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Abstract: Insulin/insulin-like growth factor-I (IGF-I) pathways are recognized as critical signaling pathways involved in 

the control of lifespans in lower organisms to mammals. Caloric restriction (CR) reduces plasma concentration of insulin, 

growth hormone (GH), and IGF-I. CR retards various age-dependent disorders such as nuerodegenerative diseases and ex-

tends lifespan in laboratory rodents. These beneficial effects of CR are partly mimicked in spontaneous or genetically en-

gineered rodent models of reduced insulin and GH/IGF-I axis. Most of these long-living rodents show increased insulin 

sensitivity; however, recent study has revealed that some other rodents show normal or reduced insulin sensitivity. Thus, 

increased insulin sensitivity might be not prerequisite for lifespan extension in insulin/GH/IGF-I altered longevity rodent 

models. These results highlighted that, for lifespan extension, the intracellular signaling molecules of insulin/GH/IGF-I 

pathways might be more important than actual peripheral or systemic insulin action.  
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INTRODUCTION 

 Compared to animals allowed to access food freely, 
moderate restriction of food intake, but not malnutrition, 
reduces morbidity and mortality in laboratory animals [1]. 
This effect, often noted as the anti-aging effects of caloric 
restriction (CR), has been recognized as a result from the 
restriction of calorie intake, but not from the restriction of a 
specific food component and not from a reduction of the 
toxic contaminants in food [2,3]. From an evolutionary 
viewpoint, the effect of CR appears to be explained by or-
ganisms having evolved adaptation mechanisms in their neu-
roendocrine systems to maximize survival during periods of 
food shortage [4]. Thus, it is believed that CR can, at least in 
part, regulate the aging processes through its effects on en-
docrine and/or neural regulatory systems [2]. The underlying 
molecular mechanism of regulation of the neuroendocrine 
system by CR remains to be fully elucidated; however, insu-
lin, the GH/IGF-I axis, and leptin have been proposed as 
potential molecular mediators of the adaptive response to CR 
[5-8].  

 In many rodents, spontaneously or targeted gene modifi-
cations of insulin and the GH/IGF-I axis results in lifespan 
extension (see review [9-12]). Thus CR and these rodent 
insulin/GH/IGF-I models share, at least in part, a molecular 
mechanism of longevity. However, CR has been shown to 
also extend lifespan in GH-deficient long-lived Ames dwarf 
mice [13]. Furthermore, we found that CR significantly ex-
tended the lifespan of pituitary specific GH-antisense trans- 
 

*Address correspondence to this author at the Department of Investigative 

Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-

12-4 Sakamoto, Nagasaki 852-8523, Japan; Tel: (81)-95-819-7050; Fax: 

(81)-95-819-7052; E-mail: takuya@nagasaki-u.ac.jp 

genic (TG) rats, which have reduced plasma levels of insulin 
and IGF-I [14,15]. These findings suggest that there might 
be different pathways in lifespan extension by GH/IGF-I 
suppression and CR; although it is possible that they share 
some of the same regulatory molecules in the insu-
lin/GH/IGF-I pathway. 

 In lower organisms, long-lived mutants in C. elegans 
have provided a body of evidence about molecular mecha-
nisms underlying longevity [16]. The C. elegans neurosecre-
tory signaling system regulates whether animals enter the 
reproductive life cycle or have an arrest in development at 
the long-lived dauer diapause stage. The daf-2 gene encodes 
an insulin/IGF-I like receptor, a critical gene in the genetic 
pathway that mediates this endocrine signaling in C. elegans 
[17]. The age-1 gene [18] acts in the same signaling pathway 
as daf-2, and is closely related to a family of mammalian 
phosphatidylinositol 3-kinase (PI3K) p110 catalytic subunits 
under the insulin/IGF-I signaling pathway [19]. It has been 
also reported that mutations in the Drosophila equivalents of 
daf-2 (InR), and chico, a fruit fly insulin receptor substrate 
(IRS), indicate that these genes have roles in body and organ 
size determination as well as in lifespan [20,21]. Reduction 
of function in InR mutants and the null mutation of chico 
increased the mean lifespan in female flies. These findings 
suggest that insulin/IGF-I signaling is a highly conserved 
longevity signal from lower to higher organisms. 

 In this brief review, we first discuss longevity rodent 
models that have modified insulin/GH/IGF-I pathways. 
These include spontaneous dwarf mutations and genetically 
altered rodents with increased lifespan. Later, we speculate 
the involvement of WD-repeat protein 6 (WDR6) as a candi-
date for the regulator of insulin/IGF-I signaling, which con-
trols metabolism and longevity in the brain [22]. 
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Insulin and GH/IGF-I Axis in Rodent Longevity Models 

 Table 1 shows rodent longevity models with modified 
insulin/GH/IGF-I signals. In mammals, the production of 
IGF-I is stimulated by pituitary GH. Prop-1 (Ames mice) 
and pit-1 (Snell mice) mutant dwarf mice live longer than 
controls, with defects of transcription factors controlling 
differentiation of the anterior pituitary during fetal develop-
ment [23]. These mice are also prolactin (PRL) and thyroid-
stimulating hormone (TSH) deficient. However, it is thought 
that inhibition of the GH/IGF-I axis is the primary effector 
on lifespan extension of these mice because GH overexpres-
sion mice show resemble an accelerated aging phenotype, 
with a shorter lifespan and earlier loss of fertility [24]. Both 
Ames and Snell mice show increased insulin sensitivity 
[25,26].  

 Another pituitary mutation that causes dwarfism was 
found in lit/lit mice. The responsive gene in these mice is the 
GH-releasing hormone receptor (Ghrhr) [27]. Ghrhr

lit/lit
 mice 

have low levels of GH, IGF-I with prolonged lifespan [28]. 
Data from the Ghrhr

lit/lit
 mice also suggest that changes in 

the GH/IGF-I axis could be sufficient to extend lifespan of 
dwarf mice, because these mice have normal PRL, TSH and 
thyroid hormone levels. Ghrhr

lit/lit
 mice appear to have nor-

mal insulin responses compared to wild type mice [29]. 
However, double mutant mice of Ghrhr and PRL-receptor 
showed decreased insulin sensitivity in old age because of 
increased adiposity [29]. This contrasts with the results of 
the GH- and PRL-deficient Ames and Snell mice described 
above.  

 Pituitary specific GH-antisense TG rats show increase 
lifespan with lower serum insulin, IGF-I compared to Wistar 
rats, which have same genetic background [14,15]. These 
rats have increased insulin action to reduce blood glucose; 
however, insulin-independent glucose-lowering effects have 
also been suggested [30,31]. These rats show a moderate 
reduction of the GH/IGF-I axis compared to Ames or Snell 

dwarf mice whose GH/IGF-I axis is almost completely sup-
pressed. Similar to these dwarf mice, CR upon GH-antisense 
TG rats have an extended lifespan with further reduction of 
insulin/IGF-I levels [14].  

 The murine equivalents to human Laron syndrome are 
GH receptor/binding protein homozygous knockout mice 
(GHR/BP

-/-
) [32]. The human and murine GHR/BP gene en-

codes for two proteins; GH receptor and GH receptor bind-
ing protein, a truncated form of a receptor. GHR/BP KO 
mice have a longer lifespan compared to control wild type 
mice [33]. These mice have a markedly reduced plasma con-
centration of IGF-I, and a dwarf phenotype with increased 
insulin sensitivity [33,34]. GHR/BP deficiency impairs the 
beneficial effects of CR on lifespan extension and increases 
insulin sensitivity [35]. As well, CR increases insulin sensi-
tivity in control mice, but does not further increase insulin 
sensitivity in GHR/BP

-/-
 mice [35]. 

 In the knockout mice heterozygous for the IGF-I receptor 
(Igf1r

+/-
), significant lifespan extension was observed in fe-

male mice, whereas homozygous knockout mice died at 
birth, probably as a result of respiratory failure [36]. The 
body size of these mice is almost normal and they have no 
detectable alterations in reproductive development and func-
tion. Male Igf1r

+/- 
mice show reduced insulin sensitivity, 

whereas females showed increased insulin sensitivity [36]. 
Mouse embryonic fibroblasts (MEFs) from Igf1r

+/-
 mice 

show reduced IGF-I receptor (IGF-IR) signaling in response 
to IGF-I addition compared to MEFs from wild type mice 
[36]. Namely, tyrosine phosphorylation levels of IGF-IR, 
IRS-1, and p66

shc
 proteins are decreased in MEFs from 

Igf1r
+/- 

mice. Moreover, it has been documented that brain 
specific heterozygous IGF-IR knockout mice have an in-
creased lifespan and a significant decrease in mortality rate 
[37]. This is interesting because importance of brain insu-
lin/IGF-I signaling is also suggested in C. elegans and Dro-
sophila [37]. 

Table 1. Rodent Longevity Models of Modified Insulin/GH/IGF-I Signaling 

Rodent Models Responsive Gene Effect
a

Lifespan
b

Body Weight
c

IGF-I Insulin Sensitivity

Ames mice Prop-1 Pituitary 49%, 68% 33% Decreased Increased

Snell mice Pit-1 Pituitary 26%, 42% 33% Decreased Increased

Ghrhrlit/lit mice Ghrhr Pituitary 23%, 25% 67% Decreased Unchanged

GH-antisense TG rats GH-antisense Pituitary 10% 66% Decreased Increased

GHR/BP-/- mice GHR/BP Receptor 55%, 38% 40-41% Decreased Increased

Igf1r+/- mice Igf1r Receptor 33% 92-94% Increased Increased

FIRKO mice IR (fat-specific) Receptor + 18% 75-85% Unchanged Increased

p66shc-/- mice p66shc Intracellular + 30% 100% Unknown Unknown

Irs1-/- mice Irs1 Intracellular 32% 60-65% Unchanged Decreased

bIrs2+/- mice Irs2 (brain-specific) Intracellular 18% 95-100% Unknown Decreased

a Site of primary effect of the mutation. 
b % increase of lifespan in mutants compared to control animals. 
c % of body weight compared to control animals (6 to 10 months old). 
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 Fat specific insulin receptor knock out mice (FIRKO 
mice) show increased lifespan without reduction of the 
plasma IGF-I levels [38,39]. These mice show reduced body 
fat content, body mass index, and resistant to age-related and 
hyperphagia-induced insulin resistance. In adipose tissue, 
insulin-stimulated glucose uptake was reduced in FIRKO 
mice, indicating that insulin signaling is markedly decreased 
in the adipose tissue of these mice. However, whole body 
insulin sensitivity is increased in FIRKO mice probably as a 
result of the increased plasma adiponectin levels, especially 
in aged mice [38,39]. Recent study has revealed that FIRKO 
mice maintain high mitochondrial capacity and metabolic 
rates in adipose tissue [40]. These increased mitochondrial 
functions may be important for the lifespan extension seen in 
the FIRKO mouse. 

 Proto-oncogene Shc, an adaptor protein of receptor tyro-
sine kinase, is phosphorylated by the activation of growth 
factor receptors such as IGF-IR and insulin receptor (IR); a 
knock out mouse strain of the p66 isoform of Shc, p66

shc
 

showed a prolonged lifespan and increased oxidative stress 
resistance [41]. The mammalian Shc locus encodes three 
protein isoforms; p46

shc
, p54

shc
, and p66

shc
 [42]. MEFs from 

p66
shc

 knock out mice show more resistance to hydrogen 
peroxide treatment or UV radiation compared to MEFs from 
wild type mice [41]. This effect partly is mediated the induc-
tion of FoxO3a, a mammalian homologue of the C. elegans 
forkhead transcription factor daf-16 [43]. This is interesting 
because daf-16 is essential for lifespan extension in the daf-2 
mutant [44]. No information is yet available about the insulin 
sensitivity of p66

shc-/-
 mice. 

 IRS-1 knock out (Irs1
-/-

) female mice show increased 
lifespan despite moderate insulin resistance [45]. Same as 
Igf1r

+/-
 mice, Irs1

-/-
 mice lifespan extension is predominantly 

seen in females. The body weight of these mice is lower than 
that of wild type; however, serum IGF-I levels are not differ-
ent. These mice show reduced adiposity similar to CR and 
FIRKO mice; however, Irs1

-/-
 mice show moderate insulin 

resistance. Thus, the improvement in insulin sensitivity asso-
ciated with reduced fat mass is not a prerequisite for the 
lifespan extension of Irs

-/-
 mice [45]. Tyrosine phosphoryla-

tion of IRS-1 enhances insulin sensitivity, whereas serine 
phosphorylation of IRS-1 by S6 kinase induces insulin resis-
tance [46]. Therefore, IRS-1 has both negative and positive 
effects on insulin/IGF-I signaling. Lack of IRS-1 might 
cause predominately favorable intracellular signaling situa-
tions for cell survival causing lifespan extension through the 
activation of the FoxO1 protein, a forkhead transcription 
factor important for oxidative stress response. 

 IRS-2 heterozygous knock out mice, specifically in brain 
(bIrs2

+/-
), showed increased lifespan [47]. Interestingly, 

while systemic heterozygous IRS-2 deficiency improved 
insulin sensitivity, brain-specific IRS-2 knock out led to in-
sulin resistance. Although the mechanism responsible for 
this discrepancy is unknown, these results also support that 
insulin sensitivity by itself is not a prerequisite for lifespan 
extension in insulin/GH/IGF-I signal modified longevity 
rodents. Similar to IRS-1, tyrosine phosphorylation of IRS-2 
by IR or IGF-IR is the first event in the activation of the in-
tracellular insulin/IGF-I signal transduction pathway. IRS-1 
and IRS-2 are the major IRS leading to glucose homeostasis, 

and have distinct and overlapping roles in diverse organs 
[48]. Lifespan extension in bIrs2

+/- 
mice might be related to 

the FoxO1 protein levels maintained in the brain that lead to 
the expression of antioxidant protein SOD2 [47]. These re-
sults of lifespan extension of bIrs2

+/- 
as well as Irs1

-/- 
mice 

might suggest that the mutation of particular molecules of 
intracellular insulin/IGF-I signaling is sufficient to induce 
longevity. Therefore, a reduced GH/IGF-I axis in dwarf ani-
mals and long-lived insulin/GH/IGF-I receptor modified 
mice might eventually change the activation of these intra-
cellular substrate molecules including p66

shc
 and their down-

stream targets for lifespan extension. Hence, reduced body 
size and increased insulin sensitivity might not be important 
and so could be separated from factors responsible for 
lifespan extension in such animals. 

 In summary, the above mentioned models suggest that 
decreased body weight and increased insulin sensitivity 
might be not prerequisites for lifespan extension in insu-
lin/GH/IGF-I modified longevity rodents. Although there a 
significant effect on body weight and insulin sensitivity were 
seen depending on the particular factors in the breeding envi-
ronments used in the study, such as diet composition, the 
results presented highlight that the importance of the intra-
cellular signaling molecules of the insulin/GH/IGF-I signal 
rather than the upstream hormonal signals. Fig. (1) shows the 
sites of mutations in rodent longevity models. Pituitary GH 
and insulin/GH/IGF-I receptor mutations might cause favor-
able situations for intracellular signaling molecules, such as 
reduction of function IRS-1, -2 and p66

shc
, because knock 

out of these intracellular molecules extends lifespan. Re-
cently, we isolated WDR6, a novel candidate for the intracel-
lular insulin/IGF-I signaling molecule. Next we discuss the 
potential involvement of WDR6 in lifespan regulation.  

WDR6 as a New Candidate for an Insulin/GH/IGF-I Sig-

naling Molecule Related to Lifespan Regulation 

 We recently isolated and identified WDR6 as a novel 
molecule involved in hypothalamic insulin/IGF-I signaling 
with interacting IRS-4 by cDNA subrtaction method [22, 
49]. IRS-1 and IRS-2 are ubiquitously expressed, while IRS-
3 and IRS-4 are tissue specific, detected in significant 
amounts in fat and brain tissue, respectively [50]. IRS-4 is 
expressed abundantly in the arcuate nucleus, an important 
hypothalamic nucleus for regulation of energy and metabo-
lism [51]. We found that the expression of WDR6 was de-
creased in vivo upon CR as well as with suppression of the 
GH/IGF-I axis; both treatments cause reductions of plasma 
insulin/IGF-I concentrations. Our in vitro study indicated 
that the addition of insulin or IGF-I caused increased gene 
expression of WDR6 in GT1-7 cells, a mouse hypothalamus 
derived cell line [22,52]. These results suggested the pres-
ence of a feedback loop for insulin/IGF-I-mediated expres-
sion of WDR6. 

 WD repeats are conserved domains of approximately 40 
to 60 amino acids that contain a tryptophan-aspartic acid 
(WD) dipeptide at their C-terminus, and have a conserved 
core sequence [53,54]. WDR6 was first cloned by Li et al, 
[55]. They showed that human WDR6 has 11 WD-repeat 
domains and shows relatively ubiquitous expression. How-
ever, we isolated the WDR6 gene in brain as a hypothalamus 
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enriched gene [22] by using a cDNA subtraction method 
[49,56,57]. This expression pattern of WDR6 is consistent 
with another report that used a DNA microarray analysis 
[58]. WD repeat domains are involved in mediating protein-
protein interactions [59,60], and WD repeat-containing pro-
teins have a central role in many signal transduction cascades 
by coordinating the interaction of key signaling molecules.  

 We found that IRS-4 interacts with WDR6 in vivo. Our 
results suggested that WDR6 might regulate phosphorylation 
levels of the interacting protein, IRS-4 [22]. Interestingly, it 
was suggested that WDR6 and IRS-4 might also be involved 
in fibroblast growth factor (FGF) signaling [61]. Stimulation 
with FGF2 induced a 3-fold increase in tyrosine phosphory-
lated proteins, as assessed by mass spectrometry [61]. It has 
been suggested that FGF2 has an inhibitory effect on food 
intake and locomotor activity in rats [62]. Taken together, 
these results suggest that WDR6 may be involved in feeding 
and physical activities through its interaction in the brain 
with IRS-4.  

 Mice lacking IRS-4 show mild defects in growth, repro-
duction and glucose homeostasis [63]. These mice show 
slightly impaired responses on the oral glucose tolerance 
test. The insulin tolerance testing also showed these mice 
slightly less responsive to insulin compared to wild type; 
however, the effect was statistically insignificant. It was 
suggested that loss-of-function of IRS-4 in the brain might 
cause these phenotypes, because IRS-4 is predominantly 

expressed in the brain [63]. These phenotypes are somewhat 
similar to long-lived Irs1

-/-
 and bIrs2

+/-
 mice. Study is needed 

to find out whether WDR6 also interacts with IRS-1 and 
IRS-2.  

 It has recently been shown that WDR6 interacts with 
LKB1, a tumor suppressor gene encoding a serine/threonine 
kinase that phosphorylates AMP-activated protein kinase 
(AMPK), and regulates p27

Kip1
 induction [64]. AMPK is a 

critical component in a protein kinase cascade that have a 
crucial role in the regulation of energy balance, particularly 
in the brain [65,66]. LKB1 gene expression is enriched in the 
hypothalamus, similar to the WDR6 gene in the brain [58]. 
The LKB1-AMPK-p27 pathway is also involved in the 
autophagic response, a bulk misfolded protein degradative 
system [67]. In C. elegans, autophagy genes are essential for 
dauer development and for lifespan extension in the daf-2 
mutant [68]. Moreover, autophagy mediates lifespan exten-
sion of C. elegans upon CR [69]. Autophagy is also reported 
to be important in lifespan extension in Drosophila [70]. In 
mammals, the induction of autophagy is a protective re-
sponse against neurodegenerative diseases [71,72]. Moreo-
ver, CR prevents the age-dependent decline of autophagic 
proteolysis in liver cells [73]. Thus, it is interesting to specu-
late that WDR6 also regulates autophagy responses by 
modulating the LKB1-AMPK pathway in the brain. Further 
studies using genetically modified mice such as conditional 
knock out varieties, should help gain an understanding of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Mammalian GH and insulin/IGF-I signaling pathways. Longevity related genes shown in Table 1 and discussed in text are shown in 

outlined characters on a gray background. Pituitary mutations cause GH/IGF-I-deficiency results in dwarf phenotypes, and increased insulin 

sensitivity in most cases. Mutations of receptors and intracellular signaling molecules are not necessary to increase insulin sensitivity for 

lifespan extension. These intracellular molecules could be points of intervention for therapies with the potential to delay the aging process. 
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precise mechanism of WDR6 involvement in AMPK signal-
ing as well as in insulin/IGF-I signaling in longevity. 

 In conclusion, increased insulin sensitivity might not be a 
prerequisite for lifespan extension in insulin/GH/IGF-I modi-
fied rodent longevity models. Although it is possible that 
different tissues show different insulin sensitivity in these 
longevity models, there could be more important intracellu-
lar signaling molecules in insulin/GH/IGF-I signaling, such 
as IRS-1, -2, and p66

shc
, and possibly WDR6, for lifespan 

extension. These molecules could be points of intervention 
for therapies with potential to delay the pathogenesis of age-
related diseases and even the aging process. Further study is 
needed to reveal the importance, if any, of these molecules 
through identification of target transcription factors critical 
for lifespan extension. 

ACKNOWLEDGEMENT 

 This work was supported in part by The Japan Health 
Foundation. 

REFERENCES 

[1] Weindruch, R., Wolford, R.L. The retardation of aging and disease 

by dietary restriction, Charles C Thomas Publisher. Springfield. 
1988, pp. 436. 

[2] Masoro, E.J. Food restriction in rodents: an evaluation of its role in 
the study of aging. J. Gerontol. 1988, 43: B59-64. 

[3] Masoro, E.J. Caloric restriction and aging: an update. Exp. Geron-
tol. 2000, 35: 299-305. 

[4] Holliday, R. Food, reproduction and longevity: is the extended 
lifespan of calorie-restricted animals an evolutionary adaptation? 

Bioessays 1989, 10: 125-127. 
[5] Barzilai, N., Gupta, G. Revisiting the role of fat mass in the life 

extension induced by caloric restriction. J. Gerontol. A Biol. Sci. 
Med. Sci. 1999, 54: B89-96. 

[6] Chiba, T., Yamaza, H., Higami, Y., Shimokawa, I. Anti-aging 
effects of caloric restriction: Involvement of neuroendocrine adap-

tation by peripheral signaling. Microsc. Res. Tech. 2002, 59: 317-
324. 

[7] Katic, M., Kahn, C.R. The role of insulin and IGF-1 signaling in 
longevity. Cell. Mol. Life Sci. 2005, 62: 320-343. 

[8] Shimokawa, I., Higami, Y. A role for leptin in the antiaging action 
of dietary restriction: a hypothesis. Aging (Milano) 1999, 11: 380-

382. 
[9] Bartke, A. Minireview: role of the growth hormone/insulin-like 

growth factor system in mammalian aging. Endocrinology 2005, 
146: 3718-3723. 

[10] Kloting, N., Bluher, M. Extended longevity and insulin signaling in 
adipose tissue. Exp. Gerontol. 2005, 40: 878-883. 

[11] Liang, H., Masoro, E.J., Nelson, J.F., Strong, R., McMahan, C.A. , 
Richardson, A. Genetic mouse models of extended lifespan. Exp. 

Gerontol. 2003, 38: 1353-1364. 
[12] Yang, J., Anzo, M., Cohen, P. Control of aging and longevity by 

IGF-I signaling. Exp. Gerontol. 2005, 40: 867-872. 
[13] Bartke, A., Wright, J.C., Mattison, J.A., Ingram, D.K., Miller, R.A., 

Roth, G.S. Extending the lifespan of long-lived mice. Nature 2001, 
414: 412. 

[14] Shimokawa, I., Higami, Y., Tsuchiya, T., Otani, H., Komatsu, T., 
Chiba, T., Yamaza, H. Life span extension by reduction of the 

growth hormone-insulin-like growth factor-1 axis: relation to ca-
loric restriction. FASEB J. 2003, 17: 1108-1109. 

[15] Shimokawa, I., Higami, Y., Utsuyama, M., Tuchiya, T., Komatsu, 
T., Chiba, T., Yamaza, H. Life span extension by reduction in 

growth hormone-insulin-like growth factor-1 axis in a transgenic 
rat model. Am. J. Pathol. 2002, 160: 2259-2265. 

[16] Hekimi, S., Burgess, J., Bussiere, F., Meng, Y., Benard, C. Genet-
ics of lifespan in C. elegans: molecular diversity, physiological 

complexity, mechanistic simplicity. Trends Genet. 2001, 17: 712-
718. 

[17] Sze, J.Y., Victor, M., Loer, C., Shi, Y., Ruvkun, G. Food and 

metabolic signalling defects in a Caenorhabditis elegans serotonin-
synthesis mutant. Nature 2000, 403: 560-564. 

[18] Friedman, D.B., Johnson, T.E. A mutation in the age-1 gene in 
Caenorhabditis elegans lengthens life and reduces hermaphrodite 

fertility. Genetics 1988, 118: 75-86. 
[19] Morris, J.Z., Tissenbaum, H.A., Ruvkun, G. A phosphatidylinosi-

tol-3-OH kinase family member regulating longevity and diapause 
in Caenorhabditis elegans. Nature 1996, 382: 536-539. 

[20] Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., 
Hafen, E., Leevers, S.J., Partridge, L. Extension of life-span by loss 

of CHICO, a Drosophila insulin receptor substrate protein. Science 
2001, 292: 104-106. 

[21] Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., Garo-
falo, R.S. A mutant Drosophila insulin receptor homolog that ex-

tends life-span and impairs neuroendocrine function. Science 2001, 
292: 107-110. 

[22] Chiba, T., Inoue, D., Mizuno, A., Komatsu, T., Fujita, S., Kubota, 
H., Luisa Tagliaro, M., Park, S., Trindade, L.S., Hayashida, T., Ha-

yashi, H., Yamaza, H., Higami, Y., Shimokawa, I. Identification 
and characterization of an insulin receptor substrate 4-interacting 

protein in rat brain: Implications for longevity. Neurobiol. Aging 
2007, doi:10.1016/j.neurobiolaging.2007.07.008. 

[23] Brown-Borg, H.M., Borg, K.E., Meliska, C.J., Bartke, A. Dwarf 
mice and the ageing process. Nature 1996, 384: 33. 

[24] Steger, R.W., Bartke, A., Cecim, M. Premature ageing in trans-
genic mice expressing different growth hormone genes. J. Reprod. 

Fertil. Suppl. 1993, 46: 61-75. 
[25] Dominici, F.P., Hauck, S., Argentino, D.P., Bartke, A., Turyn, D. 

Increased insulin sensitivity and upregulation of insulin receptor, 
insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf 

mice. J. Endocrinol. 2002, 173: 81-94. 
[26] Flurkey, K., Papaconstantinou, J., Harrison, D.E. The Snell dwarf 

mutation Pit1dw can increase life span in mice. Mech. Ageing. Dev. 
2002, 123, 121-130. 

[27] Godfrey, P., Rahal, J.O., Beamer, W.G., Copeland, N.G., Jenkins, 
N.A., Mayo, K.E. GHRH receptor of little mice contains a mis-

sense mutation in the extracellular domain that disrupts receptor 
function. Nat. Genet. 1993, 4: 227-232. 

[28] Flurkey, K., Papaconstantinou, J., Miller, R.A., Harrison, D.E. 
Lifespan extension and delayed immune and collagen aging in mu-

tant mice with defects in growth hormone production. Proc. Natl. 
Acad. Sci. USA 2001, 98: 6736-6741. 

[29] Fleenor, D., Oden, J., Kelly, P.A., Mohan, S., Alliouachene, S., 
Pende, M., Wentz, S., Kerr, J., Freemark, M. Roles of the lactogens 

and somatogens in perinatal and postnatal metabolism and growth: 
studies of a novel mouse model combining lactogen resistance and 

growth hormone deficiency. Endocrinology 2005, 146: 103-112. 
[30] Yamaza, H., Komatsu, T., Chiba, T., Toyama, H., To, K., Higami, 

Y., Shimokawa, I. A transgenic dwarf rat model as a tool for the 
study of calorie restriction and aging. Exp. Gerontol. 2004, 39: 

269-272. 
[31] Yamaza, H., Komatsu, T., To, K., Toyama, H., Chiba, T., Higami, 

Y., Shimokawa, I. Involvement of insulin-like growth factor-1 in 
the effect of caloric restriction: regulation of plasma adiponectin 

and leptin. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62: 27-33. 
[32] Zhou, Y. Xu, B.C., Maheshwari, H.G., He, L., Reed, M., Lozyk-

owski, M., Okada, S., Cataldo, L., Coschigamo, K., Wagner, T.E., 
Baumann, G., Kopchick, J.J. A mammalian model for Laron syn-

drome produced by targeted disruption of the mouse growth hor-
mone receptor/binding protein gene (the Laron mouse). Proc. Natl. 

Acad. Sci. USA 1997, 94: 13215-13220. 
[33] Coschigano, K.T., Clemmons, D., Bellush, L.L., Kopchick, J.J. 

Assessment of growth parameters and life span of GHR/BP gene-
disrupted mice. Endocrinology 2000, 141: 2608-2613. 

[34] Coschigano, K.T., Holland, A.N., Riders, M.E., List, E.O., Flyvb-
jerg, A., Kopchick, J.J. Deletion, but not antagonism, of the mouse 

growth hormone receptor results in severely decreased body 
weights, insulin, and insulin-like growth factor I levels and in-

creased life span. Endocrinology 2003, 144: 3799-3810. 
[35] Bonkowski, M.S., Rocha, J.S., Masternak, M.M., Al Regaiey, 

K.A., Bartke, A. Targeted disruption of growth hormone receptor 
interferes with the beneficial actions of calorie restriction. Proc. 

Natl. Acad. Sci. USA 2006, 103: 7901-7905. 
[36] Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., 

Even, P.C., Cervera, P. and Le Bouc, Y. IGF-1 receptor regulates 



428    Current Genomics, 2007, Vol. 8, No. 7 Chiba et al. 

lifespan and resistance to oxidative stress in mice. Nature 2003, 

421: 182-187. 
[37] Holzenberger, M., Kappeler, L. and De Magalhaes Filho, C. IGF-1 

signaling and aging. Exp. Gerontol. 2004, 39: 1761-1764. 
[38] Bluher, M., Kahn, B.B. and Kahn, C.R. Extended longevity in mice 

lacking the insulin receptor in adipose tissue. Science 2003, 299: 
572-574. 

[39] Bluher, M., Michael, M.D., Peroni, O.D., Ueki, K., Carter, N., 
Kahn, B.B. and Kahn, C.R. Adipose tissue selective insulin recep-

tor knockout protects against obesity and obesity-related glucose 
intolerance. Dev. Cell 2002, 3: 25-38. 

[40] Katic, M.. Kennedy, A.R., Leykin, I., Norris, A., McGettrick, A., 
Gesta, S., Russell, S.J., Bluher, M., Maratos-Flier, E. and Kahn, 

C.R. Mitochondrial gene expression and increased oxidative me-
tabolism: role in increased lifespan of fat-specific insulin receptor 

knock-out mice. Aging Cell 2007, 6: 827-839. 
[41] Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., 

Pandolfi, P.P., Lanfrancone, L. and Pelicci, P.G. The p66shc adaptor 
protein controls oxidative stress response and life span in mam-

mals. Nature 1999, 402: 309-313. 
[42] Migliaccio, E., Mele, S., Salcini, A.E., Pelicci, G., Lai, K.M., Su-

perti-Furga, G., Pawson, T., Di Fiore, P.P., Lanfrancone, L. and 
Pelicci, P.G. Opposite effects of the p52shc/p46shc and p66shc splic-

ing isoforms on the EGF receptor-MAP kinase-fos signalling path-
way. EMBO J. 1997, 16: 706-716. 

[43] Nemoto, S. and Finkel, T. Redox regulation of forkhead proteins 
through a p66shc-dependent signaling pathway. Science 2002, 295: 

2450-2452. 
[44] Lin, K., Hsin, H., Libina, N. and Kenyon, C. Regulation of the 

Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 
and germline signaling. Nat. Genet. 2001, 28: 139-145. 

[45] Selman, C., Lingard, S., Choudhury, A.I., Batterham, R.L., Claret, 
M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., 

Blanc, E., Piper, M.D., Al-Qassab, H., Speakman, J.R., Carmignac, 
D., Robinson, I.C., Thornton, J.M., Gems, D., Partridge, L. and 

Withers, D.J. Evidence for lifespan extension and delayed age-
related biomarkers in insulin receptor substrate 1 null mice. FASEB 

J. 2007, doi:10.1096/fj.07-9261com. 
[46] Tremblay, F., Brûlé, S., Hee Um, S., Li, Y., Masuda, K., Roden, 

M., Sun, X.J., Krebs, M., Polakiewicz, R.D., Thomas, G. and 
Marette, A. Identification of IRS-1 Ser-1101 as a target of S6K1 in 

nutrient- and obesity-induced insulin resistance. Proc. Natl. Acad. 
Sci. USA 2007, 104: 14056-14061. 

[47] Taguchi, A., Wartschow, L.M. and White, M.F. Brain IRS2 signal-
ing coordinates life span and nutrient homeostasis. Science 2007, 

317: 369-372. 
[48] Thirone, A.C., Huang, C. and Klip, A. Tissue-specific roles of IRS 

proteins in insulin signaling and glucose transport. Trends Endo-
crinol. Metab. 2006, 17: 72-78. 

[49] Chiba, T., Yao, J., Higami, Y., Shimokawa, I., Hosokawa, M. and 
Higuchi, K. Identification of differentially expressed genes in se-

nescence-accelerated mouse testes by suppression subtractive hy-
bridization analysis. Mamm. Genome 2007, 18: 105-112. 

[50] Goren, H.J., Kulkarni, R.N. and Kahn, C.R. Glucose homeostasis 
and tissue transcript content of insulin signaling intermediates in 

four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 
129X1. Endocrinology 2004, 145: 3307-3323. 

[51] Numan, S. and Russell, D.S. Discrete expression of insulin receptor 
substrate-4 mRNA in adult rat brain. Brain Res. Mol. Brain Res. 

1999, 72: 97-102. 
[52] Krsmanovic, L.Z., Stojilkovic, S.S., Balla, T., al-Damluji, S., 

Weiner, R.I. and Catt, K.J. Receptors and neurosecretory actions of 
endothelin in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 

1991, 88: 11124-11128. 
[53] Neer, E.J., Schmidt, C.J., Nambudripad, R. and Smith, T.F. The 

ancient regulatory-protein family of WD-repeat proteins. Nature 
1994, 371: 297-300. 

[54] Smith, T.F., Gaitatzes, C., Saxena, K. and Neer, E.J. The WD re-
peat: a common architecture for diverse functions. Trends Biochem. 

Sci. 1999, 24: 181-185. 

[55] Li, D., Burch, P., Gonzalez, O., Kashork, C.D., Shaffer, L.G., Ba-

chinski, L.L. and Roberts, R. Molecular cloning, expression analy-
sis, and chromosome mapping of WDR6, a novel human WD-

repeat gene. Biochem. Biophys. Res. Commun. 2000, 274: 117-123. 
[56] Chiba, T., Fujita, S., Kubota, H., Inoue, D., Mizuno, A., Komatsu, 

T., Yamaza, H., Higami, Y. and Shimokawa, I. Identification of 
Fasting-induced Genes in the Rat Hypothalamus: Relationship with 

Neuroprotection. Ann. NY Acad. Sci. 2007, 1119: 216-226. 
[57] Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Mo-

qadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., 
Sverdlov, E.D. and Siebert, P.D. Suppression subtractive hybridiza-

tion: a method for generating differentially regulated or tissue-
specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 

1996, 93: 6025-6030. 
[58] Chin, M.H., Geng, A.B., Khan, A.H., Qian, W.J., Petyuk, V.A., 

Boline, J., Levy, S., Toga, A.W., Smith, R.D., Leahy, R.M. and 
Smith, D.J. A genome-scale map of expression for a mouse brain 

section obtained using voxelation. Physiol Genomics 2007, 30: 
313-321. 

[59] Liliental, J. and Chang, D.D. Rack1, a receptor for activated protein 
kinase C, interacts with integrin beta subunit. J. Biol. Chem. 1998, 

273: 2379-2383. 
[60] Yang, P. and Sale, W.S. The Mr 140,000 intermediate chain of 

Chlamydomonas flagellar inner arm dynein is a WD-repeat protein 
implicated in dynein arm anchoring. Mol. Biol. Cell. 1998, 9: 3335-

3349. 
[61] Hinsby, A.M., Olsen, J.V. and Mann, M. Tyrosine phosphopro-

teomics of fibroblast growth factor signaling: a role for insulin re-
ceptor substrate-4. J. Biol. Chem. 2004, 279: 46438-46447. 

[62] Hotta, M., Kuriyama, H., Arai, K., Takano, K. and Shibasaki, T. 
Fibroblast growth factor inhibits locomotor activity as well as feed-

ing behavior of rats. Eur. J. Pharmacol. 2001, 416: 101-106. 
[63] Fantin, V.R., Wang, Q., Lienhard, G.E. and Keller, S.R. Mice 

lacking insulin receptor substrate 4 exhibit mild defects in growth, 
reproduction, and glucose homeostasis. Am. J. Physiol. Endocrinol. 

Metab. 2000, 278: E127-133. 
[64] Xie, X., Wang, Z. and Chen, Y. Association of LKB1 with a WD-

repeat protein WDR6 is implicated in cell growth arrest and p27Kip1 
induction. Mol. Cell. Biochem. 2007, 301: 115-122. 

[65] Carling, D. AMP-activated protein kinase: balancing the scales. 
Biochimie 2005, 87: 87-91. 

[66] Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.B., Lee, A., 
Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M.J., Stuck, B.J. 

and Kahn, B.B. AMP-kinase regulates food intake by responding to 
hormonal and nutrient signals in the hypothalamus. Nature 2004, 

428: 569-574. 
[67] Liang, J., Shao, S.H,. Xu, Z.X., Hennessy, B., Ding, Z., Larrea, M., 

Kondo, S., Dumont, D.J., Gutterman, J.U., Walker, C.L., Slinger-
land, J.M. and Mills, G.B. The energy sensing LKB1-AMPK path-

way regulates p27kip1 phosphorylation mediating the decision to en-
ter autophagy or apoptosis. Nat. Cell Biol. 2007, 9: 218-224. 

[68] Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, 
D.H. and Levine, B. Autophagy genes are essential for dauer de-

velopment and life-span extension in C. elegans. Science 2003, 
301: 1387-1391. 

[69] Jia, K. and Levine, B. Autophagy is required for dietary restriction-
mediated life span extension in C. elegans. Autophagy 2007, 3: 

597-599. 
[70] Simonsen, A., Cumming, R.C., Brech, A., Isakson, P., Schubert, 

D.R. and Finley, K.D. Promoting basal levels of autophagy in the 
nervous system enhances longevity and oxidant resistance in adult 

Drosophila. Autophagy 2007, 4: In press. 
[71] Levine, B. and Yuan, J. Autophagy in cell death: an innocent con-

vict? J. Clin. Invest. 2005, 115: 2679-2688. 
[72] Nixon, R.A. Autophagy in neurodegenerative disease: friend, foe or 

turncoat? Trends Neurosci. 2006, 29: 528-535. 
[73] Bergamini, E., Cavallini, G., Donati, A. and Gori, Z. The role of 

macroautophagy in the ageing process, anti-ageing intervention and 
age-associated diseases. Int. J. Biochem. Cell. Biol. 2004, 36: 2392-

2404. 

 
 
 

 

 


