (accessed on 1 August 2020)) [29] and STAMP software packages [30].

2.3. Metabolomics Analysis

We used 80 mg of feces and added a volume of 200 µL water and 400 µL methanol/acet-
onitrile solution (1:1, v/v) solution of each fecal sample. The homogenate was vortexed for
2 min, sonicated for 30 min two times, then stored at −20 ◦C for 1 h to precipitate proteins.
After centrifugation at 14,000× g at 4 ◦C for 20 min, and filtration through a 0.22 mm
membrane, the supernatant was prepared for UHPLC-MS analysis. In ESI positive mode,
the mobile phase contained A = water with 0.1% formic acid and B = acetonitrile with 0.1%
formic acid; and in ESI negative mode, the mobile phase contained A = 0.5 mM ammonium
fluoride in water and B = acetonitrile. The raw MS data (wiff.scan files) were converted to
MzXML files using ProteoWizard

https://huttenhower.sph.harvard.edu/galaxy/
http://picrust.github.io/picrust/
http://picrust.github.io/picrust/
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MSConvert and processed using XCMS for feature detection, retention time correction
and alignment. The metabolites were identified by accuracy mass (<25 ppm) and MS/MS
data, which were matched with our standards database. In the extracted ion features,
only the variables having more than 50% of the nonzero measurement values in at least
one group were retained. For the multivariate statistical analysis, the MetaboAnalyst
(www.metaboanalyst.ca (accessed on 1 August 2020)) web-based system was used [31].
After the Pareto scaling, orthogonal partial least squares discriminant analysis (OPLS-DA)
was performed. The 7-fold cross-validation and permutational multivariate analysis of
variance (PERMANOVA) was used to evaluate the robustness of the model. The significant
different metabolites were determined based on the combination of a statistically significant
threshold of variable influence on projection (VIP) values obtained from an OPLS-DA model
and a two-tailed Student’s t test (p value) using the raw data. The metabolites with VIP
values larger than 1.0 and p values less than 0.05 were considered as significant [32,33].
The Kyoto Encyclopedia of Genes and Genomes (KEGG) Database was used for pathway
enrichment analysis [34]. KEGG mapper (v.2.5 http://www.kegg.jp/kegg/mapper.html
(accessed on 1 August 2020)) are the main tools used with KEGG database.

The receiver operating characteristic (ROC) curve, obtained from GraphPad Prism8, was
also used to assess the potential diagnostic value of each significant metabolite by calculating
their specificity and sensitivity in classification [35]. The area under curve (AUC) produced by
ROC analysis between 0.7 and 0.9 represents a certain diagnostic accuracy of the biomarker,
and AUC greater than 0.9 indicates that the accuracy of the biomarker is very high.

2.4. Correlation Analysis

Correlation analysis between 16S rRNA sequencing and metabolomic data was under-
taken using microbiota and metabolites identified as significantly different between T2DM,
IGR and healthy samples. R 3.4.2 Heatmap Package used to perform Spearman correlation
hierarchical clustering analysis, based on the absolute value of the correlation coefficient
being between 0.5 and 1 and significance of p < 0.05.

3. Result
3.1. Clinical Characteristics

The physiological and biochemical parameters in each individual of the investigated
22 macaques were list in Supplementary Table S1 and the statistical results of were shown
in Table 1. Compared to the Control group, FPG, HbA1c, FPI concentrations and IR values
were all significantly higher in the T2DM and IGR groups (p < 0.05). The FPG values of the
T2DM individuals ranged 7.13–21.61 mmol/L, and the FPG values of the IGR individuals were
6.21–6.88 mmol/L (Supplementary Table S1). In addition, the IR values of the T2DM group
were significantly higher than the IGR group (p < 0.05). Only one individual (MA-29) had a
higher HbA1c value than 6.5% (Supplementary Table S1). Both T2DM and IGR group was
significantly higher HbA1c value (p < 0.05) compared to the Control. However, there were no
significant differences in BMI, TG, TC, LDL and HDL levels among the three groups (p > 0.05).

Table 1. Physiological and biochemical parameters of T2DM, IGR and healthy macaques.

Index Control (n = 10) T2DM (n = 7) IGR (n = 5)

Age 10.20 ± 4.26 12.58 ± 6.02 9.00 ± 2.19
BMI 15.05 ± 1.27 16.19 ± 2.00 14.2 ± 0.83

FPG (mmol/L) 4.10 ± 0.94 8.54 ± 1.12 ** 6.50 ± 0.25 ##

HbA1c (%) 3.32 ± 0.55 4.96 ± 2.50 * 4.04 ± 0.45 #

FPI (µU/mL) 5.97 ± 2.19 16.28 ± 8.89 ** 11.87 ± 1.07 ##

IR 1.11 ± 0.55 7.21 ± 3.29 **+ 3.43 ± 0.32 ##

TG (mmol/L) 0.37 ± 0.11 0.89 ± 0.76 0.71 ± 0.21
TC (mmol/L) 3.34 ± 0.80 3.46 ± 0.54 3.65 ± 0.99

HDL (mmol/L) 1.32 ± 0.35 1.36 ± 0.22 1.34 ± 0.46
LDL (mmol/L) 1.41 ± 0.51 1.35 ± 0.36 1.57 ± 0.45

*, ** represent that T2DM is significantly (p < 0.05) or extremely significantly (p < 0.01) higher than control;
#, ## represent that IGR is significantly (p < 0.05) or extremely significantly (p < 0.01) higher than control and
+ represent T2DM is significantly (p < 0.05) higher than IGR. P values were calculated by using Kruskal-Wallis H-test.

www.metaboanalyst.ca
http://www.kegg.jp/kegg/mapper.html
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3.2. Differences of Gut Microbial Composition between T2DM, IGR Macaques and
Healthy Subjects

After filtering out the low-quality reads, all 22 samples generated 755,898 clean reads with
an average of 34,359 reads per sample. The microbial α diversity and the β diversity between
the T2DM/IGR groups and Control group were compared (Supplementary Figure S1). Overall,
the microbial α diversity showed no significant differences between the T2DM/IGR groups
and Control group (Kruskal-Wallis H-test: p > 0.05; Supplementary Figure S1A), which were
in terms of the Shannon index, Observrd-otus index and Evenness index. The PCoA analysis
of Jaccard distance and unweighted-UniFrac distance were used to measure β diversity in
each group. The results showed that the Control group was significantly different from the
hyperglycemia group (T2DM group + IGR group) (PERMANOVA: p < 0.05; Figure 1A,B),
although the difference of β diversity between T2DM and Control groups, or IGR and Control
groups was not significant (PERMANOVA: p > 0.05; Supplementary Figure S1B,C).
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Figure 1. 16S rRNA gene amplicons analysis. Principal Co-ordinates Analysisanalysis (PCoA) of β
diversity was based on the Jaccard (A) (p = 0.006) and unweighted-UniFrac (B) (p = 0.013) between
the Pathoglycemia and Control groups. Scores plot of PCoA explain 17.3% and 25.91% of the variance,
respectively. Histogram of LDA scores to identify differentially abundant bacterial genera between
T2DM and Control groups (C), IGR and Control groups (D) (LDA score > 2, p < 0.05). Red indicates
increased abundance in controls; Green indicates increased abundance in T2DM or IGR samples.
Relative abundance across different genera between T2DM and Control groups, IGR and Control
groups (E). Horizontal points represent the mean. Error lines plotted denote SD. * p < 0.05 and
** p < 0.01.
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A total of 297 ASVs were identified in all samples including 5 phyla, 6 taxonomic
families, and 16 genera (Supplementary Figure S2A–C). Among these genera, Prevotella
(mean = 25.12%) was the most common genus in the T2DM group, followed by Lactobacillus
(mean = 14.03%), and Streptococcus (mean = 9.00%) (Supplementary Figure S2C). In the IGR
group, the prevalent genera were Prevotella (mean = 24.75%), Streptococcus (mean = 10.09%),
and Oscillospira (mean = 7.18%) (Supplementary Figure S2C). Prevotella (mean = 23.43%)
was also enriched in the Control group, followed by Lactobacillus (mean = 14.41%), and
Streptococcus (mean = 10.15%; Supplementary Figure S2C). LEfSe was used to search for
biomarkers with significant differences (LDA > 2 and p < 0.05) between T2DM, IGR and
Control groups. The abundance of five genera were significantly different between T2DM
and Control groups (Figure 1C), and 11 genera were significantly difference between IGR
and Control groups (Figure 1D). At the family level, the abundance of Prevotellaceae was
significantly overrepresented in the T2DM group than the Control group (LDA score > 2,
p < 0.05; Figure 1C). As shown in Figure 1E, Oribacterium was significantly more abundant
in T2DM group than Control group, whereas Phascolarctobacterium was significantly more
abundant in Control group (LDA score > 2, p < 0.05), at the genus level. And the abundance
of Lactobacillus was significantly down-regulated in the IGR group (LDA score > 2, p < 0.05).
In addition, the abundance of Kocuria and Mogibacterium were significantly accumulated in
both T2DM and IGR groups (LDA score > 2, p < 0.05; Figure 1E).

We predicted the functional changes of gut microbes in different groups by PICRUST.
The results showed that the differential microbes between T2DM and Control groups, and
between IGR and Control groups were enriched in 28 and 61 signal pathways, respectively
(p < 0.1; Supplementary Figure S3A,B). As shown in Figure 2A, the saturated fatty acid
elongation pathway was significantly enriched in the T2DM group (p < 0.05) and the TCA
cycle VII producing acetic acid salt pathway was significantly enriched in the Control
group (p < 0.05). In addition, amino acids (including isoleucine, valine, lysine, serine
and glycine) biosynthesis pathway and incompletely reduced TCA cycle pathway were
significantly greater in the IGR group (p < 0.05), whereas glucose metabolism pathways
(such as glycolysis, glucose and glucose-1-phosphate degradation) were significantly lower
(p < 0.05) compared to the Control group (Figure 2B).

In addition, differences were found in the gut microbes between T2DM and IGR
macaques. Bacteria leading to the inhibition of SCFA metabolism and bile acid (BA)
metabolism changed significantly in T2DM macaques, but not in IGR macaques. Lacto-
bacillus was significantly less abundant in IGR macaques but not in T2DM macaques. The
differential microbes were significantly functionally enriched in the pathway of saturated
fatty acid extension in T2DM macaques, while in IGR macaques, they were enriched in the
pathway related to biosynthesis of lysine, serine and branched chain amino acids.
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Figure 2. Functional differences of gut microbes between T2DM and Control groups (A), IGR and
Control groups (B) (p < 0.05). Orange box: T2DM or IGR samples, blue box: controls.

3.3. Fecal Metabolite Profiles in T2DM, IGR Macaques and Healthy Subjects

OPLS-DA demonstrated notable differences between T2DM/IGR and Control groups,
in both positive and negative modes after UHPLC-MS analysis of fecal metabolites
(Figure 3A,B and Supplementary Figure S4A,B). A total of 619 metabolites, including
50 differential metabolites, were identified between the T2DM and Control groups and
612 metabolites, including 26 differential metabolites, between the IGR and Control groups
(Supplementary Tables S2 and S3. Metabolites with VIP scores > 1 in the multivariate
modes OPLS-DA and p < 0.05 in the univariate statistics volcano plots were considered as
significantly different metabolites (SDMs). In total, 12 SDMs were identified between T2DM
and Control groups, mainly including 5 amino acids and derivatives (indole-2-carboxylic
acid, L-proline, β-homoproline, N2-acetyl-L-ornithine, acetylglycine), 2 fatty acids (steari-
donic acid, cis-9-palmitoleic acid), 1 pentapeptide (enterostatin human) and 1 dipeptide
(Leu-Arg) (Figure 3C). As shown in Figure 3E, the amino acids and derivatives, stearidonic
acid and cis-9-palmitoleic acid were significantly higher in the T2DM group, but Leu-Arg
was significantly lower (VIP > 1, p < 0.05) than controls. Among them, indole-2-carboxylic
acid was the most significantly up-regulated metabolite (Fold change, Fc = 4.58), followed
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by acetylglycine (Fc = 2.30), while enterostatin human (Fc = 0.37) and Leu-Arg (Fc = 0.45)
were the top two significantly down regulated metabolites (Supplementary Table S2). Other
differential metabolites, such as chenodeoxycholate (Fc = 14.32) and caprylic acids (Fc = 2.93),
were also higher in the T2DM group, while cholic acids (Fc = 0.36) was lower at a less rigorous
statistical level (VIP > 1, p < 0.1; Supplementary Table S2).
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Figure 3. Orthogonal projection to latent structures discrimination analysis (OPLS-DA) score plots
between T2DM and Control groups (A), IGR and Control groups (B) in positive model. Volcano plots
of metabolomics between T2DM and Control groups(C), IGR and Control groups (D). Significantly
differentially upregulated candidates (Fold change ≥ 1.5, p < 0.05) are plotted in red, and signifi-
cantly differentially down-regulated candidates (Fold change ≥ 1.5, p < 0.05) are plotted in green.
Enrichment analysis of the differentially abundant pathways between T2DM and Control groups
(E), IGR and Control groups (F). * p < 0.05 and ** p < 0.01.

A total of 8 SDMs were identified in the IGR group compared to the Control group, in-
cluding 1 amino acid derivatives (phenylacetic acid), 1 fatty acid (9-OxoODE), 1 dipeptide
(Ser-Glu), 1 organic acids (cyclohexylsulfamate) and 1 lysophospholipid (1-stearoyl-2-
hydroxy-sn-glycero-3-phosphoethanolamine, LPE) (VIP > 1, p < 0.05) (Figure 3D), primarily.
The abundance of LPE (Fc = 3.05) and 9-OxoODE (Fc = 2.18) were the two most signifi-
cantly increased metabolites, but Ser-Glu (Fc = 0.36) and adynerin (Fc = 0.32) were two
most significantly decreased metabolites in the IGR group (VIP > 1, p < 0.05) (Figure 3F;
Supplementary Table S3). Other differential metabolites including chenodeoxycholate (Fc = 6.79),
and α-hydroxy myristic acid (Fc = 2.21), lithocholic acid (Fc = 3.34) also increased in the IGR
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group, while gentisic acid (Fc = 0.41), propionic acid (Fc = 0.68) and isobutyric acid (Fc = 0.66)
decreased at statistical level of (VIP > 1, p < 0.1; Supplementary Table S3).

KEGG enrichment was performed to explore the functional changes of metabolites.
The differential metabolites between T2DM and Control groups were enriched in 13 path-
ways (p < 0.1; Supplementary Table S4), of which the bile acids, fatty acids and amino
acids metabolism pathway significantly differed (Figure 4A). The differential metabolites
between IGR and Control groups were enriched in 21 pathways (p < 0.1; Supplementary
Table S5), of which the amino acids metabolism, protein digestion and absorption, ABC
transporter, mTOR signaling pathway exhibited significant dysfunction (Figure 4B). In
addition to the above signal pathways, we unexpectedly found that amino acids (such
as Valine, Leucine, Alanine, Citruline and Proline) biosynthesis dysfunction was also a
phenomenon shared by T2DM and IGR groups (Figure 4C).
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Figure 4. Enrichment analysis of the differentially abundant pathways between T2DM and Control
groups (A), IGR and Control groups (B) (p < 0.05). Amino acids biosynthesis pathways shared
by T2DM and IGR macaques (C). The yellow points indicate differential metabolites in T2DM
macaques; the red points indicate differential metabolites in IGR macaques; and the blue points
indicate differential metabolites both in T2DM and IGR macaques; the green lines indicate the unique
signaling pathways of macaques.

In addition, the significantly differential metabolites and the functional enrichment
varied between T2DM macaques and IGR macaques. In T2DM macaques, the up-regulated
Indole-2-carboxylic acid and down-regulated Enterostatin human was the hub differential
metabolites. The differential metabolites were enriched in primary BA biosynthesis and
fatty acid biosynthesis. However, in IGR macaques LPE was up-regulated and Adynerin
was down-regulated. Differential metabolites were enriched in protein digestion and amino
acid biosynthesis.
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3.4. Correlation Analysis of Gut Microbiota and Fecal Metabolic Traits

To explore the functional correlation between differential gut microbes and differential
fecal metabolites in T2DM and IGR macaques, a hierarchical clustering heat map was
plotted using the Spearman’s correlation coefficients between microbial communities (LDA
score > 2, p < 0.05) and the significantly differential metabolites (VIP > 1, p < 0.05). There
were 16 pairs of correlations between T2DM and Control groups, with 9 pairs positive
correlations and 7 pairs negative correlations (Figure 5A). Mogibacterium had a positive
correlation with indole-2-carboxylic acid, and a negative correlation with acetylglycine
and enterostatin human. In addition, Oribacterium was negatively correlated with Leu-Arg,
Phascolarctobacterium was negatively correlated with acetylglycine and L-Proline. Among
the 16 pairs of correlations between IGR and Control groups, Lactobacillus had a positive
correlation with Ser-Glu, and a negative correlation with LPE (Figure 5B).
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Biomarkers that could be validated by 16S rRNA sequencing and metabolomics
analysis are awfully valuable for their diagnostic potential. The ROC analysis showed that
Kocuria (AUC = 0.857), Mogibacterium (AUC = 0.929) and Oribacterium (AUC = 0.879) were
latent biomarkers for T2DM macaques, and Lactobacillus (AUC = 0.820) was a probable
biomarker for IGR macaques (Figure 6A–D). In terms of metabolites, stearidonic acid
(AUC = 0.817) and LPE (AUC = 0.880) have the potential to become a biomarker for T2DM
and IGR macaques, respectively (Figure 6E,F).
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4. Discussion
4.1. Hyperglycemia and High Insulin Resistance in T2DM and IGR Macaques

Previous studies indicated that it was rare to find spontaneous T2DM in rhesus
macaques and crab-eating macaques, and induced T2DM was also rare even after they
were fed a long-term, high-sugar and high fat diet [15]. After one month’s blood sugar
monitoring, we only identified seven rhesus macaques with spontaneous T2DM and five
with IGR from 1408 captive macaques, confirming the scarcity of spontaneous T2DM or
IGR macaques in the population. Both T2DM and IGR macaques exhibited hyperglycemia
(FPG > 6.1 mmol/L) and insulin resistance (IR > 2.67), which are representative pathological
features of human T2DM [36,37]. Our results indicate the core clinical manifestations of
T2DM in macaques were similar to human T2DM. Despite the similarities, we observed
several differences. Human T2DM patients usually demonstrate a high blood lipid index,
however, this was not observed either in T2DM macaques or in IGR macaques in our
study. Consistent with our results, Qian et al. (2015) found no significant change in TC,
TG concentrations in macaques after they were fed with a high-fat diet [13]. Differences in
blood lipid characteristics between T2DM macaques and T2DM patients have also been
noted in previous studies [38,39]. We found no significant differences in BMI between
T2DM/IGR macaques and the controls indicating hyperglycemia was not obesity-related.
However, obesity is very common in human T2DM patients [40,41]. T2DM and IGR
macaques in our study were middle aged, in contrast, old people are more prone to T2DM
than young people [42,43]. Although the number of spontaneous T2DM/IGR macaques
identified in the study are relatively small which may lead to the bias, these differences
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between the T2DM macaques and T2DM humans are of significance especially when
macaques were used as animal models in T2DM research.

4.2. Glucose Metabolism Related Bacteria Differed in T2DM and IGR Macaques

The 16S rRNA sequencing data provided more evidence for dysfunction of glucose
metabolism in T2DM and IGR macaques. KEGG enrichment of the differential microbes
between T2DM/IGR individuals and controls was significantly enriched in the glucose
metabolism pathways. In T2DM macaques, the acetate-producing TCA cycle pathway
was significantly reduced. In IGR macaques, the incompletely reduced TCA cycle path-
way was significantly increased, while the glucose and glucose-1-phosphate degradation
pathway, and glycolysis pathway were significantly decreased. Acetate is a type of short
chain fatty acids (SCFAs) exerting significant physiological and pharmacological effects in
regulating glucose metabolism, and is used as an effective measure for dietary intervention
in T2DM [44–46]. The down-regulation of the acetate-producing TCA cycle pathway in
T2DM macaques indicates that the ability to produce SCFAs has been significantly reduced.
Similarly, reduced SCFA ability is also one of the common pathological features in human
T2DM patients [46]. In addition, the impaired glycolysis function would activate the glucose
metabolism branch pathway and produce a large amount of reactive oxygen species [47],
and then hinder the synthesis and secretion of insulin, leading to β-cell apoptosis [48,49].
Our results demonstrate that microbial composition changed significantly leading to a
glucose metabolism dysfunction in T2DM and IGR macaques, which is consistent with
microbial function changes in human T2DM patients.

4.3. Production of Bile Acids Reduced in T2DM Macaques

Combining 16S rRNA data and fecal metabolomic data, we identified that the ability
to produce bile acids (BAs) was significantly lower in T2DM macaques. And this was only
found in T2DM macaques not in IGR macaques. Dysfunction of bile acids metabolism
will affect glucose homeostasis. 16S rRNA data showed that T2DM macaques had a
significantly greater abundance of Oribacterium compared to the controls. This bacterium
was reported to be closely related to the dysregulation of BAs metabolism [50,51]. In
metabolome studies, it was found that the level of primary BAs increased, and the level of
secondary BAs decreased. And the significantly differential metabolites were enriched in
the primary bile acids biosynthesis pathway. BAs not only can promote the digestion and
absorption of dietary fiber, but also act as signal molecules to activate different receptors,
participating in the regulation of glucose homeostasis, lipid and lipoprotein metabolism,
energy consumption and other physiological processes [52]. Our results demonstrate that
T2DM macaques have reduced BAs production. This was also found in human T2DM
patients suggesting that they share similar pathological mechanisms [53].

Furthermore, down regulated secondary BAs level in T2DM macaques implied a
dysfunction of innate immunity in these macaques. As suggested before, the secondary BAs
could exert antibacterial effects by destroying the pathogenic bacterial membranes [54,55].
Simultaneously, they enhance host immune defenses following infection through regulation
of innate immune responses [56–58]. These changes may contribute to the increasing of
conditional pathogenic bacteria such as Oribacterium, Koruria and Mogibacterium in T2DM
and IGR macaques in our study. The three types of fecal microbes were suggested to be
potential biomarkers for diagnosis of T2DM macaques in our ROC analysis. Thus it is
reasonable that the balance of BA metabolism is of significance not only for maintaining
blood glucose level but also for enhancing of innate immunity.

4.4. A Variety of Fatty Acids Differed in T2DM and IGR Macaques

The microflora results indicated that the abundance of bacteria in Prevotellaceae and
Phascolarctobacterium was significantly lower in T2DM macaques. Bacteria in Prevotellaceae,
the producers of SCFAs and succinic acids, play a key role in dietary therapy to improve
glucose metabolism [59]. While Phascolarctobacterium was involved in the dynamic balance
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of human intestinal flora by production of SCFAs [44]. The reduction of both bacteria
indicates decreased capacities in SCFAs producing in T2DM macaques. Furthermore, our
metabolomics results demonstrated several SCFAs were significantly down regulated in
IGR macaques, such as phenylacetic acid, 4-Hydroxybutanoic acid lactone, propionic acid
and isobutyric acid. As the secondary metabolites of gut microflora, these SCFAs could act
on β-cells by binding to insulin surface receptors to stimulate insulin secretion directly [60],
or combine with enteroendocrine L cells to regulate energy intake [61]. In addition, succinic
acid was involved in preventing obesity and improving glucose resistance and insulin sen-
sitivity of wild-type mice in vivo experiments [62]. Similar changes, significant decreases
in bacteria abundance of Prevotellaceae and Phascolarctobacterium and SCFA metabolites,
have also been reported in human T2DM patients [63,64].

It is worth noting that not all SCFAs producing bacteria was less abundant in our
T2DM macaques. The relative abundance of Butyrivibrio was significantly greater in T2DM
macaques. This is consistent with Sanna et al. (2019), who found that not all SCFAs pro-
ducing bacteria increased and led to an improvement in metabolic diseases such as obesity,
T2DM and metabolic syndrome [46]. By isomerizing linoleic acid to conjugated linoleic
acid, Butyrivibrio could inhibit leptin and adiponectin secretion and glucose absorption,
and increase anaerobic respiration of glucose, subsequently inducing insulin resistance [65].
This may have contributed to the high insulin resistance in both T2DM and IGR macaques
in our study.

In addition to the SCFAs, metabolomics results indicated an accumulation of unsat-
urated fatty acids in both T2DM and IGR macaques. In particular, several long chain
fatty acids were significantly upregulated, such as stearidonic acid, cis-9-Palmitoleic acid,
9-OxoODE, and LPE. Medium chain fatty acids such as Caprylic acidn were also signifi-
cantly upregulated. Of these metabolites, stearidonic acid and LPE appear to be potential
diagnostic markers for T2DM and IGR macaques in our study, respectively, suggesting
a close relationship of these metabolites to T2DM. Notably, the differential metabolites
between T2DM/IGR and Control groups were significantly enriched in pathways related
to Fatty acid biosynthesis or Lipoic acid metabolism. Similarly, human lipid metabolic
disorder is one of the most important factors for the etiology and pathophysiology of
T2DM [66]. The accumulation of free fatty acids has been linked to interfere with glucose
and amino acid metabolism [47,67], and to induce β-cell mitochondrial dysfunction and
insulin resistance [68]. An increased level of unsaturated fatty acids is one of the metabolic
characteristics of human prediabetes and T2DM patients and several fatty acids such as
LPE were suggested to be potential markers for the diagnosis of T2DM [69–71].

4.5. BCAAs Metabolism Enhanced in T2DM and IGR Macaques

Functional enrichment of differential microbes indicated several signal pathways of
amino acids biosynthesis (e.g., isoleucine, valine, lysine, serine and glycine) were signifi-
cantly enhanced in IGR and T2DM macaques compared to the Control group. This indicated
an elevated branch chain amino acids (BCAAs) metabolism. In clinical practice, BCAAs
have been used as biomarkers to evaluate the effect of metformin, glipizide and other
drugs in the treatment of T2DM [72,73]. To support this result, the metabolomics analysis
detected the vast majority of differential changed metabolites were amino acid derivatives,
such as indole-2-carboxylic acid, L-proline, β-homoproline, N2-acetyl-L-ornithine, acetyl-
glycine and phenylacetic acid (in IGR). Enrichment analysis showed that the differential
metabolites were significantly enriched in amino acid biosynthesis pathway, and arginine
and proline metabolism pathway in T2DM and IGR macaques. Consistently, liver pro-
teomic analysis of spontaneous T2DM macaques confirmed that the upregulated BCAAs
metabolism pathway was closely related to T2DM [11]. Amino acids are the main substrates
for gluconeogenesis, are closely related to glucose metabolism and can affect the secretion
of insulin and glucagon [67]. Amino acids enter the TCA cycle through a series of catabolic
reactions, resulting in excessive activation of glycolysis, which in turn leads to interference
with normal insulin secretion [67,74]. Meanwhile, impairments in amino acids metabolism,
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especially BCAAs, would result in the accumulation of potentially toxic intermediates that
impair β-cellular function [75]. Clinical studies have found that the level of BCAAs and
aromatic amino acids (AAAs) are increased in obese and T2DM patients, and are positively
correlated with the insulin resistance index and glycosylated hemoglobin [73]. Our results
suggested that impairments in amino acid metabolism, especially in BCAAs metabolism,
were important pathological changes in T2DM humans and T2DM macaques.

5. Conclusions

We identified seven T2DM and five IGR macaques from 1408 captive macaques, and
T2DM and IGR macaques exhibited hyperglycemia and insulin resistance. We found that
the composition and function of intestinal microbes and fecal metabolites in T2DM and
IGR macaques were significantly different from healthy macaques. There was a signifi-
cantly greater abundance of Oribacterium, which interferes with bile acids metabolism, in
T2DM macaques and this led to up-regulation of primary bile acids and down-regulation
of secondary bile acids. The significantly lower abundance of Prevotellaceae and Phas-
colarctobacterium, which produces short-chain fatty acids, in T2DM macaques led to the
down-regulation of short-chain fatty acids. Moreover, T2DM and IGR macaques were
associated with a greater abundance of opportunistic pathogens, higher level of long-chain
unsaturated fatty acids, and disturbance of carbohydrate and amino acid metabolic path-
ways. The above correlation between intestinal microbes and fecal metabolites in T2DM
and IGR macaques was highly consistent with human T2DM patients, which might pro-
vide a significant basis for the establishment of a diabetic macaque model. Unfortunately,
only genus level of bacteria was identified associated with T2DM or IGR macaques in
the present study. This is because the amplified 16S rRNA gene was too short to identify
specific species. Metagenomics sequencing should be conducted on the T2DM or IGR
macaques in future so as to identify specific species of bacteria associated with T2DM.
It is worth noting, however, that T2DM macaques exhibit several differences from IGR
macaques, whether the observed differences between them indicating the different stages
of the disease needs further investigation in future.
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