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Abstract

The clinical efficacy for treating of celastrol rheumatoid arthritis (RA) has been well-docu-

mented, but its mechanism of action remains unclear. Here we explored through what pro-

teins and processes celastrol may act in activated fibroblast-like synoviocytes (FLS) from

RA patients. Differential expression of genes and proteins after celastrol treatment of FLS

was examined using RNA sequencing, label-free relatively quantitative proteomics and

molecular docking. In this paper, expression of 26,565 genes and 3,372 proteins was ana-

lyzed. Celastrol was associated with significant changes in genes that respond to oxidative

stress and oxygen levels, as well as genes that stabilize or synthesize components of the

extracellular matrix. These results identify several potential mechanisms through which

celastrol may inhibit inflammation in RA.

1. Introduction

Rheumatoid arthritis (RA) is an immune-related disease that generally gives rise to continuous

joint destruction, decreased life expectancy and working ability, disability, and even elevated

mortality [1–3]. fibroblast-like synoviocytes (FLS) are the one of the main cell types involved

in RA pathology [4, 5]. During RA progression, FLS grow without contact inhibition following

morphology changing, express high levels of biomarkers such as c-fos, Jun-B, egr-1 and matrix

metalloprotease (MMP)-3 [6], and secretes several inflammatory cytokines, such as IL-6, IL-8,

IL-1, TNF-α and MCP-1 [7, 8]. How FLS are activated to drive RA is unclear, and epigenetics

may play a role[9, 10].

Celastrol, extracted from Tripterygium wilfordii Hook f [11–14], has been widely used in

China to treat RA and inflammatory diseases [15–17]. Although the clinical efficacy of celastrol

has been extensively reported, its mechanism of action remains unclear. Studies in vitro have

shown that high doses of celastrol can induce apoptosis and inhibit growth and invasion of

FLS in RA [4, 7, 18]. However, comprehensive screens to identify FLS proteins and processes

affected by celastrol need deeper study.

High-throughput profiling of transcripts and proteins can identify genes whose expression

is altered by a drug of interest [19–21]. Transcriptomic profiling on its own does not take into
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account post-transcriptional modifications, efficiency of translation or transcript turnover, all

of which can affect activity of the encoded proteins[22, 23]. Therefore combining transcrip-

tomic and proteomic profiling may be more effective for identifying drug-induced changes

[24–26].

In the present study, we took advantage of technological advances in measuring mRNA lev-

els by RNA sequencing (RNA-Seq) and protein levels by label-free relatively quantitative pro-

teomics [27–30] in order to explore the effects of celastrol on FLS from RA patients.

2. Materials and methods

2.1 Cell culture

Human FLS (as control), RA patient FLS and synoviocyte growth medium were purchased

from Cell Applications (Santiago, California, USA) [31]. FLS were cultured at 37 ˚C in 5%

CO2 in synoviocyte growth medium containing 100 μg/mL streptomycin and 100 U/mL peni-

cillin. FLS in the exponential phase of growth were seeded into 10-cm dishes (1 × 106 cells/

dish).

After FLS had spread across the dishes, they were fixed for 15 min in 2% paraformaldehyde,

blocked for 1 h with rabbit serum (Sigma), then incubated for 1 h with antibody against the

FLS marker vimentin (1:50; Abcam, Cambridge, MA, USA). The dishes were washed three

times with 0.01% saponin in phosphate-buffered saline (PBS) for 15 min each, then incubated

for 1 h with secondary antibody conjugated with fluorescein (Jackson Immuno Research,

West Grove, PA, USA). Dishes were washed in PBS, the nuclear stain DAPI was added, the

coverslips were washed three times with 0.01% saponin in PBS for 15 min each, and then they

were washed twice in PBS for 10 min each. The dishes were mounted on slides using anti-fade

mounting medium and analyzed under an IX2-ILL100 fluorescence microscope (Olympus,

Tokyo, Japan).

2.2 RNA extraction

Celastrol was dissolved in DMSO to make a 100 mM stock solution, which was diluted to the

desired concentrations, such that the final proportion of DMSO in culture wells was 1%. As

controls, Human FLS were treated with DMSO such that the final proportion in wells was 1%.

FLS were seeded in medium, then incubated for 24 h with 5 μM celastrol (lot numbers:

C804877, Shunbo Biotech, Shanghai, China) [4]. Total RNA was isolated from FLS using TRI-

zol1 (Invitrogen) according to the manufacturer’s instructions. RNA samples were digested

with an RNase-free DNase set (Qiagen) to remove genomic DNA and further purified using

the RNeasy kit (Qiagen). Integrity of RNA samples was assessed using RNA 6000 NanoChips

and an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, USA). RNA samples with integrity > 7

were used further for RNA-Seq and real-time PCR (see below).

2.3 Transcriptomics

RNA-Seq raw reads were quality-controlled and cleaned using SOAPnuke software (http://

www.seq500.com/uploadfile/SOAPnuke.zip) to remove low-quality reads, contaminated

reads, and reads with adapters. The resulting clean reads were aligned to the human genome

database (http://genome.ucsc.edu/) and matched with human genes using HISAT2 [32]. After

counting of the reads mapped to each gene, the “fragments per kilobase per million fragments”

(FPKM) method was used to normalize data in the RSEM algorithm [33] (https://deweylab.

github.io/RSEM/), and low-expression genes (FPKM< 1) were filtered in each sample.

NOIseq [34] was employed to calculate the log 2-fold change (log2FC) and probability value
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for each gene in comparison, and the following criteria were used: log2FC> 1 or < -1 and

probability >0.8. Mapman software was used for PageMan analysis [35], and we considered

enrichment terms to be significant if they were associated with p< 0.01.

2.4 Proteomics

2.4.1 Label-free sample preparation. Cell pellets were suspended on ice in 200 μL lysis

buffer (4% SDS, 100 mM DTT, 150 mM Tris-HCl pH 8.0). Cells were disrupted with agitation

using a homogenizer (Fastprep-241, MP Biomedical, California, USA) and boiled for 5 min.

The samples were further ultra-sonicated and boiled for another 5 min. Undissolved cellular

debris were removed by centrifugation at 14000 rpm for 15 min. The supernatant was collected

and quantified with a BCA Protein Assay Kit (Bio-Rad, USA).

Protein (250 μg per sample) was digested according to the FASP procedure [36]. Briefly, the

detergent, DTT and other low-molecular-weight components were removed using 200 μl UA

buffer (8 M urea, 150 mM Tris-HCl, pH 8.0) and repeated ultrafiltration (Microcon 30 kDa,

Lianke, Shanghai, China). Then 100 μL 0.05 M iodoacetamide in UA buffer was added to

block reduced cysteine residues, and the samples were incubated for 20 min in the dark. The

filter was washed three times with 100 μl UA buffer, then twice with 100 μl 25 mM NH4HCO3.

Finally, the protein suspension was digested with 3 μg trypsin (Promega) in 40 μl 25 mM

NH4HCO3 overnight at 37 ˚C, and the resulting peptides were collected as a filtrate. The pep-

tide content was estimated by UV spectrometry at 280 nm assuming an extinction coefficient

of 1.1 for a 0.1% (g/L) solution, which is based on the frequencies of tryptophan and tyrosine

in vertebrate proteins [28].

2.4.2 Liquid chromatography-tandem mass spectrometry. Each peptide sample was

desalted on Empore SPE C18 cartridges (standard density, bed inner diameter 7 mm, volume

3 ml; Sigma), then concentrated by vacuum centrifugation and reconstituted in 40 μl 0.1%

(v/v) trifluoroacetic acid. Peptides (5 μg) were loaded onto a reverse-phase C18 column

(Thermo Scientific Easy Column, length 10 cm, inner diameter 75 μm, resin 3 μm) in buffer A

(2% acetonitrile and 0.1% formic acid) and separated during 120 min with a linear gradient of

buffer B (80% acetonitrile and 0.1% formic acid) at a flow rate of 250 nL/min controlled by

IntelliFlow technology on an Easy nanoLC system (Proxeon Biosystems, now Thermo Fisher

Scientific). The liquid chromatography system was connected to a Q Exactive electrospray ion-

ization-tandem mass spectrometer (Waters Corporatiaon, Milford, USA). A top10 method

[37, 38] was used to dynamically select the most abundant precursor ions for high energy colli-

sional dissociation (HCD) fragmentation from the survey scan (m/z 300–1800). Determination

of the target value was based on predictive automatic gain control, and the duration of

dynamic exclusion was 25 s. Survey scans were acquired at a resolution of 70,000 at m/z 200,

and the resolution for HCD spectra was set to 17,500 at m/z 200. Normalized collision energy

was 30 eV, which specifies the minimum percentage of the target value likely to be reached at

maximum fill time, was defined as 0.1%. The instrument was run with peptide recognition

mode enabled. Mass spectrometry experiments were performed in triplicate for each sample.

2.4.3 Sequence database searching and analysis. Mass spectrometry data were analyzed

using freely available MaxQuant software 1.3.0.5 (www.maxquant.live) against the database

uniprot_ human_152544_20160420.fasta (152,544 total entries, downloaded December 20,

2019). An initial search was set at a precursor mass window of 6 ppm. The search employed an

enzymatic cleavage rule of Trypsin/P and allowed a maximum of two missed cleavage sites and

a mass tolerance of 20 ppm for fragment ions. During database searching, cysteine carbamido-

methylation was defined as a fixed modification, while protein N-terminal acetylation and

methionine oxidation were defined as variable modifications. Label-free quantification was
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carried out in MaxQuant as described [39]. The peptide spectrum match was filtered by poste-

rior error probability (PEP), which was allowed to be as high as 0.1. Peptides were included in

further analysis if they showed an andromeda score > 0 and false discovery rate< 0.01. Co-

fragmentation generally reduces the number of peptides identified in database searches and

therefore poses problems for quantification methods based on reporter fragments, since it

removes peptides that contribute to the measured ion ratios. Co-fragmentation was performed

according to the default algorithm in Max-Quant software [40]. Protein abundance was calcu-

lated on the basis of the normalized spectral protein (LFQ) intensity. Our proteomics results

have been deposited in the ProteomeXchange Consortium in the PRIDE repository [41] under

the dataset identifier PXD006350.

2.5 Docking studies of celastrol binding to predicted target proteins

Docking studies were performed with selected target proteins using YASARA [42] based on

the crystal structures of the targets deposited in the RCSB Protein Data Bank (http://www.pdb.

org/pdb/home/home.do). Docking simulations were performed using a CHARMM force field

after adding hydrogen atoms to the proteins. The binding site was defined as residues whose

side chains fell at least partly within a sphere of diameter 12 Å centered at the original ligand.

Default values were used for other parameters, and genetic algorithm runs were performed for

each ligand.

The technical route in this study is summarized in Fig 1.

Fig 1. The technical route in this study. (A) Add celastrol to FLS, (B) Transcriptomic and proteomic analysis, (C)

Analyze the differentially expressed genes and proteins, (D) Verification of celastrol on potential targets.

https://doi.org/10.1371/journal.pone.0233814.g001
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3. Results

3.1 Identification of FLS and celastrol treatment

After confirming that the FLS expressed the marker vimentin (Fig 2A), we treated them with

5 μM celastrol for 24 h. This treatment reduced cell viability, reflected in a greater number of

dead cells than in the control cultures (Fig 2B).

3.2 Gene and protein expression in FLS in response to celastrol

Our analysis detected 26,565 expressed genes and 3,372 expressed proteins (in the form of

18,843 unique peptides) (Fig 3A and 3B). The Mascot search algorithm was used to identify

proteins.

Celastrol down-regulated 3,324 genes and up-regulated 4,479 genes, corresponding to a

total of 7,803 differentially expressed genes (DEGs) (Fig 3C). The drug up-regulated 106 pro-

teins and down-regulated 188, corresponding to a total of 294 differentially expressed proteins

(DEPs) (Fig 3D).

Fig 2. FLS culture and celastrol treatment. (A) Identification of DAPI-stained FLS cultures based on immunostaining

with (1) no primary antibody, (2) anti-vimentin antibody, or (3) anti-DAPI antibody, (4) merged figures of (2) and (3).

Magnification, 200×. (B) Representative light micrographs of three FLS cultures treated for 24 h with DMSO vehicle

(Ctrl, upper row) or 5 μM celastrol (Cel, lower row). Magnification, 10×.

https://doi.org/10.1371/journal.pone.0233814.g002
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3.3 Gene ontology of DEGs and DEPs

The distribution of DEPs and DEGs was analyzed across the three gene ontology categories of

biological processes, cellular components, and molecular functions (http://geneontology.org).

Among biological processes, DEGs and DEPs were enriched in processes related to response

to oxidative stress, response to oxygen levels, extracellular structure and regulation of small-

molecule metabolic processes. Specially, the two genes, HIF-1α and HIF-3α, associated oxida-

tive stress and oxygen levels are differentially expressed. Among cellular components, DEGs

and DEPs were enriched in collagen-containing extracellular matrix, focal adhesion, cell-sub-

strate adherens junction and cell-substrate junction (Fig 4A). Among molecular functions,

DEGs and DEPs were enriched in binding of cell adhesion molecules, ubiquitin-like protein

transferase activity and ubiquitin-like protein transferase activity followed by structural com-

ponents of extracellular matrix.

3.4 Correlation between proteomic and transcriptomic analyses

We observed a weak correlation between levels of transcripts and levels of their cognate pro-

teins when we examined the entire set of genes and proteins (r = 0.2067), as well as the subset

of DEGs and DEPs (r = 0.2507). Altogether, we identified 36 genes up-regulated and 15 genes

Fig 3. Transcriptomic and proteomic differences between FLS treated or not with celastrol. (A) Venn diagram of genes expressed in

the two conditions. (B) Venn diagram of proteins expressed in the two conditions. (C) Numbers of genes differentially expressed between

the two conditions. (D) Numbers of proteins differentially expressed between the two conditions.

https://doi.org/10.1371/journal.pone.0233814.g003
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down-regulated at both the RNA and protein levels in response to celastrol. We identified

another 27 genes that were transcriptionally down-regulated but translationally up-regulated,

and two genes that were transcriptionally up-regulated but translationally down-regulated

(Fig 5).

3.5 Docking of celastrol in target proteins

Our transcriptomic and proteomic analyses suggested that celastrol acts against several pro-

teins involved in the extracellular matrix of FLS. Therefore, we explored the potential binding

of celastrol to several such proteins whose crystal structures are known (Fig 6). In all cases, we

managed to obtain reasonable complexes in which the primary forms of interaction are hydro-

gen bonding and hydrophobic interactions. For instance, celastrol is predicted to interact with

CHI3L1 via hydrogen-bonds with Ser103, Gly143, Ser187, and Arg144 (Fig 6A). The drug is

predicted to interact with ANXA6 via hydrogen-bonds with Lys224 and hydrophobic interac-

tion with Glu643 (Fig 6B).

4. Discussion

Reflecting the fact that RA is an inflammatory disease, markers of inflammation such as C-

reactive protein (CRP), IL-6, and TNF-α are highly expressed in synovial fluid and serum of

Fig 4. Distribution of differentially expressed genes and proteins across the three gene ontology categories of

biological processes, cellular components, and molecular functions. (A-C) ClusterProfiler analysis of the

transcriptome. (D-F) ClusterProfiler analysis of the proteome. The color scales indicate the different thresholds of

adjusted p-values, and the sizes of the dots represent the numbers of genes assigned to the given term. The panels in

this figure were generated on the website http://metascape.org/gp/index.html.

https://doi.org/10.1371/journal.pone.0233814.g004
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arthritic patients, and the levels of these markers in blood correlate with disease severity. In

RA, the primary site of inflammation is the synovial tissue, from which cytokines may be

released into the systemic circulation. These cytokines are involved in almost all aspects of

articular inflammation and destruction in RA [51, 52].

Mechanisms underlying celastrol effects on anti-inflammation have been revealed in many

previous studies. Li et al. [53] found that celastrol suppressed hypoxia-induced FLS migration

and inhibited hypoxia-induced CXCR4 expression at both the mRNA and the protein levels in

RA-FLSs. Xu et al. [4] results showed that celastrol inhibits RA-FLS proliferation by inducing

DNA damage, cell cycle arrest, and apoptosis. Other researcher [18] found that the expression

of several chemokine genes was significantly changed after celastrol treatment. Our transcrip-

tomic and proteomic study of the effects of celastrol on FLS suggests that the drug exerts anti-

inflammatory effects by affecting response to oxidative stress, response to oxygen levels, extra-

cellular organization and regulation of small-molecule metabolism, which are consistent with

previous findings [53]. Our results also showed that celastrol may interfere directly with the

extracellular matrix and inhibit FLS proliferation and survival.

We found only modest concordance between the set of transcripts and the set of proteins

expressed in FLS. This is consistent with transcriptomic and proteomic studies in lung

Fig 5. Correlation between transcriptomic and proteomic profiles in the presence and absence of celastrol. (A)

Correlation analysis across all genes and proteins in the two conditions. (B) Correlation analysis of only differentially

expressed genes (DEGs) and differentially expressed proteins (DEPs). (C) Hierarchical clustering of DEGs and DEPs.

Red color denotes up-regulation; blue, down-regulation.

https://doi.org/10.1371/journal.pone.0233814.g005
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Fig 6. Docking studies of celastrol with potential target proteins involved in the extracellular matrix of FLS. Ball-and-stick diagrams are shown

for the region within 12 Å of 8 proteins. Key protein residues are labeled. Hydrogen bonds are shown as dashed lines, together with interaction

distances in Å. (A) Chitinase 3 like 1 (PDB ID: 1HJW) [43]. (B) Cartilage oligomeric matrix protein (3FBY) [44]. (C) Matrix metalloprotease 1

(1SU3) [45]. (D) Laminin subunit gamma 1 (5XAU) [46]. (E) Transforming growth factor beta-induced (5NV6) [47]. (F) Annexin A6 (1M9I) [48].

(G) Thrombospondin 2 (2RHP) [49]. (H) Thrombospondin 1 (2OUH) [50].

https://doi.org/10.1371/journal.pone.0233814.g006
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adenocarcinomas and embryonic stem cells [54, 55]. This likely reflects, at least in part, the

translational regulation and post-translational processes that affect the proteome [56].

In RA, hypoxia is a prominent feature of the micro-environment, which arises through

increased oxygen consumption by inflamed resident cells and infiltrating immune cells, and

through disruption of the blood supply due to vascular dysfunction. Hypoxia triggers several

signaling pathways that drive RA pathology. The primary signaling pathway activated by hyp-

oxia involves hypoxia-inducible factors (HIFs), which are highly expressed in the synovium of

RA. HIFs induce inflammation, angiogenesis, cell migration, and cartilage destruction, and

they inhibit the apoptosis of synovial cells and inflammatory cells. HIF expression, like that of

inflammatory cytokines, can be triggered through pathways dependent and independent of

oxygen, aggravating the disease [57–60]. Indeed, the number of HIF-1α-positive cells is

directly related to the extent of infiltration by inflammatory endothelial cells and to the severity

of synovitis [61, 62]. Excessive production of reactive oxygen species (ROS) causes the break-

down of proteoglycans, hyaluronic acid, chondroitin sulfate, and collagen [63], which destroys

the joints. Our results showed that celastrol may reduce HIF expression, kill FLS and alleviate

inflammation in RA.

Our results further suggest that celastrol may target several proteins in the extracellular

matrix. This suggestion is based on transcriptomic and proteomic profiling, as well as docking

simulations. Drugs that target the extracellular matrix may have advantages over drugs that

target proteins in the synovium because most drugs are rapidly removed from the synovium

[64, 65], whereas matrix proteins experience slow turnover, prolonging the therapeutic

window.

5. Conclusions

Our combination approach has generated several testable hypotheses about proteins and cellu-

lar pathways through which celastrol may reduce inflammation in RA. This work provides a

wide-reaching foundation for further genetic and biochemical studies to improve our under-

standing of RA and its treatment.
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