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Abstract

Predicting the transcription start sites (TSSs) of microRNAs (miRNAs) is important for understanding how these small RNA
molecules, known to regulate translation and stability of protein-coding genes, are regulated themselves. Previous
approaches are primarily based on genetic features, trained on TSSs of protein-coding genes, and have low prediction
accuracy. Recently, a support vector machine based technique has been proposed for miRNA TSS prediction that uses
known miRNA TSS for training the classifier along with a set of existing and novel CpG island based features. Current
progress in epigenetics research has provided genomewide and tissue-specific reports about various phenotypic traits. We
hypothesize that incorporating epigenetic characteristics into statistical models may lead to better prediction of primary
transcripts of human miRNAs. In this paper, we have tested our hypothesis on brain-specific miRNAs by using epigenetic as
well as genetic features to predict the primary transcripts. For this, we have used a sophisticated feature selection technique
and a robust classification model. Our prediction model achieves an accuracy of more than 80% and establishes the
potential of epigenetic analysis for in silico prediction of TSSs.
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Introduction

MicroRNAs (miRNAs) are a class of short (~22 nt) non-coding

RNAs that control the translation and stability of protein-coding

genes [1]. They regulate genes through translational repression or

post-transcriptional regulation [2,3]. Thus, miRNAs are important

in many cellular functions and accountable for many diseases [4].

It is known that miRNAs exert regulatory activities in their mature

stage, which is reached after cellular processing of primary

miRNAs (pri-miRNAs) and precursor miRNAs (pre-miRNAs)

transcribed from the DNA. Pri-miRNAs are much longer

transcripts that are first transcribed from the DNA. The removal

of a portion of pri-miRNA by the nuclear RNase III enzyme

Drosha produces the pre-miRNA, a 70–110 nt intermediate [5].

Finally, the pre-miRNAs become mature miRNAs by the

operation of another RNase III enzyme Dicer. The mature

miRNAs, along with RISC, bind to the 3’ untranslated regions

(UTRs) of mRNAs and regulate their expression. A significant

amount of information is available about the loci of pre-miRNAs

and mature miRNAs. But due to the inadequate information on

experimentally validated transcription start sites (TSSs), which

manifest the transcription initiation loci of pri-miRNAs, very little

is known about pri-miRNA transcripts. The in silico prediction of

TSSs in the upstream region of pre-miRNAs can contribute

significantly to identifying such transcripts. Moreover, recent

findings suggest that pri-miRNAs can also take part in the

regulation of genes [6]. Therefore, the identification of the pri-

miRNA transcripts is of substantial relevance.

In the last few years, the area of prediction of pri-miRNA

transcripts has been attracting the attention of researchers [7–12].

Understandably, the major focus in this direction is on intragenic

miRNAs, i.e. miRNAs located within a gene, as they are co-

transcribed with their host genes. Limited work has been

conducted for studying the TSSs of intergenic miRNAs, those

located between genes. A recent study highlights that miRNA

TSSs are different from the TSSs of genes and therefore need

specific prediction models [13]. A classification model based on

support vector machines (SVM) [14] with a multi-objective

optimization based feature selection has been proposed in [13]

where known miRNA TSSs are used for training the classifier.

As reported in a current study, intronic, exonic and intergenic

regions of DNA exhibit distinct epigenetic characteristics [15]. As

of now, only genetic features are considered for TSS identification

of miRNAs. But with the development in epigenetics, several new
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forms of genomewide data have become available. Incorporating

features that are based on epigenetic footprints in the DNA

appears to be relevant in such studies. There are recent studies in

which putative promoters of miRNAs have been identified by

analyzing epigenetic features [16]. However, the prediction of

exact TSS is a somewhat different problem. In the current

analysis, we have collected a large set of genetic and epigenetic

features (even though epigenetic footprints in the DNA are also

genetic features [17]), some of which are novel, to predict TSSs of

human miRNAs. In particular, features based on DNA methyl-

ation are employed for the first time for miRNA TSS recognition,

to the best of our knowledge. This type of epigenetic modification

is of particular relevance, as its influence on promoter regulation

has been established before in numerous studies (e.g. reviewed in

[18]). Baer et al. have recently reported extensive DNA hyper-

methylation and hypomethylation in miRNA promoters (identified

manually) in association with aberrant miRNA expression in

chronic lymphocytic leukemia [16]. To facilitate such studies, we

have proposed here a machine learning approach to precise TSS

identification. Furthermore, in higher vertebrates DNA methyla-

tion nearly exclusively appears in the CpG context, where the

methylated state of this dinucleotide is the default case [19,20].

Unmethylated CpGs are often found clustered in so called CpG

islands [21,22], which play an important role in gene regulation.

To test whether this relationship also exists for miRNAs, we have

included several features based on CpG island characterizations

into the analysis [13].

Notably, the epigenetic modifications are tissue-specific [23].

Therefore, the miRNAs expressed in a type of tissue should exhibit

distinct epigenetic features. Here, we utilize the available brain-

specific methylation data for the prediction of TSSs of miRNAs

expressed in the brain. We employ a classifier model based on a

Random Forest (RF) [24]. The information on brain tissue-

specificity has been collected from available literature. Several

recently experimentally validated primary transcripts and associ-

ated TSSs have been used for this purpose. Features based on

methylation patterns in the genomic region around the TSSs are

employed. CpG island based features, in addition to a number of

genetic features, are also included [13]. We use a recently

proposed feature selection method based on Variable Weighted

Maximal Relevance Minimal Redundancy criterion [25]. Finally,

the classifier is assessed by cross validation and further tested on

independent data.

Results

First, experiments were conducted to determine whether

methylation based information is essential for identifying TSSs

of miRNAs expressed in the brain. In the second part of the study,

we have analyzed the importance of each of five different

categories of features. Next, we have applied the VWMRmR

feature selection algorithm and constructed the classification

model based on the training dataset with reduced dimensionality.

Finally, the performance of the proposed model was compared

with those of some other approaches using the prediction results

on an independent test dataset.

Selection of the Best Feature Set
Many genomic regions across the entire genome, that appear to

be CpG islands due to repeat elements [22,26], might increase the

number of false positives during promoter prediction. So we study

only the non-repetitive part of the sequence, as done in [13], for

CpG island determination. Current studies on several organisms

show that promoters exhibit specific methylation patterns [15,27].

Inspired by these, we have conducted an experiment to observe

whether the inclusion of methylation-based features improves the

classification performance for miRNA TSS prediction or not. For

this purpose, we have prepared two types of dataset corresponding

to two different feature sets NM|PL|S|CI and

NM|PL|S|CI|MT. Each of these datasets has 200 samples

42 of which correspond to brain-tissue specific TSS samples while

158 are negative TSS samples. Subsequently, we have trained two

separate RF models based on each of the two datasets. The

average five-fold cross-validation results, computed over ten

independent runs of these two models have been listed in Table 1.

As can be seen from Table 1, the feature set combination with

MT provides better results than the other feature set in terms of all

of the five evaluation criteria, i.e., accuracy, sensitivity, specificity,

precision and MCC. This result demonstrates that inclusion of

methylation based features not only improves the prediction

capability of the proposed model but also indicates that tissue

specific methylation analysis is important.

Significance Analysis of Features
To assess the importance of the different features including the

methylation based features (MT) introduced in the present study,

the F-scores [28] are computed. If the number of positive and

negative samples are nz and n{, respectively, then the F-score of

the ith feature is computed as

Fi:
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Here, �xxi
(z), �xxi

({) and �xxi stand for the mean values of the ith

feature over the set of the entire positive samples, the entire

negative samples and total samples, respectively. Again, x
(z)
k,i

denotes the ith feature of the kth positive sample and x
({)
k,i

represents the ith feature of the kth negative sample. A larger value

of F-score is an indicator of a more discriminative feature. All 385

Table 1. Performance of the brain-tissue specific miRNA TSS
prediction model with and without methylation-based
features alongside the other features.

Feature Set #Features Classifier Performance

Criteria m s

Acc 90.65 1.20

Sn 68.10 4.79

NM< PL< S<
CI

371 Sp 96.65 0.60

Pr 84.35 2.74

MCC 0.70 0.04

Acc 91.85 1.31

Sn 70.71 4.77

NM< PL< S<
CI< MT

385 Sp 97.47 0.52

Pr 88.07 2.75

MCC 0.74 0.04

The m and s denote mean and standard deviation values of the respective
performance metrics.
doi:10.1371/journal.pone.0066722.t001
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features were ranked based on their F-scores, where a larger value

gains a lower (better) rank. The summary of the F-score analysis

for different feature subsets is shown in Table 2. In this table,

rankwise importance of all the five aforementioned feature sets is

displayed separately. Additionally, the NM feature set is

partitioned into five different subsets, namely, NM-CG (all possible

n-mer containing CG as a substring), NM-1 (for 1-mers), NM-2

(for 2-mers), NM-3 (for 3-mers) and NM-4 (for 4-mers). As can be

seen from Table 2, the class of special features (S) comprises better

discriminators (as highlighted by the ranks) of the TSS pattern

than the other classes. Note that, only three features out of the

total 385 belong to the category of special features (S). Even

though these few features may not be sufficient by themselves to

identify brain-specific miRNA TSS, this analysis underlines the

importance of their inclusion. It is also evident from the table that

all CpG island based features have been ranked within the top
~114% in the total ranked list. This observation once again confirms

that they are very useful for TSS prediction of miRNAs [13].

Furthermore the average rank of the 55 NM-CG features is

118:82 which is less than half of the average rank found using NM.

This signifies that NM-CG is also an effective feature set. In fact,

recent reports highlight that epigenetic marks also depend upon

DNA sequences [17].

A major drawback of the F-score is that the mutual information

among different features is ignored [28]. To overcome this deficit,

we have applied VWMRmR on the full feature set, which

produces a sorted ranked list of the 385 features. The summary of

the analysis of feature importance for the same ten feature subsets

(as was shown in Table 2) is provided in Table 3. Similar to the

analysis of features importance by F-score, this table also confirms

that features in the ‘‘S’’ category need to be included in the

miRNA TSS feature set. This analysis confirms that CI is a good

feature subset. Additionally, almost the same observation is found

about NM-CG like the F-score analysis. The methylation features

appear to gain in importance as compared to the F-score analysis.

Indeed, in the top 100 features, now there are 4 MT features

compared to only 1 feature appeared in the F-score analysis. Also

for the VWMRmR the best rank for a methylation feature is

obtained at position 16, whereas for F-score this value was 94.

Performance Evaluation on an Independent MiRNA TSS
Dataset

There are several gene TSS prediction tools developed to date

[29–31]. Almost all are based on machine learning approaches by

using TSS samples of protein-coding genes. However, the recent

investigations suggest that miRNA TSSs can be improved by

applying miRNA-specific training datasets [13]. Therefore we

have tested our model, incorporating tissue specificity and

methylation features, on an independent test set.

The performances of three existing gene TSS prediction

algorithms were compared with that of our proposed brain-

specific miRNA TSS prediction model on an independent miRNA

TSS dataset described in the Materials section. The first method,

CoreBoost_HM, is a recently developed RNA polymerase II core-

promoter prediction tool that is entirely dedicated to the human

genome [29]. In this tool, explicit features based on genome-wide

histone modification are incorporated together with features

relating to DNA sequence. The second tool, Dragon TSS Desert

Masker (DDM), is a well-known gene TSS prediction tool that not

only recognizes large segments of mammalian genomes as non-

TSS locations (NTL) but also identifies true TSSs with high

accuracy [30]. This research also reveals that approximately above

40% of the human genome are most likely NTLs. The

classification results employing the DDM tool are obtained by

setting the sensitivity level (approx. percentage of real TSSs not

masked) to medium (95%). The last tool, Easy Promoter

Prediction Program (EP3), is a core promoter prediction model

developed using large-scale structural features of DNA [31]. In this

tool, the default window size of 400 is used for obtaining the

classification results.

The comparative performance of the methods has been assessed

in terms of five evaluation criteria, namely, accuracy, sensitivity,

specificity, precision and MCC using that test dataset. The

classification results of these four prediction models are listed in

Table 4. It can be observed from the table that the proposed

prediction model outperforms all other prediction tools in terms of

three evaluation criteria, i.e., accuracy, sensitivity and MCC. The

accuracy, sensitivity, specificity, precision and MCC of the

proposed model are 87:22%, 81:11%, 93:33%, 92:41% and

0:75, respectively. Although the specificity and the precision

obtained using CoreBoost_HM are higher than those found using

our miRNA TSS model, its sensitivity value ( = 63:33%) is

extremely low as compared to that of our model. In comparison

with DDM, the proposed model provides better results in each of

the aforementioned five evaluation criteria. Although the specific-

ity and precision obtained with EP3 are higher than those of the

proposed approach, the prediction power of EP3 recognizing true

TSSs is very poor. The proposed model is the only one that

achieves greater than 80% sensitivity as well as specificity. To

summarize, incorporation of methylation data is found to be

effective in predicting TSSs of miRNAs expressed in the brain.

Discussion

The present article deals with the problem of predicting TSSs of

miRNAs by incorporating several novel epigenetic features along

with the other existing relevant sequence based features. The study

on brain-specific miRNAs since the methylation data is available

for brain tissue. A sophisticated RF classification model has been

constructed using a brain-specific miRNA TSS dataset. The

positive samples in this miRNA TSS dataset were collected from a

recent miRNA TSS database designed using high-throughput

sequencing data. We have evaluated the prediction capability of

Table 2. Analysis of the importance of features by F-score.

Summary Feature Type

Statistics NM NM-CG NM-1 NM-2 NM-3 NM-4 CI PL S MT

Minimum Rank 3 7 16 7 3 11 4 130 1 94

Maximum Rank 385 373 77 352 382 385 53 253 43 300

Average Rank 207.7 118.82 51.5 155.69 165.33 228.61 26.92 185.5 15.33 160.93

doi:10.1371/journal.pone.0066722.t002

Methylation Patterns for Identifying MicroRNA TSSs
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the brain-specific TSS prediction model using an independent

miRNA dataset. The performance of this model is compared to

those of some other existing machine learning based gene TSS

prediction models. The computational results demonstrate that the

proposed model performs very well as compared to existing

methods being the only one that provides both a sensitivity and

specificity above 80%.

In the future, we plan to include additional epigenetic features

like histone modification and activation of small non-coding

RNAs. We are also trying to collect additional positive samples in

order to assemble a well-balanced brain-specific miRNA TSS

training dataset. Studies on other tissues is another important

direction of future work.

Materials

A set of brain specific miRNAs was collected by a literature

survey. Then, the reported TSSs were divided into training and

test sets as described below. Furthermore, the feature set used is

described in detail.

Sample Collection
We have carried out extensive literature survey to collect more

than eighty brain-specific miRNAs (see Text S1 for more details).

We have extracted the positive TSS samples corresponding to

these miRNAs and further prepared an effective negative set for

training the TSS prediction model. We have also accumulated a

separate set of TSS samples for further testing purposes. The

methylation data is obtained from MethylomeDB [23] which

reports genomewide methylation patterns based on the hg18

genome assembly. We have mapped all the data resources used in

this study to the hg18 genome build.

A few recent studies attempted to experimentally verify the

TSSs of miRNAs. A detailed review on this can be found in [32].

Chien et al. were the first to apply high-throughput sequencing to

identifying miRNA TSS [12]. They provide exact TSS informa-

tion, rather than a region, for 847 human miRNAs. From this

large set of miRNAs, 33 human miRNAs, which correspond to 42
different TSS loci, are identified as brain-specific based on our

literature survey (see Text S1). The methylation map we used is

given in hg18 at a single base resolution. So, we have converted

the others. Since the TSS information has been mapped to the

hg19 genome build, we have further mapped it to the hg18 version

using the Lift-Over tool of GALAXY [33]. We extract a 500 bp

stretch of genomic sequence, that includes 449 bp upstream and

50 bp downstream region around each miRNA TSS, from the

UCSC genome browser (NCBI36/hg18 genome build) [34]. All

these 42 brain-specific samples comprise positive training data for

the prediction model. To our knowledge, no benchmark set with

negative samples for brain-tissue specific miRNA TSS is available

in the literature. In recent papers, the importance of adding

negative samples for making a robust biological prediction model

has been highlighted. For the TSS prediction problem, we have

selected 158 negative samples (in the form of 500 bp sequence)

randomly from the entire genome in such a way that no known

miRNA lies within a region of 50 kb either upstream or

downstream of the corresponding sample loci, as no TSS is likely

to be found at a locus that is within 50 kb of the 5’ end of the

corresponding miRNA [11]). In this way, a total of 200 samples

(42 positive samples and 158 negative samples) have been collected

as the training data. Several existing and novel features have been

extracted from these TSS samples, as described later in this

section, to comprise the final training dataset.

We prepared an independent set of test data for validating the

performance of the classifier. For this purpose, we have used the

information provided in Marson et al. [9]. They report several

miRNA TSSs defined over a stretch of 200 bp or more. The data

for only the brain-specific miRNAs are considered here. A region

around the center of the 200 bp stretch is taken as a positive TSS

sample. Ninety such positive samples have been collected. Ninety

negative samples have also been collected as described earlier.

This provides a set of 180 independent test samples.

Table 3. Analysis of the importance of features by VWMRmR feature selection.

Summary Feature Type

Statistics NM NM-CG NM-1 NM-2 NM-3 NM-4 CI PL S MT

Minimum Rank 2 2 55 7 10 2 4 212 1 16

Maximum Rank 385 280 372 380 385 381 124 301 9 341

Average Rank 206.06 110.48 188.25 214.25 228.48 203.49 44 270.25 4.33 149.64

doi:10.1371/journal.pone.0066722.t003

Table 4. Comparison of the performance of three existing gene TSS prediction algorithms along with our proposed method in
predicting brain-tissue specific miRNA TSS.

Training Classifier Performance based on the Features

Algorithm Sample Type Acc Sn Sp Pr MCC

CoreBoost_HM Gene TSSs 80.86 63.33 97.78 96.61 0.65

DDM Gene TSSs 81.67 74.44 88.89 87.01 0.64

EP3 Gene TSSs 72.78 45.56 100 100 0.54

Proposed miRNA TSSs 87.22 81.11 93.33 92.41 0.75

Best mean values of the percentage accuracy, sensitivity, specificity, precision and MCC are shown in bold.
doi:10.1371/journal.pone.0066722.t004
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Description of Features
For the prediction of brain-tissue specific miRNA TSS, a large

number of features has been generated based on diverse sequence

characteristics as well as epigenetic properties. Some of these were

used in [13], while some are new. These can be grouped into five

different categories as follows:

1. N-mer Features (NM). The frequencies for n-mers (for

n= 1, 2, 3 and 4) are collected from a sequence by considering

only its valid subsequence segment. A valid subsequence is

represented as a portion of a given sequence that contains only

the four bases ‘A’, ‘T’, ‘G’ and ‘C’. In contrast, an ‘N’ is used to

denote an undefined base. As the n-mer based features are taken

from diverse samples, they are normalized by dividing with the

length of the corresponding valid sequence segment. In this way, a

total 340 (4z16z64z256) features are obtained.

2. Palindromic Features (PL). The occurrence of several

palindromic subsequences with half length 3, 4, 5 and 6 are

extracted from the valid portion of the given sample sequence.

Similar to n-mer features generation, their frequencies are

normalized by dividing each of them by the length of the

corresponding valid sequence portion. In this manner, a total of 4
features are collected.

3. Special Features (S). We include three over-represented

special subsequence patterns that are frequent in promoters [35].

The different forms of these three patterns are: G**G, G**G**G

and GC**GC**GC in which the wildcard character ‘*’ represents

either one of A/T/C/G. Analogously to the above two feature

categories, these three features are also normalized.

4. CpG Island Based Features (CI). According to Gardi-

ner-Garden et al., a genomic region that contains higher density of

G+C and CpG than average in the whole genome is called a CpG

islands [21]. A large fraction of human promoters comprises high

CpG content [36]. Some studies related to CpG islands

emphasizes that unmethylated CpGs are frequently found in

clusters inside the CpG islands [21,22]. This cluster formation

plays a significant role for determining the patterns of gene

regulation. Usually, CpG islands are characterized by two feature

values, the value of CpG O/E (CpG observed over expected ratio)

and G+C content (cumulative occurrence of C and G). These

values are calculated along the sequence with a sliding window

approach. Determining a suitable window length is a challenging

job. In a recent study of Hackenberg et al., the problem of

choosing the ad hoc value for the length of examined region has

been addressed [37]. A number of CpG-related studies highlight

that CpG-islands can be better characterized by considering only

the non-repetitive portion of the sequence rather than the entire

sequence [13]. This is possibly because many regions that

comprise repeat elements (like Alu repeats), which are abundant

in the genome, resemble CpG islands [22,26]. Therefore many

false-positive regions may come into view as CpG-rich promoters.

Inspired by this observation, both the CpG O/E and G+C pair

values are computed from the non-repeated portion of the given

region of interest. These values can be calculated either with

overlapping or non-overlapping sliding windows. Inspired from an

earlier observation [13], we have considered non-overlapping

windows of lengths {100 bp, 125 bp, 250 bp and 500 bp} over the

entire region of interest. The CpG O/E value is calculated as

L � #CG
#C#G

, where L denotes the length of the non-repeated

sequence analyzed. On the other hand, G+C content is calculated

as (#Gz#C)
L

. In this way, a total 24 ((5z4z2z1)|2) features

have been defined.

5. Methylation Based Features (MT). DNA methylation is

a common epigenetic modification of cytosines in CpG dinucle-

otides. Unmethylated CpGs cluster in CpG islands. We use the

recently published database MethylomeDB [23] to compute MT

features for the positive and negative samples of 500bp regions.

This database offers genome-wide DNA methylation profiles

corresponding to brain-tissue of both human and mouse. There

are a total of 29 human brain samples corresponding to three

different cortical regions, namely, dorsolateral prefrontal cortex

(dlPFC), ventral prefrontal cortex (vPFC) and auditory cortex

(AC). Among these 29 samples, 15 (5 dlPFC, 6 vPFC and 4 AC)

are schizophrenia disease samples whereas 14 (4 dlPFC, 6 vPFC

and 4 AC) are non-psychiatric controls. For the present research

work, we have analyzed only the methylation patterns from non-

psychiatric controls. For each of the specified regions, the

methylation score is computed based on the methylated sites

falling within that region. Let Ms be the probability of a site (s)
being methylated, within the region under consideration, and Cs

be the sequence read coverage. Then, the feature value is

computed as

P
Vs M

1z 1
Cs

s

#CpG
; if # CpGw0 and 0; otherwise,

where #CpG denotes the count of CpG islands in the region

studied. The rationale behind this normalized score is to give

importance to higher methylation probability and penalizing it for

lower read coverage (see Text S1 for more details). In this way,

total 14 MT features are generated, one for each of the 14 non-

psychiatric control samples.

Methods

The feature selection algorithm, the RF based classification

model and the brain-tissue specific TSS prediction models are

described in the following subsections.

Feature Selection Algorithm
For many real-life applications, feature selection is necessary

because a lot of the features are irrelevant or redundant [38].

Feature selection algorithm differ in the strategy employed for

searching for feature subsets and in the score that measures the

importance of a feature subset. Mutual information is widely used

in feature selection algorithms due to its ability to identify non-

linear dependence between two features. Mutual information

between two random variables measures the mutual dependence

between the two variables. The Variable Weighted Maximal

Relevance Minimal Redundancy criterion based feature selection

(VWMRmR) [25] is a recently proposed algorithm that utilizes an

existing normalized variant of mutual information [39] to compute

both the class relevance as well as the average redundancy of the

candidate feature. Earlier approaches like the Maximal Relevance

Minimal Redundancy criterion based feature selection algorithm

(mRMR) [40], Normalized Mutual Information based Feature

Selection (NMIFS) [41] and Improved Normalized Mutual

Information based Feature Selection (INMIFS) [42], considered

the weight of class relevance and the average redundancy equally,

and these two weights have been retained throughout the steps of

feature selection. The VWMRmR approach is a weighted version

of the mRMR method in which the weight of the average

redundancy is continuously increased with respect to the number

of features that have already been selected while a fixed weight

value is set for the class relevance. The performance of the

VWMRmR has been evaluated to be superior to several other

existing mutual information based feature selection algorithms,

Methylation Patterns for Identifying MicroRNA TSSs
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namely, maximal relevance based feature selection (MR), mRMR

and INMIFS, based on analyses of six real-life high dimensional

datasets. In this article we have selected the topmost 100 features

according to VWMRmR.

The RF based Classification Model
An RF has been trained for the purpose of building a

classification model. The WEKA software [43] has been used

for this purpose. There are two important parameters that need to

be set, i.e., numFeatures (the number of features to be employed in

each random selection) and numTrees (the number of decision

trees to be produced). For the purpose of validation, we have set

both of these values to 50 based upon sensitivity analysis. The

performance of the corresponding RF model has been assessed

using five-fold cross validation and this was repeated five times to

obtain a single mean estimate. Five evaluation criteria, namely

accuracy (Acc), sensitivity (Sn), specificity(Sp), precision(Pr) and

Matthews correlation coefficient (MCC), are used. These are

defined as follows:

Acc~
TPzTN

TPzTNzFPzFN
,

Sn~
TP

TPzFN
,

Sp~
TN

TNzFP
,

Pr~
TP

TPzFP
,

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p ,

where TP, TN, FP and FN denote the number of true positives,

true negatives, false positives and false negatives, respectively.

Proposed Brain-tissue Specific MiRNA TSS Prediction
Model

From the training data, a set of 385 features was extracted, as

described earlier. Then the VWMRmR algorithm [25] was

applied to select the top 100 features. These were used to train a

RF-based classifier as already described. This model was used for a

brain-tissue specific miRNA TSS prediction. Here we have posed

the problem of TSS identification as a binary classification

problem. The capability of this model was assessed using an

independent testing data as described in the Results section.
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