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Diabetes type 2 (T2DM) is a common chronic disease, increasingly leading to many complications and affecting vital organs.
Hyperglycemia is the main characteristic caused by insufficient insulin secretion and poses a serious risk to human health. (e
objective is to construct a type-2 diabetes prediction model with high classification accuracy. Advanced machine learning and
predictive model techniques are utilized to achieve cutting-edge techniques for the early diagnosis of diabetes.(is paper proposes
an efficient performance model to predict and classify the minority class of type-2 diabetes. (e impact of oversampling and
undersampling approaches to reduce the effect of an unbalanced class has been compared to classification performance al-
gorithms. SyntheticMinority Oversampling (SMOTE) and Tomek-links techniques are applied and examined.(e outcomes were
then compared to the original unbalanced dataset using an artificial neural network (ANN) predictive model. (e model is
compared with other state-of-the-art classifiers such as support vector machine (SVM), random forest (RF), and decision tree
(DT). (e tuned model had the best accuracy of 92.2%. (e experimental findings clearly manifest the improvement in accuracy
and evaluation metrics in terms of AUC and F1-measure using the SMOTE oversampling strategy rather than the baseline and
undersampling schemes. (e study recommends adopting dynamic hyperparameter optimization to further improve accuracy.

1. Introduction

Diabetes mellitus is described as a fatal disease since it is a
well-recognized lifelong illness. It causes the body to gen-
erate less insulin and raises blood sugar levels, leading to
disruptions in the regular functioning of organs including
the eyes, nerves, kidneys, and heart.

(e global prevalence of diabetes among individuals over
18 years of age increased from 4.7 percent in 1981 to 8.5
percent in 2014 [1], with the number of persons with diabetes
growing from 108 million in 1981 to 422 million in 2014.
Diabetes is predicted to affect 642 million people (1 in 10) by
2040, with 46.5% of those undiagnosed [2]. According to
scientists, diabetes is influenced by both hereditary and en-
vironmental variables. Early identification and treatment can
help to reduce disease-related complications and risk factors.

As the healthcare business produces and creates a large
amount of useable data, such as patient data, electronic
medical records, and diagnostic and treatment data, this may
serve as a valuable resource for knowledge discovery [3, 4] to
aid decision-making and reduce costs.

In order to determine if a certain parameter is at risk of
getting diabetes given the independent variables, several
studies were conducted but shown to be inaccurate. For
instance, insulin and BMI have not been linked to a history
of type-2 diabetes. However, obesity is not necessarily re-
lated to a higher BMI [5]. It is necessary to integrate different
observations for early diagnosis. However, when several
factors were combined for diabetes prediction, the tech-
niques used could not produce good results.

Medical data, on the contrary, is recorded over a long
period of time and therefore frequently has unbalanced data

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3078025, 16 pages
https://doi.org/10.1155/2022/3078025

mailto:fkdiaaldin@pnu.edu.sa
https://orcid.org/0000-0003-1111-5818
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3078025


sets. Unbalanced data is considered an unequal distribution
of samples among the various classes.(e unbalanced nature
of medical data makes it difficult to mine various resources.
Although significant progress has been made in machine
learning, creating efficient algorithms that depend on un-
balanced data remains a difficult challenge [6].(erefore, the
main purpose of this study was to find and include the best
data preprocessing approaches before using the processed
data for the machine learning model’s training.

(e proposed solutions to overcome the class imbalance
problem fall into two categories: [a] data-level solutions, which
modify data distribution and yield an improved set with
balanced data distribution; and [b] algorithmic level, which
modify and optimise the accuracy of the classifier [7, 8].
Sampling is the basic data-level solution and can be either
undersampling (removing the majority of class instances) or
oversampling (increasing the number of minority classes).
Oversampling can result in overfitting and increase complexity
and execution time. Undersampling may discard many po-
tentially relevant data at random that raises the risk of losing
critical data [8, 9]. Undersampling may be helpful in massive
data applications to reduce computational time. Resampling
methods have also been used to address the imbalance problem
in conjunction with class overlap, noise occurrence, and/or
borderline examples in the data set.

Most resampling methods rely on the k nearest neighbor
(KNN) rule [7, 10], either by eliminating instances of two
classes that are far from the decision boundary to reduce
duplication as in condensing or by removing those that are
close to the boundary for generalization as in filtering [11].
Similarly, Tomek-links are used to eliminate instances from
the majority class since, if two examples form a Tomek link,
then either one of them is noise or both are borderline.

To address these problems, the current study handles
class imbalance and overlap by employing SMOTE over-
sampling and Tomek-links undersampling to obtain a subset
from the majority of instances and avoid eliminating in-
stances that may help to develop knowledge.

Considering the importance of early detection of T2DM,
machine learning and statistical principles are used to generate
predictive power, allowing it to automatically extract knowl-
edge from massive databases as well as identify valuable pat-
terns and interrelations [6]. (e presented paper introduces
ANN, SVM, RF, and decision tree classifiers for diabetes onset
prediction. MLP is a form of ANN that can learn from ex-
perience and extract key features from inputs that contain
extra, unnecessary data. (e performance of a neural network
is affected by toomany hidden layers, resulting in an overfitting
issue [12]. SVM is a statistically supervised ML classifier for
binary classification problems that uses a sequence of math-
ematical functions called kernels to transform the input into
the proper format. With huge datasets, it might be difficult to
choose the proper kernel function, and it takes a long time to
train. A decision tree is a supervised machine learning ap-
proach that does not need extensive data preprocessing.
However, there are a few exceptions. (ere are certain con-
straints. It is not stable; a tiny change in the data can have a big
impact on the final estimates, and complexity appears with
huge datasets. As a result, the preparation and analysis take a

long time [12]. Considering these factors, the proposed
framework is suggested to produce more accurate results in
comparison to other literature.

(e contributions of the paper are as follows:

(1) Preprocessing techniques were applied that included
filling in missing values, outliers’ treatment, feature
selection, data transformation, and handling im-
balanced data for homogeneity.

(2) (is study demonstrated a combination application
of machine learning, SMOTE oversampling, and
Tomek-links undersampling techniques for the
treatment of class imbalances, followed by the ap-
plication of normalization to the data.

(3) Implementations and trials were performed on the
ANN model using a grid search technique to ensure
optimal selection of hyper-parameters optimization
with minimal time execution and on the SVMmodel
to select the best kernel with optimal parameters.

(4) (e performance of ANN classification of different
resampling datasets was compared to achieve the
appropriate balancing technique that yields the most
accurate results.

(5) (ree classifiers, namely, SVM, RF, and decision tree
(c-Tree), were introduced and compared to ensure
the high quality of the model’s performance. Fur-
thermore, a comparison analysis was conducted with
other approaches.

(e rest of the paper is organized as follows: Section 2
includes a review of related work.(emethod is proposed in
Section 3 with data collection and parameter setup. Section 4
describes the experimental results. (e study’s findings are
discussed and concluded in Section 5.

2. Related Work

Early and onset detection is a critical step in the prevention
and control of diabetes. Using a Pima Indian Diabetes
dataset from the UCI repository, advanced machine learning
prediction algorithms have been suggested in the literature.

Gupta et al. [13] utilized a feature selection strategy and
k-fold cross-validation to increase the prediction performance
of diabetes. (e SVM classifier achieves higher accuracy when
compared to the naive Bayes model. A comparative study of
diabetes classification was conducted by Choubey et al. [14] on
PIMA India and a local diabetes dataset. PCA and LDA were
used for feature selection. (ey applied AdaBoost, KNN re-
gression, and the radial basis function and revealed that when
combined with classification methods, both may assist in in-
creasing accuracy and eliminating undesired variables. On the
PIMA dataset, Ahuja et al. [15] did a comparison evaluation of
multiple techniques. (ey found that MLP outperformed NB
and DT in terms of accuracy. Mohapatra et al. [16] employed
MLP to identify diabetes and reached a 77.5 percent accuracy
without presenting comparisons.

A stacking-ensemble technique was suggested by Singh
and Singh [17]. (ey trained four base modules using the
bootstrap technique and cross-validation, including SVM,
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decision tree, RBF, and poly SVM, but with no feature se-
lection and comparison. On PIMA and breast cancer datasets,
Kumari et al. [18] constructed a diabetes prediction system
that uses a stack of random forest, logistic regression, and
naive Bayes to compare their outcomes, and their system yields
79 percent. Khandegar and Pawar [19] employed PCA to
choose attributed features, followed by a neural network (NN)
classifier, with 92.2% accuracy. Zhu et al. [2] used K-means to
cluster the results after applying PCA, and LR was used to
classify them, yielding an accuracy of 89.0%. Moreover, SVM,
J48, KNN, and random forest (RF) classifiers were compared
by Kandhasamy and Balamurali [20]. (e accuracy rate was
73.82% for J48 and reached 100% for KNN and RF. Mercaldo
et al. [21] used two algorithms, Greedy Stepwise and BestFirst,
to find the discriminating features that improve classification
performance. Six algorithms are used. (e Hoeffding Tree
approach yielded the greatest accuracy of 75.5%, with a recall
of 76.2%. Mohebbi et al. [22] employed an MLP neural
network and CNN with an LR activation function. (e dia-
betic dataset is comprised of continuous glucose monitoring
signals that yield 77.5% accuracy using the CNN classifier.
Ramesh et al. [23] used the Recurrent Neural Network (RNN)
to predict Type 1 and Type 2 diabetes. (e dataset utilized was
the Pima Indian dataset and the predicted accuracy for dia-
betes type 1 was 78% while it was 81% for type 2. Lekha [24]
used modified CNN to predict individuals’ breath signals,
composed of five diabetic patients of type 1, nine diabetic
patients of type 2 and 11 healthy patients. (e performance
was evaluated using area under curve and was 0.96.

While the class imbalance solution poses a significant
limitation, undersampling causes the removal of important
data and oversampling causes overfitting. Moving on toward
an undersampling strategy: Mustafa et al. [9] have proposed a
hybrid method of MultiBoost ensemble and random under-
sampling to solve the class imbalance problem. Kubat and
Matwin [25] proposed OSS (one-sided selection) that provides
an undersample of the majority class instances that are re-
dundant (border instances). Barrela et al. [26] defined a new
cluster-based OSS technique (ClusterOSS) to overcome the
limitations of OSS. (e majority of class instances are selected
and clustered by k-means.(en, OSS is applied to the instances
closest to the center of every cluster. Borderline and noisy cases
are removed using Tomek-links. Mani and Zhang [27] pro-
posed a scheme to use the KNN classification method to select
the instances to be eliminated during undersampling.
Undersampling is combined with clustering to propose a
cluster-based undersampling technique [28]. (e idea of
Tomek-links is to uncover border cases, whereas Hart [29]
defined the condensing CNN undersampling technique to
detect redundant cases. (e minority class is grouped into K
clusters by the K-means algorithm in the Fast_CBUS technique
developed byOfek et al. [30], and for each cluster, a comparable
number of examples from the majority class that are near the
minority class instances are selected. Raghuwanshi and Shukla
[31] used an extreme learning machine (ELM) undersampling
classifier to create ensemble subsets of the majority class that
yielded 80.5% accuracy. Roy et al. [32], combine both SMOTE-
Tomek to balance the Pima diabetes dataset using ANN and
had achieved accuracy of 98%. Guzmán-Ponce et al. [11]

proposed two undersampling strategies that combine
DBSCAN clustering to eliminate noisy samples and refine the
decision boundary with a minimal spanning tree (MSA) al-
gorithm to deal with the class imbalance.

Moving on to oversampling strategies, Han et al. [33]
proposed a borderline SMOTE strategy for producing
synthetic examples from borderline cases with significant
misclassification costs. Barua et al. [7] clustered the synthetic
data generated after applying MWMOTE-SMOTE. To
overcome the problem of class imbalance, Gustavo et al. [34]
developed a mix of undersampling and oversampling. En-
semble learning gives a more precise solution to the problem
of class imbalance. AdaBoost [35] used ensemble methods to
apply different weights to both successfully classified and
misclassified minority samples. To properly classify minority
class instances, Chawla et al. [36] presented a mix of
sampling and ensemble learning. Wu and Chang [37] used
the SVM to create a class-boundary alignment approach.
Stefanowski andWilk [38] reported that the identification of
minority classes is only influenced by class imbalance when
associated with additional data challenges such as outliers
and redundant data. (erefore, outliers must be taken into
consideration when handling unbalanced data Table 1.

3. Methodology

In this section, we introduce the diabetes dataset as a binary
classification problem to differentiate whether a patient is
suffering from the disease or not. (is approach includes
multiple preprocessing steps for cleaning data, feature ex-
traction, and algorithms to predict the onset of diabetes.

3.1.Datasets. (ePima Indians’ diabetes dataset was obtained
from the public UCI data repository [45]. All were female. Of
the 768 total numbers, 268 (35%) were diabetes instances and
500 (65%) were nondiabetic instances. It includes eight in-
dependent variables; the first attribute was the number of times
they have had pregnancies. (e second was the plasma glucose
concentration in a 2 h oral glucose tolerance test (mean value of
141 suffered from the disease), followed by the diastolic blood
pressure (mm·Hg), fourth was triceps skin fold thickness
(mm), then 2h serum insulin (uU/ml), followed by body mass
index (weight in kg/(height inm 2̂)) with amean value of 35.14
suffering from the disease and 30 not suffering, seventh was
diabetes pedigree function, and finally was age (years). (e
dependent variable (class) is defined as (1, 0) for the presence or
absence of diabetes. In order to analyze the impact of the
attributes on the occurrence of diabetes, Table 2 shows the
positive association between the attributes and the class. Using
the t-test, glucose, BMI, pregnancy, and age had a significant
effect (p value 0.05).While the etiologic reasons for NIDDM in
Pima Indians are likely to be comparable to those in other
ethnic groups, the genes that predict predisposition to the
illness are more frequent in Pimas, according to a study of 200
normal, nondiabetic Pima Indians dataset [46].

3.1.1. Feature Selection Using Relative Odds. A logistic re-
gression model is used to characterize the risk factors for
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developing T2DM. (e odds ratio generated provides a
ranking of the explanatory variables to help determine the
output [47]. Diabetes is higher in the age group (<25 years)
in comparison to the older group (>40 years) with an odds
ratio� 6.5, as shown in Table 3. Women with one to three
pregnancies are at high risk of developing diabetes (odds
ratio� 1.6). Normal-weight women had a nearly 8-fold in-
creased risk of diabetes, while women with low blood
pressure are three times more likely to become diabetic. Data
showed that abnormal insulin secretion is a major factor,
and women with normal 2-hour glucose concentration have
a 7-fold elevated risk of developing diabetes. (ese findings
were in accordance with [46], who reported that insulin
resistance is a main risk factor for noninsulin-dependent
diabetes mellitus development. (e incidence of diabetes

was higher in normal BMI women than in overweight
subjects that may be due to a genetic predisposition factor.

3.2. Proposed Framework. We used the software R Pro-
gramming Version 3.4 for data analysis and machine learning.
Initially, the median value is used to handle missing values in
the dataset, followed by handling each attribute’s outliers.
(en, ranking of the top risk variables for developing diabetes
was performed using the random forest model (accuracy of
94%) and the Boruta package (accuracy of 78.6%).(e essential
features (glucose, BMI, insulin, age, and skin fold thickness) are
in line with existing standards and have a significant influence
on developing diabetes [19, 39]. (e data was then split into a
proportion of 80% training and 20% testing. (e training set
was balanced by SMOTE oversampling and Tomek-links

Table 1: Summary of related works.

Reference Approach Algorithm Significance and limitations

Zhu et al. [2] Dimensionality reduction of Pima
diabetes dataset PCA, K-means, LR Accuracy: 97.40%

Devi et al. [8] Class imbalance and class overlap on
Pima dataset. Eliminate missing values. FFNN outperforms NB, SVM Accuracy: 82.0%

Gupta et al. [13] Dimensionality reduction of Pima
diabetes dataset K-fold CV SVM outperforms NB Accuracy: 81.1, 79.2%, no

comparable studies

Choubey et al. [14] Dimensionality reduction of Pima
diabetes dataset by PCA+LDA

AdaBoost, classification via
regression (CVR), RBF, KNN

PCA-CVR: 91% accuracy with
excessive feature selection.

Singh and Singh [17] Data preprocessing of Pima diabetes
dataset

Ensemble model (NSGA-II)
outperforms SVM, DT, RBF and

poly-SVM

Accuracy: 83.8%.
Reduction techniques and
comparability not applied

Kumari et al. [18] Data preprocessing of Pima diabetes
dataset Stacking model of RF, NB, LR

Accuracy of 79.04%.
Need more effective
preprocessing steps

Khandegar and Pawar
[19]

Dimensionality reduction of Pima
diabetes dataset PCA+NN Accuracy: 92.2%

Kandhasamy and
balamurali [20]

Data preprocessing of Pima diabetes
dataset RF outperforms (J48 DT, KNN, SVM)

Accuracy: 100%.
No comparability with other

studies

Mercaldo et al. [21] Dimensionality reduction of Pima
diabetes dataset

HoeffdingTree outperforms J48,
MLP, JRip, BayesNet, RF Accuracy: 75.5%

Mohebbi et al. [22] Classification methods with grid search CNN outperforms MLP Accuracy: 77.5% no
comparison with other studies

Roy et al. [32]

Prediction of diabetes:
(i) Missing values by median
(ii) Combined SMOTE-Tomek

techniques.

(i) Lrgbm
(ii) ANN

Accuracy
91.0%
98.0%

Jhaldiyal and Mishra
[39]

Dimensionality reduction of Pima
diabetes dataset PCA+ SVM outperforms PCA+REP

Accuracy: 93.66%
No comparability with other

studies
Maniruzzaman et al.
[40] Comparative approach in Pima dataset GPC outperforms LDA, QDA, NB Accuracy: 81.97%

Butt et al. [41] Classification and prediction on Pima
dataset

MLP outperforms RF, LR Accuracy: 86.08%
LSTM outperforms MA, LR Accuracy: 87.26%

No feature selection
Nnamoko and
Korkontzelos [42]

SMOTE oversampling of outliers in
Pima diabetes dataset NB, SVM, ripper, C4.5 77.0, 77.7, 83.6, 89.5%

Zeng et al. [43] Handle class imbalance in Pima dataset K∗, SVM, BN, AdaBoost, C4.5, RBF
network, LR, LMT

80.33, 77.45, 78.23, 77.56,
77.45, 75.58, 78.23, 79.11%

Wang et al. [44] ADASYN oversampling NB-ADASYN-RF 87.10%
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undersampling. (en, each training set was normalized by
scaling and embedded into an ANN model where the tuning
process and hyperparameters were chosen. ANN was com-
pared to other classifiers, SVM, and tree models, as shown in
Figure 1. Performance metrics are carried out by accuracy,
sensitivity, specificity, ROC curves, F1-score, and Kappa.

3.3. Preprocessing of Data. Noise in the dataset causes in-
consistency, which leads to inaccurate outputs. Data
cleaning, handling of outliers, and data balancing are pre-
processing stages that are discussed here.

3.3.1. Data Cleaning. Some attributes have zero values that
include glucose, BMI, insulin, skin thickness, and blood pres-
sure. (e missing values were replaced by the median value in
reference to the outcome parameter in a process called im-
putation with outlier corrections. For example, missing values
for glucose levels with median values of 110 were assigned to
outcome “0” and median values of 140 to outcome “1”.

3.3.2. Dimensionality Reduction. Feature selection is used to
reduce the number of attributes while still yielding the same

number of attributes. (e quality of data is measured by the
good correlation of features with the target class and the
independent correlation to each other. random forest and
the Boruta library in R were used as wrapper algorithms for
the selection of variables. Glucose, BMI, and insulin are the
most important features.

3.3.3. Handling Outliers. A data preparation method known
as the interquartile range (IQR) is used to find outliers and
extreme values. By splitting a rank-ordered dataset into four
(Q1, Q2, Q3, Q4) equal portions, or “quartiles,” it calculates
dispersion. Whereas Q2 is the median, the IQR is the middle
half of the data that lies between the upper Q3 and lower
quartiles of Q1.

IQR � Q3–Q1,

Q3 + 1.5∗ IQR<Outliers< below Q1 + 1.5∗ IQR.
(1)

We replace the extreme values with median values
since the median is more robust than the mean and is the
middle rank irrespective of its value. Moreover, we
consider the upper and lower boundaries for the outlier’s
replacement.

Table 2: Feature characteristics of diabetes in Pima Indians’ dataset.

Feature name Mean± SD Diabetes (N� 268) Nondiabetes (N� 500) P value
Age (years) 33.24± 11.8
(<25) 31 (11.8%) 188 (38.0%)

<0.05
(25–30) 53 (20.0%) 124 (25.2%)
(30–35) 42 (15.5%) 50 (9.6%)
(35–40) 34 (12.9%) 39 (8.3%)
(>40) 108 (40.0%) 99 (19.9%)

No. of pregnancies 3.8± 3.4
Never 38 (14.0%) 73 (14.0%)

<0.05(1–3) 75 (28.2%) 238 (45.6%)
(4–6) 60 (22.0%) 115 (25.7%)
(>6) 95 (35.8%) 74 (14.7%)

Insulin level (u U/ml) 79.8± 15.2
(Less than 200) 221 (83.0%) 458 (92.0%) <0.05(More than 200) 47 (18.0%) 42 (8.0%)

BMI (kg/m̂2) 31.9± 7.9
Normal 7 (3.0%) 108 (22.0%)

<0.05Overweight 122 (46.0%) 239 (46.9%)
Obesity 139 (52.0%) 153 (31.1%)

Blood pressure (mm·Hg) 69± 19.4
Low (<65) 46 (18.0%) 155 (31.4%)

<0.05Normal (65–85) 173 (64.6%) 288 (57.2%)
High (>85) 49 (17.4%) 57 (11.4%)

Glucose (mg/dL) 120.9± 32
Normal (<140) 131 (49.9%) 438 (88.6%) <0.05High (>140) 137 (50.1%) 62 (11.4%)

Skin fold (mm) 20.5± 16
(<20) 103 (38.6%) 235 (47.4%)

<0.05(20–40) 123 (45.9%) 217 (43.0%)
(>40) 42 (15.5%) 48 (9.6%)

Pedigree function 0.47± 0.3
(<0.5) 163 (60.8%) 319 (63.8%)

<0.05(0.5–1.0) 87 (32.5%) 145 (29.0%)
(>1.0) 18 (6.7%) 36 (7.2%)
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3.3.4. Normalization of Data. A min–max normalization is
used to scale all numeric parameters to the range [0, 1].
(erefore, before training, apply (equation 1) to avoid the
effect of variables with a broader range of values.

Normalized(Ynew) �
Y − Ymin( 

Ymax − Ymin( 
. (2)

3.3.5. Stabilization of Data. (e imbalanced distribution of
classes was biased toward the negative class (majority class),
leading to the misclassification of the positive class (minority
class) as shown in Figure 2. (e following techniques are
used to handle this problem:

(1) Tomek-Link Technique. (e Tomek-link undersampling
method is a refinement of the Condensed Nearest Neighbor
(CNN) [48] aimed at reducing boundary occurrences that
have a tendency to be misclassified. If there is no sample xk
such that d (xi, xk)< d (xi, xj), two samples xi and xj with
class (xi)� class (xj) are shown to produce a Tomek-link pair.
In other words, instances that form a Tomek-link pair
generate noise in the data distribution. Outlier and duplicate
instances, in addition to boundary instances, all contribute
to the problem of class imbalance. An outlier is a case that
goes beyond the decision boundary, possibly increasing the
misclassification error. Redundant instances are those that

Table 3: Multiple logistic regression model in diabetes mellitus dataset.

Independent variables
Dependent variable (diabetes)

B Odds ratio Lower limit Upper limit Significant risk
Age (years)
(<25) −1.2 6.55 4.1 10.6 0.0
(25–30) −0.7 2.55 1.6 3.9 0.0
(30–35) −0.9 1.29 0.78 2.1 0.0
(35–40) −1.15 1.26 0.72 2.13 0.0
(>40) 1 1 Ref

Number of pregnancies
Never 1 1 Ref
(1–3) 0.69 1.66 1.0 2.6 0.0
(4–6) 0.46 1.0 0.6 1.6 0.02
(>6) 0.92 0.4 0.2 0.6 0.0

Insulin level (u U/ml)
(Less than 200) 0.9 1 Ref
(More than 200) 1.5 2.5 1.5 3.7 0.0

BMI (kg/m 2̂)
Normal −2.5 8.01 3.6 16.9 0.0
Overweight 1 1 Ref
Obesity 0.1 0.6 0.39 0.69 0.3

Blood pressure (mm·Hg)
Low (<65) −1.3 2.9 1.7 4.8 0.0
Normal (65–85) −1.2 1.4 0.9 2.2 0.0
High (>85) 1 1 Ref

Glucose (mg/dL)
Normal (<140) −0.4 7.3 5.0 11.0 0.0
High (>140) 1 1 Ref

Skin fold (mm)
(<20) −0.1 1.3 0.9 1.8 0.1
(20–40) 1 1 Ref
(>40) −1.0 0.6 0.4 1.0 0.0

PIMA Diabetes
Dataset

Training Data Test Data

Handling missing values, redundancy, normalization, and 
discretization and feature selection

Training Data 1 Test Data

SMOTE 
oversampling

Tomek links 
undersampling

Training Data 2 Training Data 3
Test Data

Performance Evaluation Model

Classifier Learning
MLP, SVM, c-Tree 

Classifiers

Figure 1: Framework for the proposed methodology.
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have the same information as one another. (e Tomek-links
technique uses the collective elimination of outlier,
boundary, and redundant instances from the majority class
to ensure informed deletion while also reducing loss of
information. (e goal is to clarify the border between the
minority and majority classes so the minority regions be-
come more distinct.

(2) 6e Synthetic Minority Oversampling Technique
(SMOTE). In SMOTE methods, the number of minority
class instances was increased, and thus there is no loss of
information from the original dataset. (e distance is de-
termined by the Euclidean distance. New samples are created
(Ynew), then the distance is multiplied by a number between
0 and 1 (σ) [49].

Ynew � Yi +(Yj –Yi)∗ σ. (3)

(e SMOTE finds the k nearest neighbors of a given
minority data instance from the neighbourhood by utilizing
the k-NNmethod.(e length of the line segment connecting
two locations xi and xj equals the Euclidean distance be-
tween them. Each new instance is created by multiplying the
differences (diff) between the relevant characteristics of the
chosen neighbour instance and the original instance by a
random value (gap) between 0 and 1 and adding them to the
features (Di) of the original minority instance (Algorithm 1).
(is helps define the derived instance’s end position [49],
which might be the same as the original minority instance, a
randomly picked neighbour, or anywhere in between.

(3) Combination of SMOTE and Undersampling. By ran-
domly removing samples from the majority class, the
majority class is undersampled until it reaches the pro-
portion of the minority class. According to [32], a com-
bination of SMOTE and undersampling or oversampling
yields better results than SMOTE alone. (e adjusted
dataset will contain twice as many entries from the minority
class if the majority class is undersampled by 200 percent.
(erefore, by combining both oversampling and under-
sampling, the training dataset would have the minority class
“smoted” and the majority class “undersampled”, as shown
in Table 4.

3.4. Machine Learning Algorithms

3.4.1. Artificial Neural Network (ANN). Interconnected
neurons with numeric weights that carry messages between
each other are referred to as ANNs. Updated weights of the
learning method and activation function that convert
weighted inputs to the learning method’s output. In the
R-neural net package, standard neural networks’ “back-
propagation” with three layers was utilized [50], with the
input, hidden, and output layers, respectively, and repetition
of 5.(e Resilient Backpropagation algorithm of type rprop+
was used as the training set [51]. (e rprop is utilized by
multilayer perceptrons (MLP) to minimize errors by ap-
plying a learning rate to the weights in the reverse direction
of the gradient. (e network is then assessed on a set of test
variables after the training set. (4) used back propagation
MLP to adjust weight update using gradient descent [52] and
learning rate α.

Δwijr � −
αrδy

δx
. (4)

3.4.2. Support Vector Machines (SVMs). (e SVM algorithm
splits the data into two groups by performing an n-dimen-
sional hyperplane.(e SVM algorithm splits the data into two
groups by performing an n-dimensional hyperplane, a kernel
function with a sigmoid shape. A two-layer perceptron neural
network is quite similar to the SVM model. (e kernels are a
set of training approaches for polynomial, RBF, and MLP
classifiers in which the network’s weights are computed by
solving a quadratic programming problem with linear criteria
[53], rather than nonconvex, as in traditional “neural network”
training.(e goal of SVM is to partition datasets into classes so
that the largest marginal hyperplane may be found [54] be-
cause the biggest margin yields the best test case. In this paper,
we construct our model using the radial basis function
nonlinear kernel (RBF). Various kernel types were used in the
SVM network training. By applying the “e1071” package in R
Figures 3 and 4, the best performance was attained for a
network using an RBF kernel. It is utilized to create completely
nonlinear hyperplanes.

k(x, x’) � exp
− x − x

’
�����

�����

2σ2
⎛⎝ ⎞⎠, (5)

where x & x’ are feature space vectors. σ is an unbounded
parameter.(e critical choice is the choice of the parameters.

(1) Hyperparameter Optimization. Tunning of cost and
epsilon parameters were selected as (ranges of the list
(epsilon� seq (0, 1, 0, 1), and cost� 2̂ (2 : 9)).

If n� number of training examples, m� number of
features, and k� number of support vectors, the computa-
tional complexity of training SVM using Big O notation is O
(n̂ 2) and for testing is O (k∗m) [55].

Table 5 shows a comparison between different SVM
kernels. Tunning parameters (sigma, cost) and ROC were

Original dataset=768
D=268 ND=500

Training set =613
D=207 ND=406

Test set =153
D=61 ND=94

Tomek-links
Undersampling

80% 20%

1

SMOTE/Undersampling
(200:100)

SMOTE
oversampling

100%

2 3

Figure 2: Generation of training and testing datasets. (SMOTE:
Synthetic minority oversampling technique).
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used to select the optimal model using 10-fold cross-vali-
dation. (e best accuracy was obtained after oversampling
using SVM with the RBF kernel. (e largest AUC value was
obtained after training with a 100% SMOTED of 0.96 and an
accuracy of 0.974, as shown in Figure 5. On the other hand,
on applying Tomek-links on the training set (Figure 6), the
accuracy of SVM was 0.88 with an AUC of 0.89.

Dsmoted← [];
for i← 1 to nrow (DMinority) do
nn← k-NN(Di, DMinority, k);
Ni← [Npercent/100];
while Ni!� 0 do
neighbour← SelectRandom (nn);
gap←RangeRandom (0, 1);
diff← neighbour-Di;
synth←Di+gap∗diff;
Dsmoted← append (Dsmoted, synth);
Ni←Ni−1;

end
end

ALGORITHM 1: SMOTE [10].

# SMOTE oversampling for training set 
training<-SMOTE (Outcome~.,training, perc.over=100) 
trctrl<- trainControl (method = "repeatedcv", number = 10, repeats = 5, 

summaryFunction = twoClassSummary, 
classProbs = TRUE, 
sampling = 'down') 

#Model 
svm_Radial<- train (Outcome~., data = training, method= "svmRadial", 

trControl= trctrl, 
metric="ROC", 
preProcess=c ("center","scale"),tune
Length=10)

Tuning parameter 'sigma' for the model were sigma = 0.109 and C = 64. 

Figure 3: SVM model for SMOTE oversampling training dataset
using R software.

#Tomek-links downsampling for training set
‘Libraray (themis)’
Colnames (train)[9]< -‘class’
Train_tomek_sample < -recipe (~., training)

step_tomek (class)
prep ()
bake (new_data = NULL)

svm_model_tomek<-train (Outcome~.,data = training,method =
"train_tomek_sample",

trControl = trctrl,
metric = "ROC",
preProcess = c ("center","scale"),
tuneLength = 10)

pred <-predict (model_tomek, newdata = test, type = “response”)
c_matrix_tomek<-confusionmatrix (data = as.factor (as.numeric (pred>

0.5)),reference = test$outcome)

Figure 4: SVM model for Tomek-link undersampling training and
test datasets.

Table 4: Characteristics of the datasets after preprocessing steps.

Dataset Positive Negative Total
Baseline 268 500 768
Smote (100%) 414 414 828
SMOTE/undersample (200 :100) 648 432 1080
Tomek-links 216 329 545

0.91
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Figure 5: AUC for SVM-RBF after training SMOTE 100%,
sigma� 0.1210985 and C� 128.
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Figure 6: AUC for SVM-RBF after training Tomek-links,
sigma� 0.127 and C� 1.0.
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3.4.3. Random Forest (RF). Random forest constructs nu-
merous independent decision trees and aggregates them
(Algorithm 2), typically yielding a more accurate and precise
outcome. (e final prediction output by RF is the category
that received the most votes across the forest. Similar hyper-
parameters to those of a decision tree or bagging classifier
are present. (e reality that underlies RF simplicity is the
overlap of random trees. RF produces more accurate results
on big datasets, and more random trees may be produced by
establishing a random threshold for all features rather than
locating the most precise threshold. (e overfitting problem
is also resolved by this approach [56].

3.4.4. Decision Tree. For regression analysis, recursive bi-
nary splitting is a prominent method. Exhaustive search
algorithms frequently employed to generate such models
have two major drawbacks: overfitting and bias selection
towards covariates with multiple splits or incomplete data.
Although pruning can be improved with overfitting, the bias
of feature selection still has a significant impact on the use of
structured tree regression models. Conditional inference
trees (CTree) are nonparametric regression trees found in
the R package. (e association between outcomes and
covariates is investigated by the CTree to make unbiased
covariate selections at various levels. CTree differs from the
CARTand C4.5 algorithms [58] in that it does an exhaustive
search over all possible splits before picking the covariate
with the best split.

(e tree model shown in Figure 7 shows the following:

(1) Root: glucose (most significant feature).
(2) Glucose≤ 0.638, age≤ 0.15, pregnancy≤ 0.353,

BMI> 0.461, anddiabetes pedigree function ≤0.26
(n� 109, err� 20.2%).

(3) Glucose> 0.638 and glucose> 0.774 (n� 192,
err� 87.3%).

3.5. Assessment Measures for Class Imbalance. Accuracy as
an evaluation metric can be misleading in imbalanced data.
(e G-mean is an average obtained from both minority and
majority classes, the higher its value, the better, as shown in
Table 6. Other metrics include the F-measure, which pro-
vides good classifier performance in the minority class. (e
balance between sensitivity and specificity using area under
the curve-receiver operation curve (AUC-ROC) of one is a
perfect model [59].

4. Experimental Results and Discussion

(e experimental findings were evaluated and analyzed
using the metrics in Table 6.

4.1. Analysis and Evaluation of ANN. To avoid overfitting or
underfitting problems, we first perform grid search to select
the best parameters for training the model.

4.1.1. ANN Hyperparameter Optimization. Grid search was
applied to datasets (Table 7) before and after resampling in
this study to choose the optimal parameters and improve
and lower the training error. Setting the tuning grid with 10-
fold cross-validation (e tuning parameters are weight, the
number of hidden layers, and hidden units; decay is the
weight decay; and there are three tuning values (0, 0.01, and
0.1); the learning rate is set to 0.01. Size is the number of
hidden units per layer. (e number of layers maintains a
balance between high bias and variance and has been se-
lected to be two layers. (e batch size is 32, and the number

Glucose
p < 0.001

Pregnancies
p<0.001

Age
p<0.001

BMI
p<0.001

BMI
p<0.001

DiabetesPedigree Function
p = 0.014

Glucose
p<0.001

≤0.638

≤0.15

≤0.353

≤0.461

≤0.26

≤0.774

≤0.449>0.449

>0.26

>0.461 >0.449

>0.353

>0.774>0.15

>0.638

1

11

12

2

3

4

6

Node 5 (n = 150)
1
0.8
0.6
0.4
0.2
01

Node 7 (n=109)
1
0.8
0.6
0.4
0.2
01

Node 8 (n=31)
1
0.8
0.6
0.4
0.2
01

Node 9 (n=8)
1
0.8
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01
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1
0.8
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Node 13 (n=55)
1
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0.4
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01
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1
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01
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1
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01

Figure 7: Conditional inference tree for training set after oversampling. (e Bonferroni significant p values are presented for each inner
node, and the proportion of result is displayed for every terminal node. Diabetes� 1, NonDiabetes� 0.
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of iterations is 250 (Table 8). (e next optimizer is gradient
descent to find local minima, manage the variance, and
adjust the model’s parameters [52].

Initially, the diabetes dataset without oversampling is
classified using (ANN). (en the data after resampling is
experimented with ANN. (e best performance was

achieved with four layers (8, c (5, 2), 1) and 10−2 learning
rate. (e most significant features used in the generation of
the model were sorted using the varImp function in the
NeuralSens package in R (Figure 8). (e run-time execution
was shown in (Tables 7 and 9).

(e proposed models have been developed and tested on
a PC having the following specifications: Microsoft Win-
dows 10 operating system, i5-core processor @ 2.40GHz,
and 6GB of RAM.

4.2. Computational Complexity. (e time complexity is
determined by using Big O notation. For ANN trained with
gradient descent (backpropagation) runs for n iterations,

Table 5: Comparative analysis after applying different SVM kernels on training sets.

Type Kernel type Training imbalanced
data

SMOTED oversampling
(100%)

SMOTE/Undersample
(200 :100)% Tomek-links

Accuracy of SVM
model

Linear 69.4% 73.0% 80.4% 80.2%
Linear grid 82.6% 90.1% 85.7% 84.6%

Radial basis Function
(RBF)

76.0% 97.4% 96.6% 88.0%

C� 0.5, S� 0.1 C= 64, S= 0.109 C� 64, S� 0.118 C� 1.0,
S� 0.12

Hyperparameter (Cost� “c,” sigma� “s”) for SVM-RBF kernel.

Input: dataset D, ensemble size T, subspace dimension d
Output: average of prediction from tree models
for t� 1 to T do
build a bootstrap sample Dt from D
select d features randomly and reduce dimensionality of Dt accordingly
train a tree model Mt on Dt
split on the best feature in d
let the Mt growing without pruning
end

ALGORITHM 2: Random Forest Pseudocode [57].

Table 6: Performance metrics for the classification model.

Performance metric Formula
Precision TP/(tp + FP)
Recall (sensitivity) TP/(tp + FN)
Specificity (true negative rate) TN/(TN+FP)
F1-score 2 ∗ (precision ∗ Recall)/(Precision + recall)
Accuracy (TP+TN)/(TP +TN+FP+ FN)
G-mean

���������������������
Sensitivity ∗ Specificity



TP� true positive, TN� true negative, FP� false positive, FN� false negative.

Glucose

Insulin

EMI

Pregnancies

Age

DiabetesPedigree Function

Skin�ickness

BloodPressure

X3

0 20 40 60 80 100
Importance

+

+

+

+

+

+

+

+

Figure 8: Features selection priority using the varImp function on
ANN evaluation.

Table 7: Evaluation of best performance of ANN using grid search.

No. of
neurons

No. of
iterations Decay Accuracy AUC Time

50 250 0.01 0.752 0.801 2.45min
30 250 0.01 0.725 0.786 2.30min
10 250 0.01 0.861 0.90 2.10min
9 250 0.01 0.940 0.927 1.30min
3 250 0.01 0.79 0.801 50 sec
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with n layers each with n neurons, delta error, weights as well
as adding feedforward propagation is O (n̂e) [52].

In our model, the backdrop contains 4 layers (1 input, 2
hidden, and 1 output) denoted i, j, k, and l with delta weight
update in t-training time and n epochs is O (nt ∗
(ij + jk + kl)). (is is the same as the feed-forward pass
network. (e result is O (nt ∗ (ij + jk + kl)).

(e performance of the ANN classifier after over-
optimized hyper-parameters was shown in Table 9, using
different training sets. (e accuracy after training ANN with
(SMOTE 100%) was 90.2%, sensitivity was 84.5%, and
specificity was 93.1% (Figure 9) that exceeds other data sets.
(e training time was 290 sec and the AUC was 0.89, as
shown in Figure 10.

Finding the optimal algorithm with ideal hyper-pa-
rameters in ANN is a challenge, as it requires too much
computing time. (e author [60] reported that the Antlion
optimizer outperforms grid search in choosing the optimal
hyper-parameters in the stroke dataset using DNN within a
limited amount of time.

(e dataset with and without resampling are then
experimented with other machine learning algorithms such
as SVM, RF, and DT. (e percent of improvement in
performance after applying to resample was considered in

Table 10 and Figure 11. (e ANN model shows an im-
provement in accuracy after applying SMOTE 100%over-
sampling. On the other hand, the Tomek-link technique
yields 72.2% lower than the original training set, which was
80.1%, as shown in Figure 9.

Hyperparameter optimization s improve SVM after
SMOTE 100%oversampling, the accuracy was 72.9%, and
AUC of 0.73. By applying Tomek-link undersampling, the
accuracy was improved to 71.6%, except for the F1-measure,
which shows no significant change in Figure 12.

By using the training set without resampling, RF shows
52.2% sensitivity, 75.4% specificity, and an accuracy of 62%.
While after resampling, the accuracy was improved and
achieved 75% in simulated (100%) and only 65% in Tomek-
links, as shown in Figure 13.

In this study, the CTree model is influenced by blood
glucose levels, BMI, and pregnancies. Insulin and BMI, on
the other hand, appear to have a greater impact on diabetics
than the other factors as shown in Figure 7. (e accuracy
after training SMOTE 100% oversampling was 87.8%,
SMOTE/undersample was 83.4%, and after applying Tomek-
links was 75.5%, while test results were shown in Figure 14.

(e overall summary of the best training set was shown
in Table 11. (e ?ndings revealed that the proposed ANN
outperforms traditional models with respect to precision,
recall, F1-score, and accuracy of the model.

4.3. Area under the Receiver Operating Characteristics (AUC-
ROC) Curve. ROC is a probability curve, and AUC repre-
sents the degree or measure of separability. We considered
AUC as part of the performance evaluation. (e greater the
area, the better the model with FP rate� 0 plotted against TP
rate� 1. In contrast, G-mean represents the performance in
absolute values.

Figure 10 shows the AUC of optimized oversampled
ANN at 0.89, which means that the model can discriminate
between positive and negative classes by 89%. ANN was the
best classifier, exceeding other classifiers with AUC.

(e optimization of the hyper-parameters (cost and
sigma) of SVM classifiers using the RBF kernel was also
evaluated by AUC-ROC. Figure 5 shows the AUC of SVM
after training SMOTE (oversampled 100%) of 0.905, while
after the test it was 0.73, as in Table 10. Figure 6 shows the
AUC of SVM after undersampling with Tomek-links that
achieved 0.88, while the test set was 0.7 in Table 10.

Figure 15 shows the AUC of CTree, SMOTE over-
sampling also exceeds the value of 0.78.
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Figure 9: Performance evaluation of ANN classifier before and
after resampling.
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Figure 10: AUC of 0.89 ANN classifier after SMOTE 100%
oversampling.

Table 8: Optimized parameters used for training ANN.

No. Parameters Values
1 Loss function Binary cross entropy
2 Optimizer Gradient descent (backpropagation)
3 Algorithm “rprop+”
4 Activation function “Logistic”
6 Stepmax 1e + 06
7 Learning rate 0.01
8 Metrics Accuracy
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Our work is compared to that of Devi et al. (2017). (ey
implemented abnormal Tomek links to undersample the
majority and overlapping regions in the diabetes dataset.
(ey applied the optimization ratio in both Feed Forward
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Figure 11: Comparison performance of all classifiers using accuracy%.
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Figure 12: Performance evaluation of SVM classifier before and
after resampling.
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Figure 13: Performance evaluation of RF classifier before and after
resampling.
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Figure 14: Performance evaluation of DTclassifier before and after
resampling.
Table 9: (e ANN model’s accuracy, error rate, and training time.

Training data Test accuracy (%) MSE Training time (sec)
Original set 0.801 0.06 31.83
Smote (100%) 0.902 0.02 310
Smote/
undersample 0.811 0.03 290

Tomek-links 0.722 0.08 228.6
MSE: mean square error (loss function).

1.0 0.5 0.0

0.0

0.2

0.4Se
ns
iti
vi
ty

Specificity

0.6

0.8

1.0

Figure 15: AUC of 0.78 CTree classifier after SMOTE 100%
oversampling.
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NN and SVM (Cost� 10, Sigma� 0.1). (e accuracy of
Tomek-links for ANN was 76.0%, while combined SMOTE-
Tomek gave 75.0% with an AUC of 0.66. While the accuracy
of Tomek-links for SVM was 85% and combined SMOTE-
Tomek gives 75.0% only with an AUC of 0.72.

4.4. Comparison of the Effectiveness of the ANN model to
Benchmark Research for Predicting Patients with Diabetes.
To evaluate the effectiveness of the ANN model, the per-
formance is compared with other literature using the same
diabetes dataset. ANN accuracy performs better than other
studies, as shown in Table 12.

5. Conclusions

(e current approaches involve inaccurate classification
techniques as they do not consider several crucial data

preparation steps that can significantly improve the level of
performance. Several risk assessments for diabetes early
detection are reported in the current study. (e relationship
between the attributes has been analyzed using conventional
methods, and the inferences were predicted using analytical
approaches. Using machine learning involves preprocessing
steps of filling in missing data and class imbalances that
might lead to misclassification. (e training data were
balanced using SMOTE oversampling, Tomek-links
undersampling, and a combination of SMOTE/undersample
modeled with ANN. To characterize the risk of developing
type-2 diabetes, the odds ratio, the Boruta filter, and the
varImp function were applied to rank the important vari-
ables. Our results were consistent with the guidelines and
previous studies [32], where insulin resistance and elevated
BMI were shown to be the major risk factors. Oversampling
was performed on the training set using a SMOTE ratio of

Table 10: Comparison between multilayer perceptron, support vector machine, RF, and decision tree based on various metrics in test data
set.

Model Sensitivity Specificity F1-score Kappa Precision Accuracy ROC G-mean
ANN+Gridsearch 0.662 0.853 0.682 0.51 0.704 0.801 0.71 0.75
ANN+Gridsearch + Smote (100%) 0.845 0.931 0.871 0.66 0.903 0.902 0.89 0.89
ANN+Gridsearch + Smote/undersample 0.842 0.765 0.774 0.52 0.721 0.811 0.73 0.80
ANN+Gridsearch + Tomek_links 0.735 0.724 0.643 0.42 0.575 0.722 0.64 0.73
SVM 0.645 0.751 0.609 0.38 0.657 0.691 0.69 0.70
SVM+ smote (100%) 0.715 0.754 0.675 0.29 0.707 0.729 0.73 0.73
SVM+Smote/undersample 0.701 0.715 0.582 0.29 0.606 0.664 0.69 0.71
SVM+Tomek_links 0.661 0.794 0.593 0.44 0.675 0.716 0.70 0.72

RF 0.522 0.754 0.652 0.33 0.652 0.695 0.62 0.63
RF+ smote (100%) 0.871 0.635 0.787 0.40 0.713 0.754 0.75 0.74
RF+ smote/undersample 0.815 0.691 0.694 0.38 0.614 0.742 0.62 0.75
RF+Tomek_links 0.752 0.641 0.543 0.38 0.494 0.693 0.65 0.7

DT 0.711 0.801 0.691 0.22 0.674 0.771 0.74 0.75
DT+ smote (100%) 0.789 0.764 0.669 0.41 0.627 0.789 0.78 0.78
DT+ Smote/undersample 0.812 0.682 0.674 0.31 0.584 0.737 0.70 0.74
DT+Tomek_links 0.762 0.664 0.784 0.39 0.793 0.702 0.74 0.71

Table 11: Summary of evaluation metrics using SMOTE (100%).

Classifier Sensitivity Specificity F1-score Kappa Precision Accuracy ROC G-mean

Test dataset smote 100%

ANN 0.84 0.93 0.87 0.66 0.903 0.902 0.89 0.89
SVM 0.71 0.75 0.67 0.19 0.70 0.729 0.73 0.73
RF 0.87 0.63 0.78 0.40 0.71 0.754 0.75 0.74
DT 0.78 0.76 0.66 0.36 0.627 0.789 0.78 0.78

Table 12: Comparative results of ANN with previous studies based on accuracy%.

Author Approach Algorithm Accuracy%

Alam et al. [5] Prediction of diabetes ANN 75.7%Median values and NB imputation
Pradhan et al. [61] Prediction of diabetes with classifier comparisons ANN 85.09

Guldogan et al. [62] Prediction of diabetes: MLP 78.1%
Missing values deleted RBF 76.8%

Ahuja et al. [15] Prediction of diabetes: MLP 78.7%Missing values by median
Ramezani et al. [63] Predicting diabetes with reducing number of features from 8 to 5 LANFIS 88.05%
Our work (ANN) Predicting diabetes with preprocessing steps + SMOTE 100% ANN 90.2%
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100%. (e prediction performance was higher in all models,
with AUC and F1-measures ranging between 0.69 and 0.89.
Furthermore, the results of Tomek-links were not consid-
erably better than the original training set in all classifiers. A
grid search method is used to track the maximum values of
the parameters in order to optimise the hyper-parameters
using ANN. (e cost-sensitive method was applied to SVM
for optimization. (e ANN and SVM’s sensitivity and ac-
curacy were greatly enhanced by the oversampling stage.(e
ANN and SVM’s sensitivity and accuracy were greatly en-
hanced by the oversampling stage. (e predictive perfor-
mance of the CTree classifier is unaffected by rebalancing.
(e AUC of 0.89 and accuracy of 90.2% indicate that ANN is
the best model in both the oversampled and test datasets.
(e SMOTE oversampling increases the learning capability
and improves performance rather than the Tomek-links
technique.

To conclude, model-based oversampling can be utilized
to identify individuals at high risk of getting diabetes and
provide a timely response in treatment to women in our
community aged 21 and older. Our limitation in this study is
the lower number of samples. To lower the risk and effects of
type 2 diabetes, the research proposed that more regulated
attributes and frequent follow-up be offered, particularly
during pregnancy. Future studies can be performed using
sensitivity analysis and regularizations to select the most
significant features based on deep learning for the early
prediction of diabetes diseases. In addition, hyper-param-
eters can be optimized dynamically.
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