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Abstract: In order to provide the seamless navigation and positioning services for indoor 

environments, an indoor location based service (LBS) test bed is developed to integrate the 

indoor positioning system and the indoor three-dimensional (3D) geographic information 

system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning 

system. Considering the power consumption, in this paper the ZigBee radio is used as the 

wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is 

applied as the primary indoor positioning algorithm. The matching processes of the user 

location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors 

(KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for 

the dynamic user, the particle filter is used to improve the positioning performance. As part 

of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. 

This involved using the computer-aided design (CAD) software and the virtual reality 

markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and 

practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to 

update and maintenance for users. The building of the Department of Aeronautics and 

Astronautics at National Cheng Kung University in Taiwan is used as an example to assess 

the performance of various algorithms for the indoor positioning system.  
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1. Introduction  

 

The location based service (LBS) subscriber base is forecasted to reach 680 million people 

worldwide, because LBS can be applied to many fields, such as local entertainment services, personal 

security applications and local traffic navigation systems [1]. Importantly, LBS can combine the 

positioning tags with the local information, and it has been applied to the scientific fields as well [2]. 

Currently, many smart phones use global positioning system (GPS) to provide navigation and 

positioning services. However, due to the propagation limit of the GPS signals, these services are 

available only while the user is in the outdoors. To provide the seamless navigation and positioning 

services for indoor environments, the wireless sensor network (WSN) might be a solution for this case. 

Due to the mobility and low cost of WSN, the sensors can be deployed inside buildings. Each sensor 

acts as a radio beacon to provide positioning services in the indoor environments. Several researches 

have proposed methods for realizing the indoor positioning system by the WSN [3-5]. Since the signal 

strength decays as the signal propagation distance increases [6], one can use this propagation 

characteristic to estimate the user location. The main concept is to use the received signal strength (RSS) 

as the tag of the location. For instance, the most common method is the triangulation method [7] which 

uses the propagation model to calculate the signal transmission distance between the transmitter and the 

receiver, and then estimates the user location by the quadratic iterative least square (QILS) method [8]. 

However, the positioning accuracy of the triangulation method is usually not sufficient to meet the 

requirements of indoor applications. Another method is the fingerprinting method [9]. In general, this 

method can obtain more accurate positioning results. To implement the fingerprinting method, two 

stages are required, namely the calibration stage and the positioning stage. The calibration stage is the 

data collection and the buildup of the database for positioning. In the positioning stage, one uses the 

matching algorithm to find the most likely user location. Ni et al. used radio frequency identification 

(RFID) technique to develop the LANDMARC indoor location sensing system in [4], and they also 

pointed out that the matching algorithm, the nearest neighbor (NN) method, may get better positioning 

solution by selecting more reference points in an indoor positioning system. According to their 

experimental results, selecting four reference points could get more desirable results. However, the 

indoor environment is complicated, for example, the arrangement of the furniture and the movements of 

people might block the signal or cause severe attenuation of the signal strength. In addition, the 

uncertainties of the indoor environment might affect the positioning results. To enhance the positioning 

performance, Wang et al. [10] combined the Kalman filter and the particle filter with the indoor 

positioning system and analyzed their positioning performance. Wang et al. [10] also suggested that the 

indoor environment is not a linear model, so although the Kalman filter is commonly used in the object 

tracking applications, it is not suitable for the indoor positioning system. An alternative filter approach, 

the particle filter might be a better option for the nonlinear and non-Gaussian indoor environments [10]. 

In addition, since the received signal strength might not be the same even when the user is standing at 
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the same location. To overcome this problem, Roos et al. proposed the probabilistic approach to handle 

the fluctuation phenomenon of the signal strength in [11], namely the kernel method and the histogram 

method. According to the experimental results in [11], the probabilistic approach has better positioning 

performance than the use of the NN algorithm. 

In light of the above discussion, the fingerprinting method is applied to implement the indoor 

positioning system. The matching algorithms used in this paper are the NN method, the k-weighted 

nearest neighbors (KWNN) method [12] and the probabilistic approach [11]. We then compare the 

positioning results under various architectures. In addition, the particle filter [13] is used in this paper to 

enhance the performance of the developed indoor positioning system. Most of the current researches 

focus on the analysis of the indoor positioning algorithms and very few researches show how to build a 

complete indoor positioning system. Thus, a rapid and practical procedure is proposed for the 

construction of a three-dimensional (3D) geographic information system (GIS) based on the  

computer-aided design (CAD) software and the virtual reality markup language (VRML) technique [14]. 

The main contributions of this paper are the development of a low cost 3D GIS as a LBS test bed and 

its integration with the indoor positioning system using WSN. The building of the Department of 

Aeronautics and Astronautics (DAA) at National Cheng Kung University (NCKU) in Taiwan is used as 

an example to demonstrate the developed system. 

Accordingly, the remainder of this paper is organized as follows. In Section 2, we describe the 

indoor positioning algorithms used in this work. The development procedures of an indoor 3D GIS will 

be explained in Section 3. In Section 4, several experiments are conducted to evaluate the indoor 

positioning performance under different architectures. A prototype indoor LBS test bed will be 

illustrated in this section as well. Finally, Section 5 presents the summary and concluding remarks. 

 

2. Indoor Positioning Algorithms  

 

Many algorithms such as the triangulation method and the fingerprinting method have been proposed 

to investigate the possibility for indoor positioning [4,7,12]. The triangulation method requires a signal 

propagation model to convert RSS values into signal transmission distances, the parameters of the 

propagation model are strongly location dependent and are different for different environments. Since 

the indoor environments are extremely complicated, it would be very difficult to find an exact model to 

describe the relationship between the signal strength attenuation and the transmission distance. In 

general, a simplified signal propagation model is commonly utilized to calculate the transmission 

distance [6], and then the QILS method is used to estimate the user location [8]. However, since the 

multipath effect is severe in indoor environments, the positioning accuracy of the triangulation method 

is not sufficient in most cases. To overcome this problem, the fingerprinting method was proposed, and 

the main concept of the fingerprinting method is to use the received signal strength as the tag of the 

location. It requires two stages to perform the fingerprinting, including the calibration (training) stage 

and the verification (positioning) stage [9]. In the calibration stage, one assigns an appropriate number 

of calibration points in the space of interest, and the RSS values of each calibration point have to be 

measured in sequence and these RSS values are then recorded as the fingerprints in the database. As 

illustrated in Figure 1, a user with the receiver (RX) visits all the calibration points sequentially to 

measure the corresponding RSS values of the incoming signals from four transmitters (TXs). For 
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example, when the user visits the calibration point 4, the received RSS values of the incoming signals 

from four transmitters could be expressed as a vector, and these RSS values and the associated 

coordinates of the calibration points will be stored into the database for future use. 

Figure 1. The calibration stage of the fingerprinting algorithm. 
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In the verification stage, if a user obtains the RSS values of the incoming signals from the 

transmitters, these RSS values might be considered as the tags of the current location, and these RSS 

measurements will be used in the matching processing to compare with the prerecorded database built in 

the calibration stage. For instance, a user stays at one unknown location, and this user uses a mobile 

device to measure RSS values of the incoming signals. The received RSS values are expressed as a 

vector, and this RSS vector is compared with the prerecorded data. Through the matching process, the 

most similar set in the database will be admitted as the user’s current location. This verification process 

is illustrated in Figure 2. 

Figure 2. The verification stage of the fingerprinting algorithm. 
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There are many matching algorithms used in the fingerprinting method to estimate the user position, 

including the nearest neighbor (NN) algorithm [15], the K-weighted nearest neighbors (KWNN) 

algorithm [9,12], and the probabilistic approach [11]. In this paper all these matching algorithms are 

implemented to evaluate their positioning performance. Additionally, the particle filter [13] is utilized in 

this work to gain possible improvement on the positioning performance.  

 

2.1. The Nearest Neighbor Algorithm 

 

The main concept of the NN algorithm is to calculate the minimum distance between the 

measurement and the prerecorded data in the database, and this distance is calculated by Equation (1): 

   

1

1

1
, ,

sN pp

j

is

d rss pos i RSS j i
N 

 
  

 
       (1) 

where rss(pos,i) is the received signal strength of the ith transmitter at the user position of pos, RSS(j,i) 

is the signal strength of the ith transmitter measured at the grid point j in the database, and Ns is the total 

numbers of the transmitters. The value of p can be chosen as 1 or 2. If p equals 1, the generalized 

distance is called Manhattan distance; otherwise, the distance is called Euclidean distance [15]. Through 

this calculation, the grid point with the minimum distance is declared as the user position.  

 

2.2. The K Weighted Nearest Neighbors Algorithm 

 

Since the NN algorithm determines the user position according to the grid point with minimum 

distance, if the received signal strength is affected by unexpected factors, such as human motions, the 

NN algorithm might obtain wrong estimations. To enhance the reliability of indoor positioning, the 

KWNN algorithm selects more grid points in the database to average the estimation results, and each 

selected grid point has the specific weighting value according to the distance computed by Equation (1). 

The grid point with smaller distance has larger weighting value; in contrast, the grid point with larger 

distance has smaller weighting value. The determination of the weighting value is given by Equation (2): 
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where dj is the distance of the j
th

 grid point, and K is the total number of the selected grid points. The 

estimation of the user position is calculated by Equation (3): 

    
1

, ,
K

j j j

j

X Y W X Y


        (3) 

where (Xj,Yj) is the coordinate of j
th

 selected grid point in X and Y directions, respectively. If the value 

K equals 1, the KWNN algorithm is identical to the NN algorithm. 
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2.3. The Probabilistic Approach 

 

The received signal strength might not be the same even if the user stands at the same location. 

Figure 3 gives an example of the distribution of the received signal strength. Figure 3 is the histogram of 

the received signal strength of the incoming signal from a specific transmitter as one stays statically at 

the same location. One notes that the received signal strength is not constant even at the fixed location. 

In Figure 3, the distribution of the received signal strength could be approximated as a  

Gaussian distribution.  

Figure 3. The distribution of the received signal strength at a fixed location. 
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To reduce the computation load, a model is used to describe the distribution of the received signal 

strength, and the most common model is the Gaussian model which is also known as the kernel  

method [11]. The kernel method assumes that the received signal strength scatters as a normal 

distribution. In addition, the received signal strengths from different transmitters are independent. The 

probability density function of the received signal strength can be expressed as Equation (4): 

 
 

2

2

1
, exp

22

i

ii

i rss

i

rssrss

rss
p rss pos





 
  
 
 

     (4) 

where pos is the coordinate of the grid point, rssi is the RSS value of the ith transmitter at the location 

pos, μrss is the mean of the rss, and 
2

irss  is the variance of the rss. If there are M transmitters, the 

probability density functions of RSS values from these transmitters can be obtained accordingly. After 

computing these probability density functions, we could multiply these probability density functions to 

obtain the likelihood function, as shown in Equation (5): 

   1 2

1

, ,..., ; ;
M

M i

i

L rss rss rss pos p rss pos


      (5) 

If a new RSS value set is obtained and there are M prerecorded data, the new measurement will be 

substituted into Equation (5) to get the likelihood function and compare it with the M prerecorded data 
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in sequence. If the maximum likelihood is obtained at position pos*, then the position pos* would be 

declared as the user location. 

 

2.4. The Particle Filter 

 

Because the indoor environment is considered as a nonlinear system, the positioning accuracy may be 

easily affected by several uncontrollable and unexpected factors. In addition, the positioning results 

based on the matching algorithms might not be desirable due to the signal strength fluctuations. If the 

user is in motion, it would be difficult to obtain the position estimations which could be approximated to 

the user indoor trajectories. To improve the positioning accuracy and smoothing the indoor positioning 

trajectories, an appropriate filtering algorithm is needed. The Kalman filter is a general approach for the 

tracking applications, but the Kalman filter is suitable for a linear system, and it is not a good option for 

the indoor positioning system. Considering the complexity of the indoor environment, the particle filter 

is used in this paper. A particle filter is suitable for a nonlinear and non-Gaussian system, the main 

algorithm of the particle filter is to implement the recursive Bayesian estimation by the Monte Carlo 

method, and it represents the posterior density function by a set of random samplings [13,16], as shown 

in Figure 4. 

Figure 4. The approximation of the posterior density by the random samplings. 
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In Figure 4, each sample is associated with a weight according to the posterior density. If the 

number of the sample is large, the posterior density can be approximated by Equation (6) [13,16]: 

   0: 1: 0: 0:

1

|
N

i i

k k k k k

i
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

        (6) 

where 0:

i

kX  is the set of the random samples at time k for ith sampling point, 0:kX  is the set of the 

system states, 1:kZ  is the set of the measurements, N is total number of the sampling points, and 
i

kw  is 

the weight of the ith sampling point at time k. The weight update to implement the recursive Bayesian 

estimations is illustrated as Equation (7) [13,16]: 

   
 

1

1

0: 1 1:

| |

| ,

i i i

k k k ki i

k k i i

k k k

p Z X p X X
w w

q X X Z







       (7) 



Sensors 2010, 10              

 

 

2964 

where  0: 1 1:| ,i i

k k kq X X Z
 is the importance density. The choice of the importance density has a 

significant effect on the estimation. The general form of the particle filter is the sequential importance 

sampling (SIS) particle filter. Assume that the system states evolution is a Markov process, and the 

current measurement is independent of the previous ones. Then Equations (6) and (7) are simplified to 

Equations (8) and (9), respectively: 
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If  1 1 1
,
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i i
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X w  

 and the measurement are available at time k, then the  
1

N
i

k i
X


 can be drawn from 

the importance density, and the weight update is obtained by Equation (9). 

However, the SIS particle filter has severe degeneracy [13,16]. A good selection of the importance 

density or the resampling algorithm might be able to avoid this phenomenon. In general, an appropriate 

importance density to the real condition is hardly available; therefore, the resampling algorithm is more 

preferable to the prior approach. The basic concept of the resampling algorithm is to generate a new set 

of  
1

N
i

k
i

X


  which eliminates samples with low weights and concentrates on samples with high weights.  

Since the optimal importance density is hard to obtain, the prior distribution  1| i

k kp X X  is often 

chosen as the importance density, as shown in Equation (10), and the weight update is simplified to 

Equation (11): 

   1 1| , |i i i

k k k k kq X X Z p X X        (10) 

 1 |i i i

k k k kw w p Z X        (11) 

The SIS particle filter with the resampling process is known as the sampling importance resampling 

(SIR) particle filter [13]. In this paper the SIR particle filter is used to enhance the positioning 

performance. The procedures of implementing the SIR particle filter are as follows [10,13,16,17]: 

 

Step 1: In the initial stage, N random sampling points (particles) is generated at the initial time as 

 0 1

N
i

i
X


, and each particle is associated with the same weight. This paper generates 1000 particles with 

the equal weights uniformly distributed in the map, as shown in Figure 5. 
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the evolution of the system states through the system model is illustrated as Equation (12). 
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where x and y are the horizontal and vertical position coordinates, respectively, Vx and Vy are the 

associated velocities, ax and ay are the associated accelerations, and t  is the time step. 

Figure 5. 1,000 particles with uniform distribution in the map. 
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Step 3: Implement the process of weight update by Equation (11) when the current measurements are 

available, and assume that the distribution of the likelihood function  | i

k kp Z X  is a Gaussian 

distribution. The 1

i

kw   is 1 N  at each time step. Then the weight update is calculated by Equation (13): 
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   (13) 

where the ,k KWNNx  and ,k KWNNy  are the positions computed by the KWNN algorithm, and   is the 

standard deviation of the positioning error of the KWNN algorithm. The weight is normalized by 

Equation (14): 
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Step 4: To avoid the degeneracy, the resampling process is applied by generating a new set of  
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Step 5: The states estimation at time k is the expectation value of the regenerated particles in Step 4 
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The flowchart of the SIR particle filter is summarized in Figure 6. 

Figure 6. The flowchart of the SIR particle filter. 
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3. Geographic Information System 

 

There are many smart phones and personal digital assistants (PDAs) which integrate the navigation 

services with the commercial GIS to provide useful location based information, such as the tourist 

attractions within a user’s vicinity. Nevertheless, the commercial GIS like the Google map does not 

provide detail information inside buildings. To achieve a complete LBS, an indoor GIS is needed. The 

major challenges for constructing an indoor GIS are to establish the indoor GIS and combine it with an 

indoor positioning system. In general, the program development tool (e.g., Visual C++) and the 

computer graphic technique (e.g., OpenGL) are used to develop the graphic system. However, if the 

requirements of the graphic system are complicated, it would be difficult to construct the graphic system 

by the method mentioned above. In addition, the maintenance and update of this graphic system would 

be difficult as well. To overcome this problem, the computer-aided design (CAD) software, such as the 

AutoCAD and CATIA, would be a better solution for the rapid graphic development. With the 

assistance of the CAD software, the developer could reduce the development time and the workload. 

However, the graphic format is different for different CAD software, and the compatibility for different 

graphic format needs to be taken into account. For that reason, the VRML graphic standard is used in 

this paper. In this paper a solution is proposed to establish the indoor GIS by the CAD software and the 

VRML technique [14], and then integrate it with the indoor positioning system. The development 

procedures are as follows: the first step is to set the goal of the GIS. After the setup of the goal, the 

next step is to collect the information required for this GIS, for instance, the building sizes and the 

location of the furniture in the room. The third step is to draw the maps by the CAD software. In order 

to integrate this developed GIS with other applications, the format of the map has to be change to fit 

the standards of the VRML. Finally, we can use the program development tool (e.g., C++ Builder) to 

integrate the developed GIS with the indoor positioning system developed in the previous section. The 

3D map is shown through the web browser (e.g., Internet Explorer) with the VRML player (e.g., 

Cosmo Player). The overall development procedure is depicted in Figure 7. 

A 3D GIS of the Department of Aeronautics and Astronautics (DAA) building of National Cheng 

Kung University (NCKU) is developed as an example for demonstration. In this paper the CATIA is 

used to draw the 3D map of the DAA building and changes the file format of the map to meet the 

standards of the VRML. The VRML is a 3D graphic display technique used in the Internet. The VRML 

has high flexibility to combine with other programming languages. For instance, the developer can use 

C++ or Java to control the object in the VRML [14].  



Sensors 2010, 10              

 

 

2967 

Figure 7. The proposed developmental procedure of the indoor GIS. 
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In this paper, we use C++ Builder to integrate the GIS with the indoor positioning system. The 

display of the VRML files needs a specific viewer, and the VRML viewer used in this paper is the 

Cosmo player. Several snapshots of the 3D GIS of the DAA building are shown in Figure 8. 

Figure 8. Snapshots of the 3D GIS of the Department of Aeronautics and Astronautics 

building of National Cheng Kung University. 

 

 

4. Experiment Results and Analyses 

 

Considering the power consumption, ZigBee radio was employed to construct the WSN for the 

indoor positioning test bed. The wireless modules used in this paper is the IRIS® which are developed 

by Crossbow Inc. The IRIS wireless module can be treated as the transmitter or the receiver. The 
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received data is transmitted via USB port. The classroom 5834 of the DAA of NCKU is used as the 

experiment place. To implement the indoor positioning system, the collection of the database for the 

positioning system is required. We attach 9 IRIS motes on the ceiling as the transmitter and divide the 

floor of the classroom 5834 into 25 grid points, and then visit these grid points in sequence to measure 

the RSS values of the incoming signals from the transmitters which are attached on the ceiling. These 

RSS values and the corresponding coordinates are saved in the database. The size of each grid  

is 137.25 cm by 152.5 cm, and the separation distance between each sensor attached on the ceiling  

is 274.5 cm. The setup and the arrangement of the experiment are shown in Figure 9. All the training 

samples and the test samples are acquired at the same day. The total training samples  

are 47,088 samples, and the average training samples at each grid point are 1,883 samples. 

Figure 9. The arrangements of the equipments and the calibration of the grid points. 
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After the database is built, this paper applies the NN algorithm, the KWNN algorithm and the 

probabilistic approach based on the kernel method to compare their positioning performance. In the 

static experiment, we visit all the grid points sequentially to conduct the positioning test, the cumulative 

distribution functions (CDFs) of the positioning errors with above algorithms are illustrated in Figure 10. 

The number of the test samples is 13,406 samples. 

In Figure 10, the NN algorithm has a 12% probability to make an exact estimation; however, the 

maximum error of this algorithm is about 8.3 meters. If the indoor positioning system has higher 

accuracy requirement, then the NN algorithm would not be an appropriate option. In contrast, although 

the KWNN algorithm cannot make an exact estimation, the maximum error of the KWNN is less than 

that of the NN algorithm.  
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Figure 10. The CDFs of the positioning errors by various matching algorithms. 
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When the value of K is set to 2, the maximum error is about 5.7 meters. As shown in the figure, the 

maximum error is reduced as the value of K increases, but the improvement diminishes as the value of K 

increases. Ni [4] and Wang [12] suggested that the K = 3 or 4 yielded the best positioning results. Our 

experiment results are in accordance with the conclusions in [4] and [12]. We choose K = 4 case to 

combine with the SIR particle filter; the estimations obtained by the KWNN algorithm are used as the 

input measurements of the SIR particle filter; the number of particles used in this experiment is 1,000. 

The velocities and accelerations used in the SIR particle filter for the static tests shown in Figures 10 

and 11 are generated by the normal distribution with zero mean, N(0,var), where var is the variance. 

The velocities (v) and the accelerations (a) are determined by Equations (16) and (17), respectively. The 

values of the standard deviation used in Equations (16) and (17) are determined by the empirical data:  

 ~ 0 , 250v N cm s      (16) 

 2~ 0 ,20a N cm s      (17) 

Based on the experimental results, the SIR particle filter significantly improves the positioning 

accuracy, and the maximum positioning error is reduced to 4.3 meters (in Figure 10). In addition, we 

apply the probabilistic approach based on the kernel method to analyze the CDFs of the positioning 

errors. The CDFs of the positioning errors with the probabilistic approach based on the kernel method 

are shown in Figure 11. 
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Figure 11. The CDFs of the positioning errors by the kernel method. 
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As shown in Figure 11, the exact estimations are about 15% by applying the probabilistic approach 

based on the kernel method, and the maximum error is about 6.3 meter. From the experiment results, 

the probabilistic approach based on the kernel method achieves better positioning accuracy than the use 

of the NN algorithm alone. In addition, we use the concept similar to the KWNN algorithm to select 

more candidates and do the average according to the probability of each candidate. Based on the 

experiment results shown in Figure 11, there is no improvement by selecting more candidates. If we 

combine the probabilistic approach and the SIR particle filter, the positioning result is similar to the use 

of the KWNN algorithm. In this case, the estimations obtained by the probabilistic approach are used as 

the input measurements of the SIR particle filter. Additionally, we compare the positioning 

performances of the NN algorithm, the KWNN algorithm with parameter K = 3 and 4, and the kernel 

method, and the CDFs of the positioning errors with these methods are shown in Figure 12. 

Based on the experiment results shown in Figure 12, although the positioning performance of the 

kernel method is slightly better than that of the NN algorithm, the KWNN algorithm with K = 3 or 4 

would still be a better option than the use of the probabilistic approach based on the kernel method. 

In this paper a dynamic experiment is also conducted where the user moves from grid point 4 to grid 

point 24 in a straight line (in Figure 9). We apply the KWNN algorithm with K = 1, 2, 3, and 4, and the 

probabilistic approach based on the kernel method to evaluate their positioning results. Additionally, the 

SIR particle filter is utilized to gain possible improvement on positioning performance. The velocities 

and accelerations used in the SIR particle filter are generated by the normal distribution,  ,N var , 

where μ is the mean and var is the variance. The velocities  v  and the accelerations  a  are 

determined by Equation (18) and Equation (19), respectively: 

 ~ 35 ,250v N cm s      (18) 

                 2~ 0 ,20a N cm s                                                (19) 
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Figure 12. The CDFs of the positioning errors by various matching algorithms. 
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The values of mean and the standard deviation used in Equations (18) and (19) are determined by the 

empirical data, and these velocities and accelerations can be changes if there are available velocities and 

accelerations measurements. Table 1 shows the standard deviations of the positioning errors by applying 

the KWNN algorithm and the KWNN algorithm with the SIR particle filter for different values of K.  

Table 1. Standard deviations of positioning errors of the dynamic test using the KWNN 

algorithm and the KWNN algorithm with the SIR particle filter. 

K 

Algorithm 
1 2 3 4 

KWNN (cm) 99.86 51.44 38.36 58.33 

KWNN + SIR particle filter (cm) 24.22 33.30 22.69 26.53 

 

The dynamic experimental results of the KWNN algorithm and the KWNN algorithm with the SIR 

particle filter of K = 4 are also shown in Figure 13. Table 2 is the standard deviations of positioning 

errors by applying the kernel method and the kernel method with the SIR particle filter. The dynamic 

positioning results of the kernel method and the kernel method with the SIR particle filter are illustrated 

in Figure 14. The positioning error is defined as the difference between the positioning result and the 

true trajectory. It is obvious that the standard deviations of the positioning errors by applying the SIR 

particle filter are smaller. It means that the SIR particle filter can enhance the positioning performance 

as the object is in motion. From Table 2, it also shows that the standard deviations of the positioning 

errors are similar while selecting more candidates for the kernel method without the SIR particle filter. 

This experiment result is in accordance with the static experiment analysis in Figure 11. 
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Figure 13. The dynamic positioning results by the KWNN algorithm (K = 4). 
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Table 2. Standard deviations of positioning errors of the dynamic test using the kernel 

method and the kernel method with the SIR particle filter. 

Candidate 

Algorithm 
1 2 3 4 

Kernel method (cm) 64.46 63.97 63.89 63.89 

Kernel method + SIR particle filter (cm) 32.89 32.18 33.99 29.68 

 

Figure 14. The dynamic positioning results by the kernel method. 
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Finally, the indoor positioning results are integrated with the developed 3D GIS to show the user 

position in the 3D map. The integration result is shown in Figure 15. In Figure 15, the blue man 

represents the start position, the yellow balls are the user’s trajectory, and the red man is the end 

position. The VRML player used in this paper is the Cosmo player, and the user can choose other 

VRML player as well. 
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Figure 15. Integration of the indoor positioning results with the 3D GIS. 

 

 

5. Conclusions  

 

In this paper several matching fingerprinting method algorithms are investigated to analyze their 

indoor positioning results, and the matching algorithms used in this paper included the nearest neighbor 

(NN) algorithm, the K-weighted neatest neighbor (KWNN) algorithm and the probabilistic approach 

based on the kernel method. The experiment results of this paper indicated that the KWNN algorithm 

with parameter K = 3 or 4 gave the best indoor positioning result. In addition, the sampling importance 

resampling (SIR) particle filter is used in this paper to enhance the indoor positioning performance. 

With the assistance of the SIR particle filter, the estimated indoor trajectories became smoother. As 

shown in the experiment results, an indoor positioning system is successfully developed in this paper, 

and more importantly, this paper proposes a practical and low cost procedure to construct a  

three-dimensional (3D) indoor geographic information system (GIS) based on the computer-aided 

design (CAD) software and the virtual reality markup language (VRML) technique. The developed 3D 

indoor GIS of this paper has high flexibilities to be integrated with the indoor positioning system, and 

the user can choose many available VRML players to use the developed system to gain local 

information based on their locations. Finally, the Department of Aeronautics and Astronautics building 

at National Cheng Kung University was used as an example to successfully demonstrate the location 

based service (LBS) test bed with wireless sensor network (WSN). 
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