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ABSTRACT
Cancer immunotherapy relies upon the ability of T cells to infiltrate tumors. The endothelium constitutes a
barrier between the tumor and effector T cells, and the ability to manipulate local vascular permeability
could be translated into effective immunotherapy. Here, we show that in the context of adoptive T cell
therapy, antitumor T cells, delivered at high enough doses, can overcome the endothelial barrier and
infiltrate tumors, a process that requires local production of C3, complement activation on tumor
endothelium and release of C5a. C5a, in turn, acts on endothelial cells promoting the upregulation of
adhesion molecules and T-cell homing. Genetic deletion of C3 or the C5a receptor 1 (C5aR1), and
pharmacological blockade of C5aR1, impaired the ability of T cells to overcome the endothelial barrier,
infiltrate tumors, and control tumor progression in vivo, while genetic chimera mice demonstrated that C3
and C5aR1 expression by tumor stroma, and not leukocytes, governs T cell homing, acting on the local
endothelium. In vitro, endothelial C3 and C5a expressions were required for endothelial activation by type
1 cytokines. Our data indicate that effective immunotherapy is a consequence of successful homing of T
cells in response to local complement activation, which disrupts the tumor endothelial barrier.
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Introduction

Evidence from basic and clinical research shows that tumors
are frequently infiltrated by immune cells.1 The presence of
intratumoral CD8C T cells, in particular, appears to be associ-
ated with better clinical outcomes, indicating a role for these
cells in the antitumor immune response.1,2 This perception has
led to the development of immunotherapy protocols aimed at
augmenting tumor immune recognition and attack, with fur-
ther clinical benefits for cancer patients.3 Although promising,
tumor immunotherapies, and particularly vaccines, have thus
far shown only modest effects.4,5 Experimental models suggest
that the presence of circulating tumor-reactive T cells does not
necessarily translate to effective T-cell homing and infiltration
into the tumor bed. Tumor T-cell infiltration requires function-
ality with regard to the process of extravasation, including teth-
ering, rolling, and transmigration by the infiltrating T cells and
the expression of adhesion molecules such as intracellular cell
adhesion molecule-1 (ICAM-1) and vasculature cell adhesion

molecule-1 (VCAM-1) by the tumor endothelium.6 Indeed, it
has been shown that tumor-derived angiogenic growth factors
such as vascular endothelial growth factor (VEGF) and endo-
thelin-1 (ET-1) downregulate the expression of adhesion mole-
cules.7 Similarly, tumor endothelial cells (TECs) can also
express FasL, resulting in the apoptosis of Fas-expressing
T cells,8 while the expression of other immunosuppressive mol-
ecules such as PD-L1, PD-L2, IDO-1, IL-6, and IL-10 can
directly inhibit T-cell function.9,10 Supporting the concept that
the tumor microenvironment induces endothelial quiescence,
thereby establishing a barrier that prevents T cells from effi-
ciently penetrating the tumor, we have previously reported that
endothelial quiescence can be maintained by the endothelin B
receptor (ETBR),

7 which is engaged by ET-1, a paracrine ligand
overexpressed by tumor cells.11

Notwithstanding the mechanisms mentioned above, adop-
tive lymphocyte therapy approaches have often produced
objective tumor responses in humans.12,13 Experimentally, the
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success of adoptive T-cell therapy in mouse models depends on
the dose of tumor-reactive T cells,14 suggesting that blood–
tumor barrier mechanisms can perhaps be surmounted by T
cells, if the appropriate conditions are met. In line with this
idea, the efficacy of adoptive T-cell therapy has been shown to
be enhanced by the co-administration of tumor-reactive CD4C

cells, which facilitate the access of low-affinity CD8C cells to
tumors.15 Here, we have further investigated the mechanisms
underlying the break of the endothelial barrier that could allow
proper T-cell infiltration of tumors.

Our data show that complement activation in the tumor
endothelium is a key determinant of reversing endothelial quies-
cence and permitting successful T-cell homing to tumors. We
found that a critical mass of CD4C and CD8C tumor-reactive T
cells is required to upregulate endothelial complement compo-
nents through Th1 cytokines, to induce complement activation
and local release of the C5a activation fragment. C5a, in turn,
upregulates endothelial cell adhesion molecules (CAMs), revers-
ing endothelial quiescence and promoting the adhesion, and
extravasation of effector T cells, which lead to effective tumor
control. Our findings indicate that the blood-tumor endothelial
barrier is surmountable: local complement activation effectively
counters this barrier to enable effective immune therapy.

Results

The number of tumor-reactive T cells is critical for
overcoming the blood–tumor barrier

We have previously demonstrated that tumor-induced endo-
thelial quiescence can be reversed by inhibiting ETBR,
thereby rescuing the infiltration of T cells into tumor sites
after vaccination with Lm-LLO-E7, a DNA vaccine eliciting
modest CD8C responses to the E7 protein of the human pap-
illoma virus (HPV)16, or after adoptive transfer of Lm-LLO-
E7 primed T cells in mice.7 We asked whether the tumor’s
endothelial barrier could be overcome by the adoptive trans-
fer of more effective T cells alone, without the need for ETBR
blockade. To this end, we identified a more immunogenic
DNA vaccine to prime donor mice: The pConE6E7 vaccine
used here is related to Lm-LLO-E7, and both are directed
against the HPV16 gene E7,16,17 but by comparison to Lm-
LLO-E7, pConE6E7 is highly immunogenic. C57BL/6 mice
were given three weekly injections of Lm-LLOE7 or pCo-
nE6E7, followed by evaluation of splenic immune responses.
The pConE6E7 DNA vaccine elicited stronger E7-specific
CD8C T-cell responses than did the Lm-LLO-E7 vaccine, as
demonstrated by the increased number of E7 Tetramer posi-
tive cytotoxic T lymphocytes, and higher IFNg-producing
CD8C T cells recognizing the Kb-restricted E7 epitope
RAHYNIVTF (Fig. S1A–C). Accordingly, the higher num-
bers of E7-specific T cells triggered by the pConE6E7 vaccine
resulted in an increased release of IFNg and TNF-a cytokines
in the supernatant of splenocytes culture challenged ex vivo
with the E7 peptide (Fig. S1D and E), as well as a higher pro-
liferation index and increased T-cell cytotoxicity against tar-
get cells pulsed with E7 peptide (Fig S1F and G).

To determine whether a higher number of tumor-specific T
cells could abrogate the tumor’s endothelial barrier following

adoptive T-cell therapy, we transferred 5 £ 106 spleen CD3C

cells isolated from Lm-LLO-E7- or pConE6E7-vaccinated mice
(the latter henceforth referred to as “E7-primed T cells”) into
C57BL/6 mice bearing TC-1 tumors. Where indicated, the
mice were also treated with the ETBR antagonist BQ-788, which
reverses endothelial dormancy.7 As predicted, mice given E7-
primed T cells from pConE6E7-immunized animals showed
higher numbers of E7-specific T cells in the spleen when com-
pared with their Lm-LLO-E7 counterparts (Fig. S2A). More
interestingly, while only marginal numbers of E7-specific
CD8C T cells were found in the tumors of mice receiving Lm-
LLO-E7-derived T cells, »40–50% of the CD8C T cells were
E7-specific in the tumors of mice receiving pConE6E7-derived
T cells (Fig. S2B). A stronger pConE6E7-induced T-cell
response resulted in increased tumor infiltration and significant
restriction of tumor growth, independent of BQ-788 adminis-
tration (Fig. S2C), indicating that the tumor’s endothelial bar-
rier can be disrupted in response to a sufficiently large number
of tumor-specific T cells.

Complement C3 is required for the homing of effective T
cells and tumor suppression

To understand the mechanisms underlying successful T-cell
infiltration into the tumor, we reassessed the earlier finding
that complement C3 was the most highly upregulated tran-
script in TECs microdissected from tumors with brisk intra-
tumoral T cells, when compared with TECs from tumors
devoid of T cells.7 The upregulation of C3 mRNA in TECs
isolated from tumors containing tumor-infiltrating lympho-
cytes (TILs) was confirmed in new samples of purified
TECs (Fig. 1A), suggesting a potential role for complement
in the endothelial mechanisms regulating T-cell homing.
C3, the central component required for the activation of all
three complement pathways, is a well-appreciated modula-
tor of inflammation and immune responses, determining
the outcome of pathological conditions such as transplant
rejection, autoimmunity, and cancer.18,19 Notably, a signifi-
cant increase in the deposition of the activation fragments
C3b, iC3b, and C3c was detected in the tumor endothelium
of mice receiving 5 £ 106 of E7-primed T cells (henceforth
referred to as “the effective dose”) (Fig. 1B and Fig. S2D).
Given the human and mouse data, we asked whether effec-
tive doses of T cells neutralize the endothelial barrier
through increased complement activation.

To investigate whether T-cell infiltration into tumors
requires complement activation, the infiltration of T cells
into tumors after adoptive immunotherapy was compared
in C3-sufficient (c3C/C) and C3-deficient (c3¡/¡)mice.20 To
specifically determine the role of C3 produced locally by
the tumor stroma (connective tissue and vasculature) or
tumor-associated leukocytes, chimeric mice (in which C3
was produced only by leukocytes, but not stromal cells)
generated by transferring wild-type CD45.1 bone marrow
(BM) into irradiated c3¡/¡ mice; c3C/C recipients were used
as controls. BM engraftment was followed by flow cytome-
try (Fig. S3A). c3C/C and c3¡/¡ mice bearing wild-type leu-
kocytes were inoculated subcutaneously with TC-1 tumors,
followed by intravenous administration of an effective dose
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of E7-primed T cells. Tumor infiltration of E7-specific cells
as well as total CD8C cells was significantly impaired in
c3¡/¡ mice as compared with c3C/C mice (Fig. 1C and D).
Consistent with this finding, adoptive transfer of an effec-
tive dose of E7-primed T cells significantly restricted tumor
growth in c3C/Cmice, but had no effect on the tumors in
c3¡/¡ mice (Fig. 1E and F); similar results were obtained in
tumor-bearing c3¡/¡ and c3C/C littermate mice that had no
prior BM transfer (not shown).

We asked whether the lack of infiltration of adoptive T cells
in c3¡/¡ mice was associated with reduced deposition of the
activation fragments C3b, iC3b, and C3c in the tumor endothe-
lium. Importantly, we found no deposition of C3 fragments in
the tumor endothelium in c3¡/¡ hosts reconstituted with c3C/C

BM after adoptive transfer (Fig. S3B). Collectively, the results
described above indicate that upon adoptive transfer of a suffi-
ciently large amount of tumor-reactive T cells, the endothelial
barrier can be reversed, as long as endogenous complement
activation can occur in proximity to the tumor endothelium.
Our results also indicate that complement activation and C3
fragment deposition in the tumor endothelium, required for
the homing of adoptive T cells, are independent of the expres-
sion of C3 by endogenous or exogenous leukocytes. Chimeric
c3¡/¡ mice bearing wild-type BM release sufficient amounts of
C3 protein in the serum to maintain normal phenotypes.20

Although we cannot exclude the participation of systemic C3,

our results collectively suggest that complement activation in
the tumor endothelium depends on local expression by tumor
stromal cells, presumably tumor endothelium.

Triggering of the C5a-C5aR1 axis is required for T- cell
extravasation and tumor suppression

When complement is activated, C3 is cleaved into the frag-
ments C3a and C3b, with consequent formation of the C5 con-
vertase and release of the C5a fragment.18 C5a is a pro-
inflammatory molecule that signals through the G-coupled
receptor C5a receptor 1 (C5aR1)21 and has been previously
implicated in tumor growth.22-27 Given the results obtained
with the c3 chimera, we hypothesized that C5a mediates some
of the effects of complement activation on the tumor endothe-
lium and, consequently, that generation of C5a is required for
T-cell infiltration into tumors. Indeed, pharmacologic blockade
of the C5aR1 with an antagonist peptide (C5aR1A) resulted in
diminished infiltration of E7-specific CD8C as well as total
CD3C cells into the tumors and an attenuated efficacy of the
T-cell therapy in wild-type mice (Fig. 2A–C). Conversely, as
already reported by others,22 we found that treatment with the
C5aR1A alone in the absence of adoptive T-cell transfer
resulted in decreased tumor growth when compared with con-
trol mice that had not received T cells (Fig. 2C).

Figure 1. Complement C3 is required for the homing of effective (T) cells and tumor suppression. (A) C3 mRNA is significantly overexpressed in human tumor endothelial
cells sorted from ovarian cancers with tumor-infiltrating lymphocytes (TILs), when compared with ovarian cancers lacking TILs (nD 6/group). (B) Detection of complement
C3b/iC3b/C3c activation fragments (red) on tumor vasculature (CD31 in green) after adoptive transfer of 5£ 106 E7-primed CD8C T cells. Arrows indicate areas of juxtapo-
sition of complement fragments and CD31. The right panel depicts the quantification of C3 fragments co-localized with CD31. (C–F) Mouse chimeras were generated by
transferring wild-type bone marrow from B6.SJL-Ptprca Pep3b/BoyJ mice to lethally irradiated c3C/C and c3¡/¡ mice. The chimeras were inoculated s.c with TC-1 tumors,
followed by i.v. administration of 5 £ 106 E7-primed CD45.2 CD3C T cells. (C and D) Flow cytometry analysis showing the number of donor E7-specific CD8C T cells and
total CD8C T cells in the tumors. (E and F) TC-1 tumor growth in BM-transplanted c3C/C and c3¡/¡ mice in the absence of treatment (CTRL) or after transfer of 5 £ 106

E7-primed CD3C T-cells.
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Expression of C5aR1 on T cells has been reported previ-
ously.28-31 However, we found that pharmacologic blockade of
the receptor did not compromise the systemic expansion of
total or E7-specific CD8C T cells in vivo after adoptive transfer
(Fig. S4A–C), nor did it affect the ability of the T cells to pro-
duce IFNg in vitro after E7-specific re-stimulation (Fig. S4D).
To further ascertain, whether C5aR1 signaling might directly
affect T-cell expansion of effector function following adoptive
transfer, we generated T cells in donor c5ar1¡/¡ and c5ar1C/C

littermate mice. Whereas c5ar1¡/¡ mice have previously exhib-
ited dampened responses to other vaccination approaches,32

vaccination with plasmid DNA was quite effective and resulted
in the generation of similar E7-primed T cells in c5ar1¡/¡ mice
and their c5ar1C/C littermates (Fig. S4E), which were then used
for adoptive therapy. Importantly, the antitumor properties of

adoptively transferred c5ar1¡/¡ and c5ar1C/C E7-primed T
cells into WT tumor-bearing recipients were comparable
(Fig. S4F). Collectively, these data indicate that although C5a/
C5aR1 axis activation is required for T-cell homing to tumors,
this activation does not act by supporting the peripheral expan-
sion or effector function of T cells.

To ensure that our findings were not strictly correlated
with the experimental protocols of adoptive T-cell therapy,
we used vaccination to determine whether the requirement
for complement activation during T-cell tumor infiltration
was reproducible. Wild-type mice bearing subcutaneous
TC-1 tumors were first vaccinated with pConE6E7 and then
treated with the C5aR1A or control peptide for 2 weeks.
Post-vaccine C5aR1 blockade significantly reduced the num-
ber of E7-specific CD8C TILs and attenuated the efficacy of

Figure 2. Triggering of the C5a-C5aR1 axis is required for T-cell extravasation and tumor suppression. Tumor-bearing mice received an adoptive transfer of 5 £ 106 E7-
primed T cells, and were then treated with the C5aR1 antagonist (C5aR1A) or a control peptide (CTRLpept). (A and B) The number of E7-specific CD8C T cells and total
CD3CCD45C T cells recruited to the tumor was determined by flow cytometry. (C) TC-1 tumor growth was measured over time. (D and E) Tumor-bearing mice were vacci-
nated with pConE6E7, followed by treatment with C5aR1A or control peptide. (D) The number of E7-specific CD8C T cells recruited to the tumor was determined by flow
cytometry. (E) TC-1 tumor growth was measured over time.
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the vaccine when compared with the control peptide
(Fig. 2D and E), indicating that complement activation and
C5a generation are required for the infiltration of effector
T cells and tumor suppression.

C5aR1-mediated signaling in the tumor stroma is required
for effective T-cell infiltration

Next, to validate the results obtained with pharmacological inhi-
bition of the C5a-C5aR1 axis, we performed adoptive
cell transfer in c5ar1¡/¡ and c5ar1C/C tumor-bearing mice.
Adoptive transfer of 5 £ 106 E7-primed T cells from WT mice
resulted in similar systemic cell expansion in c5ar1¡/¡ and
c5ar1C/C mice (Fig. 3A) and comparable T-cell functionality after
ex vivo E7-specific stimulation (Fig. S4G). In contrast, tumor
infiltration of total and E7-specific CD8C T cells was significantly
impaired in c5ar1¡/¡ mice relative to c5ar1C/C mice (Fig. 3B and
C). Furthermore, adoptive lymphocyte transfer restricted tumor
growth in c5ar1C/C mice, but not in c5ar1¡/¡ mice (Fig. 3D and
E). To dissect which cell population was affected by C5a-medi-
ated signaling, we generated BM chimeras, transferring wild-type
CD45.1 BM into c5ar1¡/¡ or c5ar1C/C CD45.2 animals, which
were then inoculated with TC-1 tumors. This approach allowed
the production of host mice that expressed the C5aR1 on their
leukocytes but lacked C5aR1 on the tumor stroma (including the
endothelium). Mice then received an effective dose of E7-primed
T cells. In spite of having c5ar1-sufficient BM, there was a signifi-
cantly reduced accumulation of total and E7-specific CD8C T
cells in the tumors of the c5ar1¡/¡ mice when compared with

the c5ar1C/C hosts (Fig. 3F and G). In addition, T-cell immuno-
therapy was not capable of restricting tumor growth in c5ar1¡/¡

hosts (Fig. 3H and I), indicating that C5a-mediated infiltration of
T cells and tumor suppression are independent of the expression
of C5aR1 by leukocytes. Thus, the accumulation of T cells in
tumors requires C5a, but the host cells responsible for promoting
T-cell infiltration are tumor stromal cells, and not leukocytes.

Activation of the C5a-C5aR1 axis reverses endothelial cell
quiescence

In light of the in vivo data showing enhanced deposition of
C3 activation fragments on tumor vascular endothelium
after adoptive transfer of an effective dose of T cells
(Fig. 1B), and given the critical role of the endothelium in
T-cell extravasation and tumor infiltration, we next investi-
gated the impact of C5a on the activation of endothelial
cells. The expression of the C5aR1 by endothelial cells is
well appreciated,33 and in line with this observation, treat-
ment of human umbilical vein endothelial cells (HUVECs)
with synthetic C5a increased T-cell adhesion in vitro, and
this adhesion was restored to baseline levels in the presence
of the C5aR1A antagonist but not a control peptide
(Fig. 4A). We observed that the T-cell adhesion was medi-
ated by ICAM-1 and VCAM-1, since the endothelial
response to C5a was attenuated by neutralizing antibodies
against the CAMs (Fig. 4A). In addition, we tested whether
C5a could also reverse the endothelial quiescence induced
by ETBR signaling. For this purpose, we exposed HUVECs

Figure 3. C5aR1-mediated signaling in the tumor stroma is required for effective T-cell infiltration. (A–E) Tumor-bearing C5aR1-deficient (c5ar1¡/¡)mice and C5aR1-suffi-
cient littermate controls (c5ar1C/C) were given an effective dose (5 £ 106) of E7-primed T cells. (A and B) Flow cytometry showing spleen expansion and tumor recruit-
ment of total and E7-specific donor CD8C cells. (C) Immunohistochemical staining for CD3 of TC-1 tumor sections. (D and E) TC-1 tumor growth in c5ar1C/C (blue) and
c5ar1¡/¡ (red) mice in the absence of treatment (CTRL) or after transfer of 5 £ 106 E7-primed CD3C T-cells. (F–I) Chimeras were generated by transferring wild-type bone
marrow from B6.SJL-Ptprca Pep3b/BoyJ mice to c5ar1¡/¡ and c5ar1C/C littermatemice. Mice were inoculated in the back with TC-1 tumors and then given an effective
dose of E7 vaccine-primed adoptive CD45.2 T cells (5 £ 106 CD3C cells/mouse). Flow cytometry analysis showing the number of CD8C (F) and E7-specific CD8C (G)
engrafting TC-1 tumors in c5ar1C/C and c5ar1¡/¡ mice reconstituted with bone marrow cells from WT mice. (H and I) TC-1 tumor growth in BM-transplanted c5ar1C/C

(blue) and c5ar1¡/¡ (red) mice in the absence of treatment (CTRL) or after the transfer of 5 £ 106 E7-primed CD3C T-cells.
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in vitro to ET-1, which inhibits T-cell adhesion through
downregulation of CAMs, even in the presence of TNF-a
(Fig. 4B). Like the ETBR antagonist BQ-788, C5a (but not
control peptide) reversed the inhibiting effect of ET-1,
restoring T-cell adhesion (Fig. 4B) and suggesting that local
complement activation is sufficient to activate endothelium
and can counter ETBR-induced signaling, maintaining the
expression of CAMs in the endothelium and preventing
endothelial dormancy

Th1 cytokines activate the endothelium through
endothelial complement activation

Complement activation on the surface of human endothelial cells
and the extracellular matrix has previously been observed after
cell stimulation with IFNg or TNF-a, either alone or in combina-
tion.34 We found that supernatant from CD3/CD28-activated
T cells strongly induced the production of C3 by HUVECs in
vitro, and the activation of HUVECs with IFNg or TNF-a, alone
or in combination, also promoted the production of C3
(Fig. 5A). More interestingly, complement activation and deposi-
tion could be detected on the surface of HUVECs activated with
TNF-a or supernatant from CD3/CD28-activated T cells, as evi-
denced by deposition of the C3 activation fragments C3b/iC3b/
C3c (Fig. 5B). Further, de novo release of C5a was detected in the
supernatant of activated HUVECs (Fig. 5C), supporting the con-
cept of local complement activation on the surface of endothelial
cells activated by pro-inflammatory cytokines. Notably, the addi-
tion of C5aR1 antagonist, which abrogates C5a signaling, attenu-
ated the ability of HUVECs stimulated with supernatants from
CD3/CD28-activated human T cells to support adhesion of T
cells (Fig. 5D). A similar reduction in T-cell adhesion was
observed after treatment of the HUVECs with blocking antibod-
ies against ICAM-1 or VCAM-1 (Fig. 5D), indicating that C5a is
required for optimal cytokine-induced expression of CAMs on
endothelial cells. Indeed, the upregulation of VCAM-1 by IFNg

was abrogated in the presence of the C5aR1 antagonist or the C3
inhibitor Compstatin (Fig. 5E). This finding was corroborated
using purified primary mouse lung microvascular endothelial
cells from wild-type, c5ar1¡/¡ and c3¡/¡ mice treated with IFNg
or TNF-a, either alone or in combination. Although comple-
ment-sufficient endothelial cells mounted a robust VCAM-1 and
ICAM-1 response to Th1 cytokines, this response was severely
attenuated in endothelial cells that lacked C3 or C5aR1 (Fig. 5F
and Fig. S5). Thus, cytokines released by activated effector type 1
T cells upregulate the expression of C3 in the endothelium, allow-
ing local complement activation and the release of C5a, which in
turn modulates the expression of endothelial CAMs and the
attachment of T cells to the endothelium. We propose that such
a mechanism plays a key role in tumors, where type 1 cytokines
released by tumor-infiltrating CD4C and CD8C T cells activate
the cascade just described, promoting the attachment, and extrav-
asation of effector T cells.

Complement hyperactivation enhances T-cell engraftment
of tumors and promotes tumor rejection by suboptimal
numbers of tumor-specific T cells

The notion that complement activation allows for improved
extravasation of T cells into the tumor bed suggests that the
activation of the tumor vasculature by C5a could reduce the
requirement for infusing a large dose of tumor-reactive T cells
to abate endothelial quiescence. Decay accelerating factor
(DAF/CD55) is a regulatory protein that limits complement
activation on cell surfaces18; a deficiency of daf1 allows unop-
posed complement activation in areas of inflammation and has
been shown to exacerbate autoimmunity in mouse models.35

Therefore, we asked whether daf1 deficiency allowed for effi-
cient tumor suppression when a low (suboptimal) dose (2.5 £
106, ineffective in wild-type mice) of E7-primed T cells was
injected. Indeed, an increased number of E7-specific CD8C T
cells homed to the tumors in daf1-deficient mice when

Figure 4. C5a-C5aR1 axis activation reverses endothelial cell quiescence. (A) HUVECs were treated with C5a in the presence of the C5aR1 antagonist (C5aR1A), control
peptide (CTRLPept), anti-ICAM-1, or anti-VCAM-1 and incubated with CFSE-labeled T cells. T-cell adhesion was measured by detection of total fluorescence using a fluoro-
counter microplate reader. (B) HUVECs were activated with TNF-a, and endothelial quiescence was induced by treatment with endothelin-1 (ET1) in the presence of the
ETBR antagonist (BQ-788), C5a, or control peptide. After the addition of CFSE-labeled T cells, cell adhesion was measured by detection of total fluorescence using a fluoro-
counter microplate reader.
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compared those in their wild-type counterparts (Fig. 6A). More
importantly, whereas 2.5 £ 106 T cells were not sufficient to
suppress tumor growth in wild-type mice, the same number of
cells significantly inhibited tumorigenesis in daf1-deficient
mice (Fig. 6B and C). Co-administration of the C5aR1 antago-
nist abrogated the advantage seen in the daf1-deficient mice
(Fig. 6D and E), confirming the role of C5a in T-cell homing
and tumor suppression.

Pioneering CD4C and CD8C cells are both required for
local complement activation, T-cell homing and tumor
suppression

Based on our data, we hypothesized that pro-inflammatory
cytokines such as IFNg and TNF-a promote the production
of C3 by the tumor endothelium and mediate local comple-
ment activation, with generation of C5a. The activation
fragment C5a, in turn, upregulates the expression of CAMs
in the tumor vasculature, allowing for successful engraft-
ment of effective T cells. Of note, this process would
require a pioneering population of tumor-reactive T cells to
release sufficient cytokines and activate endothelial cells,
with consequent complement deposition. To investigate this

assumption, we used FACS to determine the number of
adoptively transferred T cells over time in the tumors of
c5ar1¡/¡ and c5ar1C/C mice. Whereas expansion of total
and E7-specific CD8C T cells in the spleen was similar in
both recipient groups, reduced levels of CD8C T cells were
observed in the tumors of c5ar1¡/¡ mice when compared
with their wild-type counterparts (Fig. 7A). Notably, at day
5, a similar low-level T-cell engraftment was present in the
tumors of c5ar1¡/¡ and c5ar1C/C mice. Remarkably, up to
25% of these TILs were CD4C (Fig. 7B). A marked increase
in T-cell engraftment in c5ar1C/C mice occurred by day 12,
with 95% CD8C cells (Fig. 7B), consistent with prior evi-
dence that CD8C cells mediate TC-1 tumor suppression.17

Overall, these data suggest that an early, complement-inde-
pendent phase of T-cell tumor infiltration allows few pio-
neering T cells (among which are many CD4C cells) to
migrate to the tumor, whereas complement activation is
critical for the second phase of T-cell homing and infiltra-
tion, allowing marked escalation of CD8C T-cell
engraftment.

To evaluate the relative contribution of CD4C and CD8C

cells to the priming of the tumor endothelium and consequent
complement activation, E7-primed CD3C (1 £ 107,

Figure 5. Th1 cytokines activate the endothelium through endothelial complement activation. (A) HUVEC cells were treated with TNF-a or IFNg alone or in combination,
or with the supernatant of T cells activated with anti-CD3/CD28, and the levels of C3 were measured in the culture supernatants by ELISA. (B) HUVECs activated by TNF-a
or medium from anti-CD3/CD28-co-stimulated human T cells (T medium) were stained for deposition of the C3 activation fragments C3b, iC3b, and C3c. (C) HUVEC cells
were treated with TNF-a or IFNg alone or in combination, and the levels of C5a were measured in the culture supernatants by ELISA. (D) Adhesion of activated T cells to
HUVECs was determined after treatment of HUVECs with supernatants of activated T cells (T medium) in the presence of C5a receptor 1 antagonist (C5aR1A), control pep-
tide (CTRLPept), or antibody neutralizing ICAM-1 or VCAM-1. After addition of CFSE-labeled T cells, cell adhesion was measured by detecting total fluorescence using a flu-
orocounter microplate reader. CTRL indicates the adhesion of activated T cells on HUVECs in the absence of T-cell medium or any of the above factors. (E) Expression
levels of VCAM-1 in response to the treatment with IFNg in the presence of C5aR1 antagonist (C5aR1A) or the C3 inhibitor Compstatin were measured by flow cytometry.
(F) Primary mouse lung micro vascular endothelial cells from wild-type, c5ar1¡/¡,or c3¡/¡ mice were treated with IFNg or TNF-a alone or in combination, and the expres-
sion levels of VCAM-1 were measured by flow cytometry. Right panels depict quantification of VCAM-1 expression on the different mouse endothelial cells. �p < 0.05;
��p < 0.02; ���p < 0.0002.
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approximately composed by 4 £ 106 CD8C and 6 £ 106 CD4C

T cells), CD8C (4 £ 106), or CD4C (6 £ 106) T cells were trans-
ferred to wild-type mice bearing TC-1 tumors. The CD8C and
CD4C cell populations, when transferred alone, failed to estab-
lish the second (complement-dependent) phase of escalated
tumor engraftment beyond day 5 (Fig. 7C and D) and, unlike
CD3C cells, they failed to suppress tumor growth (Fig. 7E).
Although we cannot exclude the possibility that higher doses of
CD8C cells could bypass the tumor’s endothelial barrier, at the
dose used in our experiment, both CD4C and CD8C cells were
required in the early (complement-independent) phase in order
for the second (complement-dependent) phase of escalated
tumor engraftment and the consequent therapeutic effect to
occur successfully.

Tumors were examined on day 12 for complement deposition;
importantly, enhanced deposition of C3b/iC3b/C3c fragments on
the tumor endothelium was seen only after the transfer of whole
T cells, and not after the transfer of CD4C or CD8C cells alone
(Fig. 7F). Thus, enhanced activation of endothelial complement
requires cooperation between CD4C and CD8C cells. Confirming
the role of complement activation in T-cell homing and tumor
suppression, we found that the C5aR1 antagonist abrogated both
the ability of whole T cells to home to tumors and their therapeu-
tic benefit (Fig. 7D and G), but it had no effect when CD4C or
CD8C cells were infused alone (Fig. 7D). These results support
the previously observed dependency of CD8C adoptive tranfer on
the co-administration of CD4C cells.15

Discussion

Cancer vaccines represent the possibility of awakening the host’s
immune system to efficiently recognize and kill tumor cells. Thus
far, many approaches have been positively tested in preclinical
settings,36-39 and recent improvements, such as the identification
of tumor neo-antigens and the exploitation of immune check-
points, are increasing the suitability of these vaccines for cancer
treatment in the clinic.40,41 T-cell homing and infiltration into
the tumor are essential for the success of cancer immunotherapy.
Emerging evidence suggests that the tumor endothelium plays a
critical function in regulating T-cell traffic: Roles for endothelial
adhesion molecules and Th1 cytokines have already been
described.42,43 Tumors shut down endothelial adhesion molecules
and upregulate inhibitory and death ligands to prevent T-cell
homing.8 Overcoming the blood-tumor endothelial barrier is
thus essential for successful cancer immunotherapy.

Here, we show that tumors are not endowed with an
irreversible immune-privileged status, since endothelial qui-
escence could be reversed by cytokine-mediated activation
of the tumor vasculature followed by complement produc-
tion, local generation of C5a, and consequent upregulation
of endothelial adhesion molecules, allowing for efficient T-
cell extravasation and infiltration into the tumor. We have
shown that effective doses of T cells can thus reverse the
endothelial barrier, provided that they can induce endothe-
lial complement activation, which requires the generation of

Figure 6. Complement hyperactivation enhances T-cell engraftment in tumors and facilitates tumor rejection by suboptimal numbers of tumor-specific (T)cells. (A) Mice
were given an ineffective dose of T cells (2.5 £ 106 CD3C T cells/mouse) by adoptive transfer, and the frequency of E7-specific CD8C cells engrafted in the tumors of
daf1C/C and daf1¡/¡ mice was determined by flow cytometry. (B and C) TC-1 tumor growth curve in daf1C/C and daf1¡/¡ mice in the absence of treatment (CTRL) or
after the transfer of 2.5 £ 106 E7 primed CD3C T cells. (D) Some daf1¡/¡ mice also received C5aR1 antagonist (C5aR1A), and the number of E7-specific CD8C cells
engrafted in the tumors was determined by flow cytometry. (E) TC-1 tumor growth curve in daf1¡/¡ mice treated with C5aR1 antagonist (C5aR1A) after the transfer of
2.5 £ 106 CD3C T cells/mouse harvested from spleens of donor mice vaccinated with pConE6-E7 DNA.
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local C3 and C5a in the tumor stroma and vasculature. In
turn, C5a can directly act on the endothelium to upregulate
CAMs, allowing unopposed extravasation of tumor-reactive
T cells. Consistent with this mechanism, effective numbers
of E7-primed T cells transferred into mice bearing TC-1
tumors failed to penetrate to tumor sites in c3¡/¡ or
c5ar1¡/¡ or C5aR1A treated WT mice. Furthermore, genetic
or pharmacologic blockade of C3 or the C5aR1 in human
or mouse endothelial cells impaired cytokine-induced upre-
gulation of adhesion molecules. Collectively, our results
identify the C5a activation fragment as a key effector in
tumor endothelial activation and T-cell extravasation, con-
sistent with previous evidence that C5a activates the nuclear
translocation of NF-kB and upregulates VCAM-1 expression
in endothelial cells.44

We have previously identified a pivotal role for ETBR in
maintaining the endothelial barrier via the binding of its ligand
ET-1, which is overexpressed by nearby tumor cells. This inter-
action establishes a local, tumor-restricted paracrine axis that
suppresses endothelial T-cell adhesion.7,45 Interestingly, we
found that C5a-mediated activation of the C5aR1 on the endo-
thelium was able to override this inhibitory axis, rescuing endo-
thelial adhesion and optimal infiltration of effective T cells into
the tumors. ETBR suppresses the expression of endothelial
adhesion molecules via nitric oxide, which upregulates guanylyl
cyclase and intracellular cyclic (cGMP) in the endothe-
lium.7,46,47 Conversely, C5a activates endothelial NF-kB, lead-
ing to a reduction in endothelial cGMP and neutralizing the
ability of nitric oxide to suppress VCAM-1 expression.44 Our
results indicate that this effect is mediated by C5a rather than

Figure 7. Pioneering CD4C and CD8C cells are both required for local complement activation, T-cell homing, and tumor suppression. (A and B) c5ar1C/C or c5ar1¡/¡

C57BL/6 tumor-bearing mice were treated with 5 £ 106 CD3C T cells isolated from the spleen of pConE6E7-vaccinated B6.SJL-Ptprca Pep3b/BoyJ mice, and the expansion
of the T cells was determined over time in the spleen and tumor. (C–G) C57BL/6 mice were injected s.c. with the TC-1 tumor, and after 1 week they were given total
CD3C (1 £ 107/mouse), CD8C (4 £ 106/mouse) or CD4C (6 £ 106/mouse) T cells isolated from pConE6E7 vaccinated B6.SJL-Ptprca Pep3b/BoyJ mice by adoptive transfer.
(C) Frequency of total CD3C CD45.1 cells in the spleens of mice receiving a transfer of CD3C, CD8C, or CD4C T cells. Numbers are normalized for millions of analyzed cells.
(D) Frequency of CD3CCD45.1 cells (left) and E7-specific CD8CCD45.1 cells (right) in tumors from mice that received CD3C or CD8C cells, followed by treatment with
C5aR1 antagonist (C5aR1A). (E) Tumor growth curves of C57BL/6 mice that received CD3C, CD4C, or CD8C cells. (F) Immunohistochemical staining for the endothelial cell
marker CD31 and C3 activation fragments in TC-1 tumor sections from mice given the CD3C, CD4C, or CD8C cell populations by adoptive transfer. (G) Tumor growth
curves of C57BL/6 mice that received CD3C T cells and treated with C5aR1 antagonist (C5aR1A). CTRL- control mice did not receive any T- cell therapy.
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by the deposition of C5b-9 complexes, as previously considered
in hypoxia/reoxygenation.44 This effect likely occurs when
enough T cells encounter cognate antigen to release sufficient
Th1 cytokines locally, but it can also happen when local com-
plement activation is unopposed, as in daf1-deficient mice.

Given that complement activation can override the sup-
pressive effect of ET-1/ETBR, preservation of the tumor’s
endothelial barrier would require continuous local comple-
ment inhibition in the tumor microenvironment. In the
tumor context, VEGF is not only required for angiogenesis
and tumor development, but it also promotes endothelial
quiescence by upregulating the expression of the comple-
ment inhibitor DAF in the endothelium via protein kinase-
C, thereby significantly hindering complement deposition in
the tumor vasculature.34,48 Similarly, VEGF overexpression
by the tumor is associated with the upregulation of ETBR
expression by the endothelium.49 As such, these findings
are in line with the inverse association between TILs and
VEGF expression in ovarian cancers, the increment in the
number of TILs when VEGF is inhibited, and the efficacy
of combining anti-angiogenic therapy and immunotherapy
in cancer.50-54 It should further be noted that Th1 cytokines
also upregulate endothelial DAF.55,56 Evidently, tumor
endothelial barrier mechanisms are finely balanced, and the
processes controlling T-cell engraftment and function in
tumors are intricate. Our findings cannot exclude the possi-
bility that complement activation also has additional effects
on the endothelium or other cell types as well as blood
flow.57

The proposed model requires that certain tumor-reactive
T cells home to and infiltrate the tumors in the presence of
low-level or no complement activation, and then after anti-
gen encounter, release cytokines that are able to upregulate
the local production of C3 by the endothelium. It is note-
worthy that complement activation on the surface of human
endothelial cells and in the extracellular matrix has previ-
ously been observed after cell stimulation with IFNg or
TNF-a, alone or in combination.34 Indeed, we found a low-
level extravasation of scouting T cells in tumors a few days
after adoptive transfer; this process did not require comple-
ment activation, since it also occurred in c3¡/¡ mice. How-
ever, tumor suppression required a significant amplification
of the CD8C T-cell infiltrate that was found to be comple-
ment-dependent, since it failed to occur in c3¡/¡ mice. Fur-
thermore, we observed that the presence of CD4C T cells
was fundamental among the early scouting T cells, and in
agreement with prior evidence,58 we found that it was
required for the subsequent amplification of the CD8C T-
cell infiltration that was responsible for TC-1 tumor rejec-
tion.15,58 Since CD8C and CD4C T cells differ in integrin
expression and their degree of adhesion to the endothe-
lium,59 it is likely that T-cell subsets also differ in their
requirements for complement-dependent endothelial activa-
tion for tumor infiltration. Indeed, cytotoxic CD8C T cells
express high levels of the ICAM-1/2 and VCAM-1 receptors
CD11a (LFA-1) and CD49d,59 respectively, implying that
CD8C T cells are particularly dependent on endothelial acti-
vation for extravasation. Moreover, the role of CD4C T cells
in the recruitment of CD8C has been already established in

other disease settings. CD4C cells have been observed to
predominate in early multiple sclerosis lesions, whereas
CD8C cells predominate in late lesions,60 and in a model of
experimental autoimmune encephalomyelitis, complement
deficiency impairs infiltration of CD8C but not TNF-
a/IFNg-secreting CD4C cells in the brain.61

In apparent contrast to our findings, a significant body of
evidence suggests that complement activation in the tumor
microenvironment leads to tumor growth and metastasis.
C5aR1-mediated signaling has been implicated in establishing
a microenvironment that promotes tumor growth via the
recruitment of myeloid-derived suppressor cells (MDSCs) and
inhibition of antitumor immune responses mediated by CD8C

and CD4C T cells.22,23,25,62 Complement activation has been
associated with increased CCL2-mediated recruitment of
immunosuppressive macrophages in tumors via CCL2 produc-
tion.63 C5a-induced local inflammation has also been shown to
support angiogenesis and tumor progression, as demonstrated
by the development of small and poorly vascularized tumors in
the absence of C3- or C5aR1-mediated signals.27 In addition to
determining a pro-angiogenic and pro-tumorigenic microenvi-
ronment, C3a and C5a derived from tumor cells have an auto-
crine effect on tumor proliferation via the activation of the
PI3K/AKT signaling pathway in cancer cells.24 We have also
previously highlighted the role of C3 and complement activa-
tion in tumor growth in animals exhibiting low or no spontane-
ous antitumor immunity. In the absence of antitumor T cells,
complement activation promotes tumor growth by recruiting
and activating myeloid-derived suppressor cells22 or proangio-
genic B cells.27

We now demonstrate an opposite effect for C3 and comple-
ment activation in mice that possess a robust antitumor
immune response. These superficially contradictory observa-
tions illustrate the critical role of complement in permitting
tumors to orchestrate leukocyte homing and infiltration. Our
study reflects the double-edged role of complement in regulat-
ing the trafficking of immune cells peripherally in many dis-
eases, especially cancer. The fate of the tumor depends on
whether the infiltrating immune cells are friends or foes.64 If
effective T cells are present, complement facilitates tumor rejec-
tion, whereas it would seem to promote inflammation and
tumorigenesis when other immune cell types predominate over
antitumor T cells.

These results have important therapeutic implications. We
have shown that a threshold dose of tumor-reactive T cells is
required in vivo to circumvent the tumor’s endothelial barrier.
Although tumor rejection is mediated by CD8C cells, CD4C

cells have to ensure adequate T-cell engraftment in tumors, and
we found that this effect was C5a-dependent. These findings
may guide the development of more effective immunotherapy
protocols and are in agreement with previous evidence.15

Tumor vaccines typically induce low numbers of low-avidity T
cells; thus, activation of endothelial complement specifically in
the tumor endothelium could represent a powerful immune
adjuvant strategy to improve the efficacy of both active and
passive immunotherapy approaches. Our results might be
model or strain dependent and additional work might be
required to ultimately prove the relevance of this mechanism in
mice and human.
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Material and methods

Mice

The c3¡/¡, daf1¡/¡, and c5ar1¡/¡ mice used in our studies
have been described previously.22,35,65,66 Mice were back-
crossed for at least nine generations onto the C57BL/6
background, and their homozygous wild-type littermates
were used as controls. Wild-type 6- to 8-week-old female
C57BL/6 and B6.SJL-PtprcaPep3b/BoyJ congenic mice were
purchased from the Jackson Laboratory. Mice were housed
in a barrier animal facility, with a 12-h light/dark cycle.
Water and standard rodent diet were provided ad libitum.
To generate chimeras, mice were lethally irradiated and
injected i.v. with 1 £ 107 CD45.1 BM cells isolated from
B6.SJL-PtprcaPep3b/BoyJ congenic mice.20 Standard antibi-
otic was added in the drinking water for 2 weeks. BM
engraftment was checked on a regular basis by surface
staining of peripheral blood for the CD45.1/CD45.2
markers. All experiments were repeated three times with
similar results and included 8–10 mice per group unless
stated otherwise. All mouse studies were approved by the
University of Pennsylvania Institutional Animal Care and
Use Committee according to the National Institutes of
Health (NIH) guidelines.

In vivo immunotherapy

Mice were inoculated with 1 £ 105 TC-1 tumor cells (ATCC,
Manassas) s.c. in the back. After 7 d, the mice were vaccinated
weekly with a total of three i.m. injections of the pConE6E7
plasmid DNA vaccine (100 mg in PBS) expressing the HPV16
E6 and E7 genes, kindly provided by Dr David B. Weiner16; or
with Lm-LLO-E7, encoding the HPV16 E7 gene fused with
Listeria monocytogenes LLO, kindly provided by Dr Yvonne
Patterson.67 In adoptive transfer experiments, CD3C spleno-
cytes were sorted using a Miltenyi CD3 pan-T cell purification
kit and inoculated i.v. into recipient tumor-bearing mice
1 week after the last immunization. CD4 and CD8 positive
selection (Myltenyi Biotec) was performed to sort CD4C and
CD8C fractions out of the CD3C cell population. Where indi-
cated, mice were treated i.p. with a dose of 300 mg of the ETBR
antagonist BQ-788 (American Peptide) or with the C5aR1
antagonist68,69 AcF[OPdChaWR] or control inactive peptide
AcF[OPdChaA(d)R]27 at 1 mg/kg, every other day for 14 d,
beginning 2 weeks after tumor inoculation. Tumor progression
was monitored every other day by caliper measurements.

Evaluation of the immune response

ELISPOT was performed as described previously.70 Briefly,
splenocytes (5 £ 105/well) were plated in duplicate in 96-well
MAIP plates (Millipore) pre-coated with anti-mouse IFNg
antibody (BD PharMingen). Cells were incubated for 20 h at
37�C with 1 mg/mL H2-Db E7 (RAHYNIVTF) or control OVA
(SIINFEKL) peptide. Concanavalin A (Sigma) or anti-CD3
(eBioscience) was used at 5 mg/mL as a positive control. Plates
were sequentially incubated for 12 h at 4 �C with biotin-conju-
gated rat anti-mouse IFNg (BD PharMingen) and for 3 h at
room temperature with streptavidin-AKP (BD PharMingen),

followed by the addition of NBT/BCIP (Pierce) for color devel-
opment. Spots were counted using an automated ELISPOT
reader (AID, Germany).

For flow cytometry analysis of TILs, tumors were minced
and incubated for 30 min at 37 �C under continuous rotation
in a RPMI solution containing 1 mg/mL collagenase IV,
0.1 mg/mL hyaluronidase, and 30 U/mL DNAse. The resulting
material was passed through a 70-mm cell strainer, followed by
washing and pelleting. Cells (5 £ 106) were then incubated
with anti-mouse CD16/32 (Biolegend) and subsequently
stained as described below. E7 tetramer labeling (Beckman
Coulter) was performed according to the manufacturer’s
instructions. Staining for human VCAM-1 (clone: 51–10C9,
BD Bioscience) or mouse ICAM-1 (clone: YN1/1.7.4, Biole-
gend) and mouse VCAM-1 (clone: 429, Biolegend) was per-
formed according to the manufacturer’s recommendations.

Intracellular cytokine staining was performed as follows: 5£
106 splenocytes were incubated with H2-Db E7 or OVA peptide
(5 mg/mL) or a combination of anti-CD3 and anti-CD28 anti-
body (10 mg/mL) in 1 mL RPMI 10% FCS plus 1 mg/mL brefel-
din A (BD Biosciences) at 37 �C overnight. Cells were washed,
stained for the CD45.1, CD45.2, CD3, CD4, and CD8C markers
(all antibodies from Biolegend), fixed and permeabilized with
Perm/Wash Buffer (BD Biosciences), then further stained with
anti-IFNg (eBioscience). Cells were analyzed on a FACS-Canto
flow cytometer (Becton Dickinson) with FlowJo software, ver-
sion 10.

T-cell cytotoxicity was measured by 51Cr release assay. T cells
isolated from the spleen of vaccinated mice were re-stimulated
for 5 d with E7 peptide (MLPC), counted, and co-cultured with
51Cr-labeled MBL-2 cells that had been previously pulsed with
the E7 or OVA peptide. T cells were mixed at different ratios
with MBL-2 target cells, and after 5 h of co-culture, the superna-
tants were harvested to measure 51Cr release.

In vitro cell assays

For lymphocyte–endothelial adhesion assays, HUVECs were
grown to 40% confluence in 96-well plates (Biocoat labora-
tory) in EGM2 medium (Cambrex) and treated with recom-
binant human endothelin 1 (ET1; 10 nM, Anaspec), BQ-
788 (200 nM-American Peptide Company), C5aR1A
(20 mM), Compstatin-analog CP3071 (100 mM), or control
peptide for 24 h, followed by the addition of TNF-a
(20 ng/mL, Sigma) for 4 h. Where indicated, HUVECs cells
were stimulated with 50 ng/mL of recombinant C5a (Sigma)
according to literature.72,73 Control HUVECs were kept in
EGM2 medium (Cambrex) or treated with TNF-a alone.
Cells were rinsed twice, supplemented with fresh EGM2
medium, and 2 £ 105 T lymphocytes were added to the
plates. Human peripheral blood lymphocytes were obtained
through elutriation of blood from normal donors. Before
use every batch of recombinant C5a was tested for LPS con-
tamination using the Pyrosate LPS detection kit (sensitivity
of 0.03 EU/mL). When required, T cells were stimulated
with anti-CD3/CD28 (2 mg/mL plate-bound anti-CD3,
clone OKT3, Biolegend; and 1 mg/mL soluble anti-CD28,
clone 15E8, Sigma) in RPMI-1640 for 48 h. T cells (>97%
pure) were labeled with Carboxyfluorescein succinimidyl
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ester (CFSE) (Sigma), washed, allowed to adhere to pre-
treated HUVECs for 1 h, and washed five times with PBS.
Fluorescence was detected in 96-well plates using a Packard
FluoroCounter microplate reader. Where indicated, ICAM-
1- (clone LB-2, 20 mg/mL, R&D) or VCAM-1-neutralizing
antibodies (clone m/k-2.7, 20 mg/mL, R&D) were added to
the HUVEC culture before the addition of T cells. To mea-
sure the expression levels of adhesion molecules, HUVECs
were plated in 6-well plates pre-coated with 1% gelatin and
treated with IFNg (5 ng/mL, Sigma) for 1 h before the
addition of T cells. The presence of complement compo-
nents in the supernatant of HUVECs was measured using a
C3 (Genway) or C5a (R&D Duoset) ELISA kit. Primary
mouse lung microvascular endothelial cells were isolated
from the lungs of c3¡/¡, c5ar1¡/¡, and wild-type mice.
Lungs were minced with scissors and digested with Collage-
nase/Dispase (Roche) according to the manufacturer’s
instructions. Primary microvascular endothelial cells were
obtained through sequential magnetic depletion of CD45C

cells and enrichment of CD31C cells (Miltenyi Biotec). To
measure the expression levels of adhesion molecules, pri-
mary lung endothelial cells were stimulated for 6 h with
TNF-a (5ng/mL, Peprotech) or IFNg (125U/mL, Pepro-
tech), alone or in combination. All in vitro experiments
were repeated in duplicate for three times with similar
results.

Immunohistochemistry

Tumors were flash-frozen in optimal cutting temperature
medium (Tissue-Tek, Sakura), and 5-mm sections of frozen tis-
sue were cut on a cryotome. Sections were incubated with anti-
mouse CD3 (clone sp7, Sigma, 1:100 dilution) and anti-rabbit
IgG (Sigma, 1:1000 dilution), or biotin-conjugated anti-mouse-
CD45.1 (clone A20, Sigma, 1:250 dilution) and HRP-conju-
gated streptavidin (Sigma, 1:1000 dilution). CD3 or CD45.1
infiltration was quantified by manual counts in 10 representa-
tive fields (30X) of five independent samples per group. For
immunofluorescent assessment of complement activation, sec-
tions were stained sequentially for mouse complement proteo-
lytic fragments C3b/iC3b/C3c (clone 2/11, Hycult Biotech,
1:200 dilution) and Alexa Fluor 647-conjugated anti-rat IgG
(Invitrogen, 1:1000 dilution), and Alexa Fluor 488-CD31 (BD
PharMingen) for the vascular endothelial marker CD31 (DAPI
nuclear counter stain was applied at the time of coverslipping).
A total of 12 £ 200 high-power fields were imaged for each of
three tumor samples per mouse from three mice in each group,
and the spectral components were deconvoluted using the
Nuance FX multispectral imaging system (Cambridge Research
and Instrumentation). Regions of interest were designated
manually containing approximately 20 nuclei each. These were
arbitrarily designated without regard to C3b/iC3b/C3c staining.
The C3b/iC3b/C3c fluorescence intensities were quantified
automatically by the Nuance FX multispectral imaging system.
A similar method was used to quantify human C3b/iC3b/C3c
(clone 1H8/C3b, Biolegend, 1:50 dilution) deposition on
HUVECs in vitro. Approximately 8 £ 103 HUVECs were
plated in a Lab-Tek II chamber slide system pre-coated with
1% gelatin, and treated for 16 h with IFNg (5 ng/mL, Sigma),

TNF-a (20 ng/mL,Sigma), or supernatants of human T-cell cul-
tures co-stimulated with anti-CD3/CD28 (2 mg/mL plate-
bound anti-CD3 and 1 mg/mL soluble anti-CD28, Biolegend).

Isolation of human tumor endothelial cells and real-time
PCR

TECs were sorted from tumors with a MoFlo Cell Sorter (Cyto-
mation) as the CD146CVE¡cadherinCCD45¡ population, as
described previously.74 RNA from TECs (>95% pure),
HUVECs, or whole tumor specimens was isolated using TRI-
zol. Real-time PCR was performed using Power SYBR Green
PCR Master Mix (Life Technologies) as detailed elsewhere75

using the following primers: 50–ACACTACCTCATGTGG
GGTCTC–30 (forward); 50–GGCATTGTTTCTGGTTCTCT
TC–30 (reverse). All transcripts were confirmed using 3% aga-
rose gel electrophoresis. In all cases, expression was normalized
to b-actin: 50–ACACAGGGGAGGTGATAGCATT–30 (for-
ward); 50–ATACATCTCAAGTTGGGGGACAA–30 (reverse).
Relative gene expression was calculated using the comparative
Ct method (2delta (Ct-treated- Ct-untreated)).

Statistical analyses

Descriptive statistics were performed with SPSS�. In vitro
experiments and in vivo tumor volumes were analyzed using
ANOVA with Tukey post-tests to compare all conditions, and
with Student’s t-test. All experiments were repeated three times;
in the case of in vivo studies, each group consisted of 8–10
animals, unless otherwise noted. All figures portray one repre-
sentative experiment.
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