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Abstract

The dispensability of individual genes for viability has interested generations of geneticists. For 

some genes it is essential to maintain two functional chromosomal copies, while others may 

tolerate the loss of one or both copies. Exome sequence data from 60,706 individuals provide 

sufficient observations of rare protein truncating variants (PTVs) to make genome-wide estimates 

of selection against heterozygous loss of gene function. The cumulative frequency of rare 

deleterious PTVs is primarily determined by the balance between incoming mutations and 

purifying selection rather than genetic drift. This enables the estimation of the genome-wide 
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distribution of selection coefficients for heterozygous PTVs and corresponding Bayesian estimates 

for individual genes. The strength of selection can discriminate the severity, age of onset, and 

mode of inheritance in Mendelian exome sequencing cases. We find that genes under the strongest 

selection are enriched in embryonic lethal mouse knockouts, putatively cell-essential genes, 

Mendelian disease genes, and regulators of transcription. Screening by essentiality, we find a large 

set of genes under strong selection that likely have critical function but have not yet been 

extensively annotated in published literature.

The evolutionary cost of gene loss is a central question in genetics and has been investigated 

in model organisms and human cell lines1–3. In humans, the question of dispensability and 

haploinsufficiency of individual genes is intimately related to their causal role in genetic 

disease. However, estimates of the selection and dominance coefficients in humans have 

proved elusive as inference techniques used in other sexual organisms generally require 

cross-breeding over several generations.

The analysis of patterns of natural genetic variation in humans provides an alternative 

approach to estimating selection intensity and dispensability of individual genes. Despite 

substantial methodological progress in the ascertainment and analysis of population 

sequence data4–8, estimation of parameters of natural selection in humans has been 

complicated by genetic drift, complexities of human demographic history4,5,7,9–12 and the 

role of non-additive genetic variation13–15. Additionally, naturally occurring PTVs are 

infrequent in the population, so datasets of thousands of individuals are underpowered for 

the estimation of gene dispensability in humans.

The Exome Aggregation Consortium (ExAC) dataset now provides a sufficiently powered 

sample to assess the selection that constrains the number of gene-specific PTVs in the 

general population16. We restrict our analysis to PTVs predicted to be consequential17, 

which allows the assumption that all PTVs within a gene likely incur the same selective 

disadvantage. We can then treat each gene as a bi-allelic locus with a functional state and a 

loss-of-function state. In each gene, the cumulative frequency of rare deleterious PTVs (the 

sum of PTV allele frequencies throughout the gene) is then primarily determined by the 

balance between incoming mutations and selection rather than reassortment of alleles by 

stochastic drift. This makes our estimates robust to drift, population structure and historical 

changes in population size, which we evaluate analytically and with simulations (Methods 
and Supplementary Figure 1).

Using population frequency data from 60,706 individuals without severe Mendelian 

disorders, we estimate both the overall distribution of gene-based fitness effects and 

individual gene fitness cost in heterozygotes. Given gene-specific estimates of the de novo 
mutation rate18,19, the observed number of PTV alleles throughout each gene, and number of 

chromosomes sampled, we estimate the genome-wide distribution of selective effects for 

heterozygous PTVs, shet. We parameterize the distribution of selective effects using an 

inverse Gaussian, which is fit using maximum likelihood (Figure 1). We then estimate 

individual gene selection coefficients using the posterior probability for shet given gene-

specific values of the observed number of PTVs, number of chromosomes sampled and 

estimated mutation rate (Supplementary Table 1).
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Although the distribution is broad, suggesting the effect of losing one copy of a gene is 

variable, the mode of the distribution corresponds to a fitness loss around 0.5% (shet = 

0.005). Despite the large sample size, resolution to distinguish between very high selective 

effects is limited. There are 2,984 genes with shet > 0.1, a result concordant with previous 

estimates of loss of function intolerance derived from population data16. Even though some 

genes are heavily depleted of PTVs in ExAC as compared with mutational expectation, these 

values suggest that heterozygote PTVs in many genes are not necessarily responsible for 

observable, severe clinical consequences.

Unsurprisingly however, Mendelian diseases genes have higher shet values. Among them, 

genes annotated exclusively as autosomal dominant (AD, N=867) have significantly higher 

shet values than those annotated as autosomal recessive (AR, N=1,482)20 [Mann-Whitney p-

value 3.14×10−64] (Figure 2[a,b]). This suggests it may be possible to prioritize candidate 

disease genes identified in clinical exome sequencing analysis using the observed mode of 

inheritance and shet value.

In 504 clinical exome cases that resulted in Mendelian diagnosis21, we find a similar 

enrichment of cases by MOI and selection value (Figure 2[c]). We find that 90.4% of novel, 

dominant variants are associated with heterozygous fitness loss greater than 0.04 (Figure 

2[d]). Among disease variants, a cutoff of shet > 0.04 provides a 96% positive predictive 

value for discriminating between AD and AR.

To test the generalizable utility of prioritizing candidate genes in Mendelian sequencing 

studies using shet, we compared the overall prevalence of genes with shet > 0.04 to the 

corresponding fraction in an independently ascertained dataset of new dominant Mendelian 

diagnoses (Figure 2[e])22. This analysis suggests that restricting to genes with shet > 0.04 

would provide a three-fold reduction of candidate variants, given the overall distribution of 

shet values. Thus, initial effort in clinical cases can be focused on just a few genes for 

functional validation, familial segregation studies, and patient matching. We summarize the 

classification accuracy (AUC 0.9312) and generate mode of inheritance probabilities for 

each gene using the full set of clinical sequencing cases (Supplementary Figure 2 and 

Supplementary Table 2).

Beyond mode of inheritance, we find that shet helps predict phenotypic severity, age of onset, 

penetrance, and the fraction of de novo variants in a set of high-confidence haploinsufficient 

disease genes (Figure 3). In broader sets of known disease genes, shet estimates significantly 

correlate with the number of references in OMIM MorbidMap and the number of HGMD 

disease “DM” variants (Supplementary Figure 3).

Gene-specific fitness loss values allow us to plot the distribution of selective effects for 

different disorders. This provides information about the breadth and severity of selection 

associated with various disorder groups using both well-established genes (Figure 4[a]) and 

findings from Mendelian exome cases (Figure 4[b]). Overall, genes involved in neurologic 

phenotypes and congenital heart disease appear to be under more intense selection compared 

with other disorder groups, or tolerated knockouts from a consanguineous cohort (Figure 

4[c,d])23. Interestingly, genes recessive for these disorders appear to have only partially 
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recessive effects on fitness, so selection on heterozygotes is not negligible in these genes 

(Figure 4).

In germline cancer predisposition, genes under stronger selection are enriched in individuals 

with cancer over those in ExAC (Supplementary Figure 4). This suggests that genes with 

low shet values should not be prioritized in prospective genetic screening for cancer 

predisposition. Consistent with previous studies18, we find de novo mutations in patients 

with autism spectrum disorder are significantly enriched in genes under stronger selection 

than those identified in controls (Supplementary Figure 5 and Supplementary Table 3).

Next, we analyze shet in the context of developmental and functional assays. In a large set of 

neutrally-ascertained mouse knockouts (N=2,179)24, mice that are null mutant for 

orthologous genes with higher shet estimates are enriched for embryonic lethality or sub-

viability, while those with the lowest shet estimates are depleted for embryonic lethality 

[Mann-Whitney p=2.95×10−28] (Figure 5[a,b]).

It is well known that mutations that are haploinsufficient in humans can often be well-

tolerated when heterozygous in mice25. A classic example is SHH; heterozygous null 

mutations in this important developmental signaling gene result in holoprosencephaly26. 

Haploinsufficiency for other genes in this signaling pathway also results in developmental 

defects; e.g. GLI3 (Pallister-Hall syndrome and Greig cephalopolysyndactyly 

syndrome)27–29 and GLI2 (Holoprosencephaly 9)30. Interestingly, haploinsufficiency for 

these genes is tolerated in mouse models; mice heterozygous for null variation in the SHH 
signaling pathway are phenotypically normal, while homozygous mutant mice have defects 

that recapitulate features of the human syndrome31–33. This extends to many other human 

developmental disorders, enabling the experimental characterization of the molecular 

consequences of these mutations. Thus, it is notable that homozygous null mice in 

orthologous genes with higher shet values are enriched for lethality.

High-throughput genetic analysis of cell-essentiality provides an orthogonal dataset for 

comparison with shet. In genes putatively essential for human cell proliferation using 

CRISPR-based inactivation (Figure 5[c]) and gene trap inactivation assays3 (Figure 5[d]), 

we find that essential genes are heavily enriched with high shet values [p-values 5.13×10−16, 

4.90×10−18, respectively].

Key developmental pathways are dramatically enriched in genes under strong selection 

(Figure 6[a]). We also find a significant positive correlation between the number of protein-

protein interactions for each gene and its shet value (Figure 6[b,c]), identified from high-

throughput mass spectrometry data. In the context of molecular and cellular function, a set 

of genes with very high selective effects (shet > 0.15, 2,072 genes) is enriched in biological 

process categories “transcription regulation” (Bonferroni p=1.8×10−39), “transcription” 

(7.5×10−36), and “negative regulators of biosynthetic processes” (Supplementary 

Material)34. Nucleus was the most enriched cellular compartment for these genes 

(4.8×10−76). The enrichment of transcription factors in these genes is consistent with 

literature that describes dosage dependence for enzymatic proteins and haploinsufficiency 

for transcriptional regulators35.
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Selection estimates from human PTVs provide a measure of gene dispensability unbiased 

with respect to existing knowledge. Thus, these estimates may potentially highlight genes 

playing a key role in development or in maintaining core cellular functions. There are many 

genes with high fitness costs not previously described in human genetics studies. Given the 

marked enrichment of genes with high shet values associated with Mendelian disorders, cell 

essentiality, embryonic lethality and development, it is plausible that many genes with high 

shet values that have not been previously associated with human disease may be so 

detrimental that they are required for embryonic development.

We inspect genes that lack disease annotations and publications but that have high shet 

values to determine whether they share functional and genetic features reminiscent of known 

genes with central roles in cell housekeeping and developmental biology. We measure the 

relative knowledge about each gene in the primary literature from Entrez and PubMed36 

using the number of gene reports connected with each manuscript, and sum the weighted 

contributions across all available manuscripts37 (PubMed score, Methods). While the 

PubMed score is positively correlated with shet values, a substantial number of understudied 

genes fall in the highest shet decile (Supplementary Figure 6).

We selected the 250 most cited and least cited genes within the top shet decile, and compared 

their frequency of protein-protein interactions, viability of orthologous mouse knockouts and 

cell essentiality assays. Genes with the fewest publications (no more than one individual 

citation) have nearly the same number of embryonic lethal mouse knockouts as genes with 

the most publications. Other assays are only slightly depleted in genes with the fewest 

publications (Supplementary Figure 7). These findings suggest there may be additional 

essential developmental pathways yet to be uncovered in genes under strong selection that 

lack functional or disease annotations, and provides a promising gene set for further 

exploration. We have created a prioritized list of genes using developed from functional 

evidence to indicate the most promising candidates for future functional screening 

(Supplementary Table 4).

To place our inferences in the broader evolutionary context, we use comparable estimates 

from model organisms including flies and yeast, based on knockout competition with wild 

type or explicit crosses. In yeast, the analysis of a library of PTV knockouts provides a mean 

estimate of shet ≈ 0.013, which is close to our inferred results (shet ≈ 0.059) in humans38, 

given that the functional experiments excluded genes with very high s, and we have 

excluded genes with high cumulative allele frequency. Estimates in flies derived from 

homozygote lethal mutations which reduce viability in heterozygotes (rather than only 

PTVs) suggest values of shet on the order of 1–3%, which is also in broad agreement with 

our estimates in humans1,39. While values of s in this range have a small impact in each 

generation, they may have dramatic evolutionary consequences40.

In conclusion, we use the genome-wide distribution of PTVs to estimate fitness loss due to 

heterozygous loss of each gene. Unlike recent work on genic intolerance18,41, we explicitly 

estimate the distribution of selection coefficients for PTVs. Our estimates are also distinct 

from earlier work on the estimation of fitness effects of allelic variants in humans42 as the 

large sample size coupled with the assumption of strong selection makes our approach 
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robust with respect to complexities of demographic history and dominance, and allows gene-

based inferences. Conversely, our assumptions are justified for many but not all genes, as the 

method has limited resolution for genes under the strongest and weakest selection. These 

results may be useful in Mendelian disease gene discovery efforts and provide clinical utility 

in the inference of severity and mode of inheritance underlying Mendelian disease.

Data Availability

The authors declare that the data supporting the findings of this study are available within 

the paper and its supplementary information files. All original population frequency data are 

available through the ExAC Aggregation Consortium [http://exac.broadinstitute.org/]. 

Updated selection estimates will be made available at: [http://genetics.bwh.harvard.edu/

genescores/].

Online Methods

Model of deterministic mutation-selection balance

For most genes, protein-truncating alleles are both individually and collectively rare. For 

genes where they are collectively rare, estimation of the selective effect against heterozygous 

PTVs (shet ) can be greatly simplified. We model each gene as a single bi-allelic locus with 

cumulative frequency X= Σjxj, where the sum is over PTVs in gene i for PTV sites j. This is 

motivated by the simplifying assumption of identical selection coefficients for all PTVs 

within a gene, and the observation that the frequency of the vast majority of PTVs is 

extremely low such that the occurrence of multiple variable sites within a gene on a single 

haplotype is also extremely low (2Nxijxik < 1 for sample size N). Moreover, multiple PTVs 

in a gene in an individual would be functionally equivalent to a single PTV resulting in a 

loss of function state.

Then for each gene, the cumulative allele frequency X is influenced by incoming mutation, 

selection and the random reassortment of alleles (genetic drift). When selection is strong, s 
≫ 2.5×10−5 (i.e. when 4Nes ≫ 1, with effective population size Ne 104), drift is much 

smaller than the contribution of selection. Furthermore, the strength of genetic drift is 

weakest for genes at low frequencies: for a variant with cumulative frequency of X = 0.001 

the expected frequency change due to drift is only 〈ΔX2〉~X/4Ne = 2.5×10−8 per generation. 

Notably, at the locus level assuming X ≪ 1 the drift contribution is also much smaller than 

the mutational influx. Hence under strong selection and for small allele frequencies the 

expected cumulative frequency of PTVs is determined by the equilibrium between the influx 

of de novo mutations (estimated to increase the cumulative frequency by an average 

1.4×10−6 per locus per generation by mutational model) and the outflux due to natural 

selection.

In the presence of selection on both heterozygotes and homozygotes and ignoring back 

mutations, the dynamics of X are captured by the following equation:

(1)
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Here U represents the PTV mutation rate at the gene locus per individual per generation, and 

shet = > 0 and shom = > represent the strength of negative selection against PTV 

heterozygotes and homozygotes, respectively. We note that compound heterozygotes (with a 

single PTV on each chromosome) are treated as homozygotes under the bi-allelic 

assumption. Provided X ≪ 1, as is the case for PTVs under strong selection (2Nes ≫ 1 ), this 

equation simplifies dramatically:

(2)

Because X ≪ 1, selection against heterozygotes (the linear term) generally also dominates 

over selection against homozygotes (the quadratic term), provided shet/shom ≫ X. This is 

only violated in cases of extreme recessivity (where the dominance coefficient h ≪ 0.001 ), 

but even in that case the expected cumulative frequency of PTVs in essential genes is 

unlikely to exceed 0.001 (the characteristic X in the completely recessive case is 

 when s~1, see simulations in Supplementary Figure 1). The strong selection 

regime thus corresponds to mutation-selection balance in the heterozygote state of a PTV 

mutation. In our model, we do not assume that selection acts exclusively on heterozygotes, 

but aim at estimating only fitness loss due to the lack of one functional copy of a gene. Even 

in the case of strong selection against homozygotes, the population frequency is primarily 

controlled by efficient selection against heterozygotes.

Notably, there is no dependence on the demography or population size in this regime, as the 

contribution from drift vanishes because selection drives alleles out of the population 

efficiently and on very short time scales. Classic papers by Li43,44 and Maruyama45,46 

showed that relevant time scales are short, even in the case of exponential expansion, 

because individual deleterious alleles are predominantly recent, with an allelic age on the 

order of 1/s. Current estimates of recent population histories for most of populations 

included in the ExAC dataset suggest that 4Ns safely exceeds 1. Even if individual alleles 

are subject to stochastic drift, this effect is mitigated by the aggregation of variants on the 

gene level. One possible concern is the inclusion of individuals with Finnish ancestry, as this 

population underwent an intense, relatively recent bottleneck. We address this population 

explicitly using forward simulations and by removing them from our analysis to show no 

significant deviation from our initial estimates in their absence (below).

From Eq. 2 follows that for a population sample of size N chromosomes, sample allele 

counts n = NX̂ = NΣj x̂j are expected to be Poisson distributed around the expectation given 

by:

(3)

Generally, genes under the strongest and weakest selection are expected to have greater 

estimation uncertainty, as the resolution to estimate shet deteriorates when variants are so 

common that they may not only be controlled by heterozygote selection, but also by drift or 
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complex demography. However, the overwhelming majority of genes conform to our 

assumptions of cumulative PTV allele frequency not exceeding 0.001. Despite issues such as 

the admixture of populations, consanguineous samples in ExAC23, and the Wahlund effect, 

very few genes (1,201 of 17,199 covered genes) have higher estimated cumulative allele 

frequencies X̂, which we restrict from the estimation procedure. On the other end of the 

spectrum, genes under strong selection may lack PTVs by chance alone in ExAC, which 

limits the ability to distinguish between large selective effects.

Population genetics simulations of model assumptions

To validate the assumption that estimates of selection can be made under mutation-selection 

balance independent of demography or population size for variants under sufficiently strong 

selection, we used SLiM 2.0 to conduct forward population genetics simulations47. We ran 

10,000 replicates each of simulations with selection coefficients of −5×10−1, −5×10−2, 

−5×10−3, −5×10−4, and −5×10−5 through a realistic demography derived from previously 

published histories for African, Non-Finnish European, and Finnish populations48,49 

(Supplementary Figure 1). We compare the theoretical expectation of cumulative allele 

frequency (U/shet [Equation 3]) with the simulated cumulative allele frequency. We do this 

in three populations (African, Non-Finnish European and Finnish), plus a “Combined” 

population which includes pooled site frequency spectra from all three populations in 

proportions represented in the ExAC dataset. The simulations support our assumption of 

mutation-selection balance in the strong selection regime (|shet| >= 1×10−3), which appears 

to be appropriate for PTVs. This is true for all three populations examined and for the 

combined population, demonstrating that this assumption is robust to differences in the 

strength of drift due the distinct demographic histories of included human populations.

All simulations had a length of 1 kilobase, mutation rate of 2×10−8 per generation per base 

pair, and recombination rate of 1×10−5 per generation per base pair. The high recombination 

rate was chosen to simulate largely unlinked sites, as we are simulating PTVs which are 

infrequent enough that they are expected not to be in linkage with other PTVs in the same 

gene.

Dataset for shet estimation

In this analysis, we use Exome Aggregation Consortium (ExAC) dataset version 0.3, a set of 

jointly-called exomes from 60,706 individuals ascertained with no known severe, early-onset 

Mendelian disorders. The mean coverage depth was calculated for each gene (canonical 

transcript from Ensembl v75, GENCODE v19) in the ExAC dataset (mean 57.75; s.d. 

20.96). Genes with average coverage depth of at least 30x were used in further analysis 

(N=17,199). Single nucleotide substitution variants annotated as PASS quality with 

predicted functional effects in the canonical transcript of “stop_gained”, “splice_donor”, or 

“splice_acceptor” (as annotated by Variant Effect Predictor) were included in the analysis. 

Variants such as indels, in-frame mutations, and frameshift variants were excluded from this 

analysis, as many of these variants may have annotation issues or may not be functionally 

impactful. Along the same lines, we are mindful that not all PTVs will result in complete 

loss of gene function, due to alternative transcripts or nonsense mediated decay. To address 
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this, variants were filtered using LOFTEE50 and restricted to those predicted with high 

confidence to have consequences in the canonical transcript.

For each of the 17,199 genes we have observable values for (n, U, N), where n denotes the 

total number of observed PTV alleles in the population sample of N chromosomes covered 

in the gene, and U the PTV mutation rate across the canonical gene transcript from a 

mutational model18,19. Values of U for each gene from Samocha et al. were used along with 

the number of well-covered chromosomes N in each gene to generate the null mutational 

expectation of neutral evolution, NU. Incorrectly specified values from this mutational 

model could alter estimates of selection for individual genes, as higher estimates of selection 

are made in genes with greater depletions from the null expectation model. Our inference of 

selection coefficients relies on the assumption that the cumulative population frequency of 

PTV mutations, X, is small due to strong negative selection, so genes with X̂ = n/N > 0.001 

are omitted from the analysis, leaving 15,998 genes.

Estimation of P(shet)

A genome-wide ensemble of observed (n) and expected (NU ≡ ν ) genic PTV counts 

enables the inference of the distribution of heterozygous loss-of-function fitness effects, 

P(shet), which underlies the evolutionary dynamics of this class of mutations. We estimate 

the parameters (α,β) of this distribution by fitting the observed distribution of PTV counts 

across genes:

(4)

For a given gene under negative selection PTV mutations are rare events, such that we 

expect a Poisson distribution for the likelihood of the observed number of PTVs P(n|shet; ν) 

= Poiss(n;λ), where λ = ν/shet (Eq. 3). We parameterize by using the functional form of an 

inverse Gaussian distribution, i.e. P(shet; α,β) = IG(shet; α,β), so Eq. 4 becomes:

(5)

where Kn(z) is the modified Bessel function of the second kind. To estimate parameters of 

the distribution of selection coefficients, P(shet;α,β), we fit Eq. 5 to the observed distribution 

of PTV counts, Q(n) by maximizing the log-likelihood

(6)

on the regime α ∈ [10−2, 2] and β ∈ [10−4, 2], where G is the number of genes. In order to 

account for a slight positive correlation between the mutation rate and selection strength 

(Supplementary Figure 8), we separately perform the fit on U terciles of the data set and 
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combine the results in a mixture distribution with equal weights. The mean mutation rates in 

the three terciles are Ū1 = 4.6 · 10−7, Ū2 = 1.1 · 10−6, and Ū2 = 2.6 · 10−6. We estimate (α̂1, 

β̂1) = (0.057±0.010,0.0052±0.0003), (α̂2, β2̂) = (0.046±0.005,0.0087±0.0004), and (α̂2, β̂2) 

= (0.074±0.005,0.0160±0.0005), with error margins denoting two s.d. from 100 

bootstrapping replicates of the set of ~5,333 genes in each tercile. This error estimate is 

intended to quantify the effect of the sampling noise in the data set on the parameter 

inference while local mutation rate estimates are assumed fixed. The resulting fitted 

distributions of counts are shown in Supplementary Figure 9 together with the corresponding 

Q(n), while Figure 1 shows the inferred P(shet; α̂, β̂) = (IG(shet; α̂1, β̂1) + (IG(shet; α̂2, β̂2) + 

(IG(shet; α3̂, β̂3))/3. The choice for the functional form of P(shet) is motivated by the shape 

of the empirical distribution of the naïve estimator ν/n (given by a simple inversion of Eq. 

3). We also compared the log-likelihood of the fit to Q(n) obtained with this model to that 

obtained from two other two-parameter distributions, shet ~ Gamma and shet ~ InvGamma, 

and chose the model with the highest likelihood, which is shet ~ IG.

To assess the relative change in the distribution of heterozygote selection coefficients when 

different population subsets are included, we first estimated the distribution of shet using 

only non-Finnish Europeans (NFE) in Supplementary Figure 10. We find high concordance 

between the overall distribution generated using all ExAC samples and NFE specific 

estimates. We also separately removed Finnish individuals from the estimation of the 

distribution of selection coefficients, and find very high concordance between estimates 

made using all ExAC samples and ExAC without Finnish individuals (Supplementary Figure 

11). These analyses demonstrate that the model is robust to concerns about recent 

demographic history in Finnish individuals, supporting the validity of the deterministic 

approximation. We cannot completely rule out the possibility that other included populations 

may have issues related to complexities of their recent demographic history.

Inference of shet on individual genes

From the inferred distributions P(shet; α̂t, βt̂) in each tercile t of the mutation rate U, we 

construct a per-gene estimator of shet for genes in the tercile using the posterior probability 

given n, which mitigates the stochasticity of the observed PTV count:

(7)

where the denominator is given by Eq. 5. Supplementary Table 1 provides the mean values 

derived from these posterior probabilities for each gene.

Predicted mode of inheritance in clinical exome cases

We trained a Naïve Bayes classifier to predict the mode of inheritance in a set of solved 

clinical exome sequencing cases from Baylor College of Medicine (N=283 cases)21 and 

UCLA22 (N=176 cases). Using data from UCLA as the training dataset, we are able to 

cross-predict the mode of inheritance in separately ascertained Baylor cases with 

classification accuracy of 88.0%, sensitivity of 86.1%, specificity of 90.2%, and an AUC of 

Cassa et al. Page 10

Nat Genet. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.931. Genes that were related to diagnosis in both clinics (overlapping genes) were 

removed from the larger Baylor set (Supplementary Figure 2).

Using a logistic regression based on the full set of cases from Baylor and UCLA, we 

generated predictions for all 15,998 genes where there is a shet value (Supplementary Table 

4).

Mouse knockout comparative analysis

We reviewed mouse knockout enrichments from two datasets: the full set of mouse 

knockouts from a neutrally-ascertained mouse knockout screen (N=2,179 genes) generated 

by the International Mouse Phenotyping Consortium24. Genes were classified as ‘Viable’, 

‘Sub-Viable’, or ‘Lethal’ based on the results for the assay.

PubMed gene score and enrichment analysis

We developed a score to estimate the relative importance of each gene in the published 

medical and scientific literature. First, we connected literature from Entrez which included 

both PubMed citations and references to Entrez genes. We assigned a weight to each article 

referencing a gene of 1/ai, where ai was the number of genes referred to by article i. For 

example, an article referring to four genes would receive a weight of 1/4. Finally, we 

assigned each gene a score which was the sum of the weighted article scores. These scores 

ranged from 4,672 articles per gene (p53) to 0.0001 articles/gene.

Next, we focused on genes that are estimated to be under very strong selection but that lack 

functional or clinical annotations. In the top decile of shet values, we separated the top 250 

and bottom 250 genes by PubMed score. We then annotated each of these with unbiased 

genome-wide assays, including the number of protein-protein interactions (as determined by 

a genome-wide mass spectrometry assay)51, whether each gene is determined to be cell-

essential in genome-wide CRISPR and gene trap assays3, and whether there is a mouse 

knockout in the neutrally-ascertained orthologous nonviable mouse knockout52. To limit the 

number of genes with incorrect shet estimates in this set of 500 genes, we pre-filtered any 

genes with only a single exon, as they may be enriched for recent pseudogenes, and also 

removed any olfactory, mucin, and zinc finger proteins.

Functional enrichment analysis

We inspected the functional annotations related to approximately the top 10% of selectively 

disadvantageous genes (with shet > 0.15, N=2,072 genes) that were successfully mapped 

using Database for Annotation, Visualization, and Integrated Discovery (DAVID) version 

6.734, DAVID. Separately, two other cutoffs (shet > 0.25, N=897 genes and shet > 0.5, N=32 

genes) were also tested and similar results were identified.

Using DAVID, we identified functional annotation terms and keywords that were enriched 

and clustered. Functional annotation terms were generated using the Functional Annotation 

tool, which includes protein information resource keywords, GeneOntology (GO) terms, 

biological processes and pathways, and protein domains. Using the default settings (Count 2 
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and EASE 0.1), 247 statistically significant (Bonferroni corrected) terms were identified and 

are included in Supplementary Table 5.

Using the DAVID Functional Annotation clustering feature, we identified clusters using the 

same set of 2,072 genes with the default settings. The first annotation cluster includes core, 

essential cellular components including the nuclear lumen, nucleoplasm, organelle lumen 

(Enrichment score 32.63), and the second includes transcription regulation and transcription 

factor activity (Enrichment score 27.94), detailed in Supplementary Table 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Inferred distribution of fitness effects for heterozygous loss of gene function. Estimates of 

parameters (α̂, β̂) from maximum likelihood fit to the observed distribution of PTV counts 

across 15,998 genes in terciles of mutation rate, assuming shet ~ IG(α, β). Shaded areas 

show 95% CI obtained from 100 bootstrapping replicates, intended to quantify the influence 

of sampling noise in the data set on parameter inference, with fixed estimates of local 

mutation rate.
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Figure 2. 
Separation of disease genes and clinical cases by mode of inheritance. [a] The percentage of 

genes associated with exclusively autosomal dominant (AD, N=867) disorders versus 

autosomal recessive (AR, N=1,482) disorders as annotated by the Clinical Genomics 

Database (CGD) in each shet bin. Logarithmic bins are ordered from greatest to smallest shet 

values. [b] Overall, AD genes have significantly higher shet values than AR genes [Mann-

Whitney U p-value 3.14×10−64]. [c] Similarly, in solved Mendelian clinical exome 

sequencing cases (Baylor)21, shet values can help discriminate between AR and AD disease 

genes, as annotated by clinical geneticists. [d] A shet value of 0.04 can be used as a simple 

classification threshold for AD genes with a PPV of 96%. [e] This finding is replicated in a 

separately ascertained sample from UCLA. Box plots range from 25th–75th percentile values 

and whiskers include 1.5 times the interquartile range.
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Figure 3. 
Enrichments of shet in known haploinsufficient disease genes of high confidence (ClinGen 

Dosage Sensitivity Project). In (N=127) autosomal genes, we annotate the shet scores of 

genes associated with each disease category and classification. Higher shet values are 

associated with [a] earlier age of onset (Mann-Whitney U p=1.46 ×10−2), [b] a larger 

fraction of de novo variants (p=8×10−5), [c] high or unspecified penetrance (p=1.79 ×10−2) 

and [d] increased phenotypic severity (p=4.87×10−3). Box plots range from 25th–75th 

percentile values and whiskers include 1.5 times the interquartile range. [e] Genes with the 

10% highest shet values are also similarly enriched with more severe clinical annotations.
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Figure 4. 
Distribution of shet values for phenotypes in known disease genes and clinical cases. We plot 

the distribution of selective effects for different disorder groups, providing information about 

the breadth and severity of selection associated with each group. [a] We include known 

Mendelian disease genes (Clinical Genomic Database) annotated as either Autosomal 

Recessive or Autosomal Dominant and [b] clinical exome sequencing cases21. We contrast 

these with [c] all tolerated knockouts in a consanguineous cohort (PROMIS)23 and [d] the 

distribution of selective effects in all scored genes. Logarithmic bins are ordered from 

greatest to smallest shet values.
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Figure 5. 
High-throughput screens of gene essentiality in mice and cell assays, as a percentage of all 

genes in each shet bin. [a] Proportion of orthologous mouse knockout genes by phenotype, 

from a neutrally-ascertained set of genes generated by the International Mouse Phenotyping 

Consortium (IMCP). Logarithmic bins are ordered from greatest to smallest shet values. [b] 

ICMP mice are separated into viable (N=1,057), sub-viable (N=211) and lethal knockouts 

(N=477), and lethal knockouts have significantly higher shet values than viable [Mann-

Whitney U p-value 2.95×10−28]. [c] Cell-essential genes as reported by Wang et al. 3 from 

genome-wide KBM-7 tumor cell CRISPR assay (N=1,740) have significantly higher shet 

values [p-value 5.13×10−16] [d] as do genes that were characterized as essential in a gene 

trap assay (N= 1,081) [p-value = 4.90×10−18]. In the CRISPR assay, all genes with adjusted 

p-values < 0.05 and negative assay scores are included, and genes with gene trap scores < 

0.4 or lower are included. Box plots range from 25th–75th percentile values and whiskers 

include 1.5 times the interquartile range.
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Figure 6. 
Protein pathways and protein-protein interactions, as a percentage of the associated 

developmental genes in each shet bin. [a] In key developmental pathways in KEGG, we find 

that genes with higher shet values are enriched in genes important to development. [b] We 

plot the distribution of the number of protein-protein interactions for each gene, as 

determined by a genome-wide mass spectrometry assay51 versus shet value. [c] We find that 

shet values are positively correlated with the number of observed interactors for each gene. 

Box plots range from 25th–75th percentile values and whiskers include 1.5 times the 

interquartile range.
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