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Abstract

Detection of viral nucleic acids plays a critical role in the induction of intracellular host

immune defences. However, the temporal recruitment of immune regulators to infecting

viral genomes remains poorly defined due to the technical difficulties associated with low

genome copy-number detection. Here we utilize 5-Ethynyl-2’-deoxyuridine (EdU) labelling

of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the

sequential recruitment of host immune regulators to infecting viral genomes under low multi-

plicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear

bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication

in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence

to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma

Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, dem-

onstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate

immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-

null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes

associated with ICP4, and led to the induction of ISG expression. This induced innate

immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-depen-

dent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA poly-

merase activity is required for the robust induction of ISG expression during HSV-1

infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and

innate immunity to HSV-1 infection that are dependent on viral genome delivery to the

nucleus and the onset of vDNA replication, respectively. These intracellular host defences

are counteracted by ICP0, which targets PML for degradation from the outset of nuclear

infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication.
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Author summary

Intrinsic and innate immunity act to restrict the replication of many clinically important

viral pathogens. However, the temporal regulation of these two arms of host immunity

during virus infection remains poorly defined. A key aspect in the regulation of these

intracellular immune defences during herpesvirus infection is the rapid recruitment of

constitutively expressed immune regulators to infecting viral genomes. Here we show that

at physiologically low multiplicities of infection, PML-NBs rapidly entrap HSV-1 genomes

upon nuclear entry. Saturation of this pre-existing intrinsic host defence led to the stable

recruitment of the vDNA pathogen sensor IFI16 to HSV-1 vDNA and the induction of

ISG expression, an induced innate immune response dependent on the initiation of

vDNA replication. Importantly, both intrinsic and innate arms of host immunity required

PML, the principle scaffolding protein of PML-NBs. Our research identifies dual roles for

PML in the sequential regulation of intracellular host immunity during HSV-1 infection,

and highlights distinct phases in host immune factor recruitment to infecting viral

genomes required for the temporal regulation of intracellular host immune defences dur-

ing herpesvirus infection.

Introduction

Intrinsic, innate, and adaptive arms of host immunity cooperatively supress the replication

and spread of invading viral pathogens. Conferred by constitutively expressed host-cell restric-

tion factors, intrinsic immunity is the first line of intracellular defence against infection

(reviewed in [1–3]). In contrast, innate immune defences are upregulated following the activa-

tion of Pattern Recognition Receptors (PRRs) that detect Pathogen-Associated Molecular Pat-

terns (PAMPs) unique to microbial pathogens, including foreign viral nucleic acids. PRR

activation induces downstream signalling events that culminate in the expression of antiviral

host genes, principally cytokines (including interferons) and interferon stimulated gene (ISG)

products (reviewed in [4–6]). This induced innate immune response confers a broadly refrac-

tory antiviral state that limits virus propagation and stimulates adaptive immune responses.

Consequently, many viruses have evolved counter measures to antagonize intrinsic and innate

immune defences to promote their efficient propagation and transmission to new hosts.

A key event in the regulation of intracellular immune defences during herpesvirus infection

is the rapid recruitment of constitutively expressed host factors to sites in close proximity to

infecting viral genomes upon nuclear entry (reviewed in [1, 7]). These factors include core

constituent proteins of Promyelocytic Leukaemia Nuclear Bodies (PML-NBs; notably PML,

Sp100, Daxx and ATRX; [8–10]), innate immune regulators (IFI16, cGAS, and STING; [11–

14]), DNA Damage Response (DDR) proteins (γH2AX, Mdc1, 53BP1, and BRCA1; [15]), and

core component proteins of the SUMOylation pathway (SUMO-1, SUMO-2/3, PIAS1, and

PIAS4 [16–19]). The recruitment of these host factors represents the earliest detectable nuclear

responses to infection, and have been linked to the repression of viral gene expression and

PRR activation in the regulation of intrinsic and innate immune defences, respectively. The

importance of PML-NB constituent proteins and IFI16 in the regulation of intracellular

immunity is highlighted by the fact that many viruses have evolved strategies to antagonise

these key immune regulators (reviewed in [1, 4, 6, 20, 21]). One of the first viral proteins to be

expressed during Herpes Simplex Virus 1 (HSV-1) infection is ICP0, a viral RING-finger ubi-

quitin ligase that promotes the degradation and dispersal of host factors, including PML and

IFI16 [11, 22–31], away from infecting viral genomes (reviewed in [7, 32]). This activity
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inhibits viral genome silencing and the induction of ISG expression, thereby promoting the

efficient onset of HSV-1 gene expression and replication. Viral mutants that do not express

ICP0, or carry mutations that impair its ubiquitin ligase activity, are highly susceptible to host-

cell restriction at low multiplicities of infection (MOI) and are hypersensitive to interferon

(IFN) treatment [33–38]. The use of such mutants has been critical in defining many aspects

relating to the regulation of intrinsic and innate immunity during herpesvirus infection. Stud-

ies analysing the recruitment of host immune regulators to infecting viral genomes have typi-

cally relied on high MOI conditions due to the technical challenges associated with low

genome copy-number detection. A defining hallmark of intrinsic immunity, however, is that

this host defence is readily saturated under high MOI conditions due to limiting levels of pre-

existing host factors. Thus, much of the mechanistic detail of immune regulator recruitment to

infecting HSV-1 genomes has been established using viral mutants at input genome levels that

saturate intrinsic host defences. Consequently, the temporal recruitment of intrinsic and

innate immune regulators to infecting viral genomes remains poorly defined, specifically

under low MOI conditions pertinent to wild-type (WT) herpesvirus infections observed in a

clinical setting.

Here we use fluorophore conjugation by click chemistry to investigate the temporal recruit-

ment of intrinsic and innate immune regulators to 5-Ethynyl-2’-deoxyuridine (EdU) labelled

HSV-1 genomes under physiologically low MOI conditions (0.1 to 3 PFU/cell). HSV-1

genomes were readily detected in the nucleus within 30 minutes of infection (post-addition of

virus) and to be stably entrapped within PML-NBs in restrictive cell types prior to PML-NB

disruption and genome release by ICP0. PML-NB entrapment of vDNA occurred indepen-

dently of the PRR sensor IFI16 and ISG expression, demonstrating that this intrinsic host

response does not directly contribute to the induction of innate immunity. Saturation of this

host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML

and IFI16 into vDNA complexes associated with ICP4, and the subsequent induction of ISGs.

This induced innate immune response occurred in a PML-, IFI16-, and Janus associated kinase

(JAK) dependent manner, which could be suppressed by the vDNA polymerase inhibitor

phosphonoacetic acid (PAA). These data demonstrate that vDNA entry into the nucleus alone

under low MOI conditions is not sufficient to stimulate a robust innate immune response to

HSV-1 nuclear infection, which only occurs after the onset of vDNA replication. We show that

intrinsic and innate arms of intracellular host immunity act sequentially, as inhibition of

innate immune signalling could not relieve the intrinsic cellular restriction of an HSV-1

ICP0-null mutant, but instead led to significantly enhanced virus yields under infection condi-

tions that enabled the onset of vDNA replication. Collectively, our data demonstrate that

intrinsic and innate arms of host immunity are temporally distinct immune events activated in

response to vDNA nuclear entry and the onset of vDNA replication, respectively. Our data

identifies distinct roles for PML in the sequential regulation of these intracellular immune

defences to HSV-1 infection, findings that are likely to be highly pertinent in the cellular

restriction of many nuclear replicating viral pathogens.

Results

Direct visualization of bio-orthogonally labelled input HSV-1 genomes at

low MOI

Microscopy studies have played pivotal roles in the identification of host factors and signalling

pathways that contribute to the intracellular regulation of intrinsic and innate immunity dur-

ing herpesvirus infection (reviewed in [1, 4, 7, 32, 39]). However, the detection of viral

genomes under low MOI conditions, which do not saturate intrinsic host defences, remains a
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significant technical challenge. To date, viral genome localization studies have relied on the

indirect detection of vDNA through immunolabelling or fluorescent tagging of vDNA binding

proteins, for example the viral immediate early (IE) transcription factor ICP4 or the early (E)

single-stranded vDNA binding protein ICP8 [8–10, 13, 14, 40]. The use of vDNA binding pro-

teins limits temporal resolution of host factor recruitment to infecting viral genomes, as

genome detection requires the successful expression of viral gene products that may compete

with, or displace, host factors bound to vDNA. Consequently, this strategy is suboptimal for

the examination of early intrinsic host immune defences that influence the cellular restriction

of viral gene expression. While direct vDNA labelling strategies have been employed, most

notably fluorescent in situ hybridization (FISH; [8, 10]), such approaches require harsh dena-

turing conditions which impair host antigen detection ([41], personal communication J.

Brown), and have not been widely adopted. Recent advances in direct bio-orthogonal nucleic

acid labelling, using Ethynyl-tagged deoxynucleotides in combination with fluorescent label-

ling by click chemistry techniques, have enabled the direct visualization of vDNA during both

Adeno- and Herpesvirus infection ([42–46]). We sought to apply this technique by purifying

either EdU or EdC labelled HSV-1 virions (HSV-1EdU or HSV-1EdC, respectively) and infect-

ing cells at low MOI (� 3 PFU/cell) to examine the temporal recruitment of intrinsic and

innate immune regulators to input viral genomes following nuclear entry.

Successful labelling of vDNA and the purification of high titre WT or ICP0-null mutant

HSV-1EdU or HSV-1EdC stocks was achieved by infecting Retinal Pigmented Epithelial (RPE)

cells (see Materials and methods; S1A–S1C Fig). Notably, many laboratory cell lines were

unable to support efficient viral propagation at nucleotide concentrations exceeding 1 μM in

an Ethynyl-tag dependent manner (S1 Table, S1D–S1F Fig). As RPE cells were restrictive to

HSV-1 ICP0-null mutant replication (see below) and sensitive to Ethynyl-tagged deoxynucleo-

tide labelling in the absence of ICP0 (S1G–S1I Fig), we selected the lowest dose of 0.5 μM EdU

or EdC for genome labelling to enable comparative recruitment studies to input viral genomes

in the presence or absence of ICP0. In vitro genome release assays demonstrated that� 60% of

virions contained EdU or EdC labelled viral genomes detectable by click chemistry following

partial denaturation of the HSV-1 capsid by 2M guanidine hydrochloride (GuHCl, Fig 1A–1C,

S2 Fig; [47]). Particle to plaque forming unit (PFU) analysis of virus preparations grown in the

presence of EdU demonstrated that HSV-1EdU labelled virions had a roughly equivalent ratio

to that of unlabelled control virus preparations (within 3-fold; S2 Table). These data demon-

strate that EdU labelling of vDNA was not significantly detrimental to virion production or

infectivity under these labelling conditions.

A time course of infection of human foreskin fibroblast (HFt) cells with WT (HSV-1EdU) or

ICP0-null (ΔICP0EdU) mutant HSV-1 demonstrated that vDNA could be readily detected

within the nuclei of infected cells as early as 30 minutes post-infection (mpi; post-addition of

virus), with> 70% of nuclei containing at least 1 (median average of 2) HSV-1EdU genome

foci by 120 mpi (Fig 1D, 1F and 1G). Signal detection was dependent on both HSV-1 infection

and EdU vDNA labelling, demonstrating that fluorescent click signal(s) were specific to input

EdU labelled vDNA (Fig 1E), with the majority of genome signals (� 70%) observed within

the nucleus (Fig 1H). Notably, qPCR analysis (S2 Table) revealed that the majority of particles

(> 50%) had yet to release their genomes by 120 mpi (post-addition of virus). As vDNA is

undetectable within native capsids (S2 Fig), these data suggest that the process of nuclear infec-

tion is still ongoing at 120 mpi. We note that under equivalent MOI conditions, ΔICP0EdU

infected cells had a reduced number of vDNA positive nuclei at each time point (Fig 1F–1H), a

phenotype that likely reflects the efficiency of ICP0-null mutant EdU vDNA labelling in

restrictive RPE cells (S1G–S1I Fig).

Temporal regulation of intracellular immunity to HSV-1 infection
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PML-NBs entrap WT HSV-1 genomes upon nuclear entry

With the ability to detect input vDNA within the nuclei of infected cells as early as 30 mpi

(post-addition of virus), we next assessed the utility of this approach to investigate the recruit-

ment of intrinsic immune factors to infecting WT HSV-1EdU genomes over a short time-

course of infection (30 to 90 mpi; Fig 2). Using a combination of click chemistry to detect

vDNA and immuno-labelling to detect PML-NB intrinsic host factors, PML (the main scaf-

folding protein of PML-NBs; [48]) and Daxx (a core constituent protein of PML-NBs; [48])

were observed to stably colocalize with vDNA over the time course of infection (30–90 mpi;

Fig 1. Direct visualization of bio-orthogonally labelled HSV-1 genomes. Quantitation of bio-orthogonally labelled vDNA in HSV-1 virions. HSV-1EdU

or HSV-1EdC virions were subjected to partial denaturation with 2M GuHCl at 4˚C for 60 mins to release vDNA [47]. vDNA (red) was detected by click

chemistry and capsid (green) by indirect immunofluorescence staining. (A) Representative confocal images showing vDNA release and expansion from

partially denatured HSV-1EdU virions following GuHCl treatment. (B,C) Stack plots showing the relative population of EdU or EdC positive vDNA

labelled HSV-1 virions. n� 3000 particles per population derived from 3 independent experiments. Minimum estimates for viral genome labelling

efficiency are shown (%). (D,E) HFt cells were mock or HSV-1 infected with either unlabelled or EdU labelled WT (HSV-1EdU) or ICP0-null mutant HSV-

1 (ΔICP0EdU) at an MOI of 3 PFU/cell. Cells were fixed and permeabilized at the indicated times minutes post-infection (mpi; post-addition of virus).

vDNA was detected by click chemistry (white arrows) and nuclei stained with DAPI (blue). Representative confocal images showing the nuclear

accumulation of HSV-1EdU and ΔICP0EdU genomes over time (30–120 mpi; as indicated), with genome detection specific to input EdU labelled virus. (F)

Quantitation of HSV-1EdU or ΔICP0EdU genome positive nuclei over time (as in D). Boxes: 25th to 75th percentile range; black line: median; whiskers: 5th to

95th percentile range. n� 300 cells per sample population derived from a minimum of 3 independent experiments. (G) Number of genomes detected

within infected nuclei at 120 mpi. Boxes: 25th to 75th percentile range; black line: median; whiskers: minimum and maximum range of sample. n� 200

cells per sample population derived from a minimum of 3 independent experiments. (H) Nuclear (Nuc.) and cytoplasmic (Cyto.) distribution of genome

foci detected at 120 mpi. n� 300 cells per sample population derived from a minimum of 3 independent experiments. Percentage of total genomes

detected within the nucleus is shown (%).

https://doi.org/10.1371/journal.ppat.1006769.g001
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Fig 2. PML-NBs stably entrap vDNA upon nuclear entry. HFt cells were mock or HSV-1EdU infected at an MOI of 3 PFU/cell. Cells were fixed and

permeabilized at the indicated times (mpi; post-addition of virus). vDNA, or PML-NB host factors and ICP0, were detected by click chemistry and indirect

immunofluorescence staining, respectively. (A) Localization of PML (green) and Daxx (cyan) to HSV-1 vDNA (red, white arrows) at 30–90 mpi (as

indicated). Insets show magnified regions of interest (dashed boxes) highlighting PML-NB colocalization with vDNA. Cut mask (yellow) highlights regions

of colocalization between PML, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are shown. (B) 3D reconstruction of high-resolution

confocal Z-series images showing PML (green) entrapment of vDNA (red, white arrow) at 90 mpi. Single channel maximum intensity projections (left-

Temporal regulation of intracellular immunity to HSV-1 infection
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Fig 2A). High-resolution Z-series imaging revealed input vDNA to be encased in PML follow-

ing nuclear infection (Fig 2B). At 90 mpi, ICP0 could be observed to colocalize with PML-NBs

prior to PML degradation and PML-NB disruption (Fig 2C and 2D; [22, 25–27]). ICP0 locali-

zation at multiple PML-NBs demonstrates that vDNA entrapment within any single PML-NB

is not sufficient to target ICP0 to that specific body (Fig 2C). Western blotting of infected cell

lysates demonstrated that EdU labelling of vDNA was not detrimental to the initiation of IE

gene expression (ICP0, ICP4) or the degradation of PML (Fig 2D). Collectively, these data that

demonstrate infecting WT HSV-1 genomes are rapidly encased by PML-NB intrinsic host fac-

tors from the outset of nuclear infection prior to the onset of lytic replication. Our data con-

trast with previous recruitment studies, which have reported PML-NB constituent proteins to

localize to sites in close proximity to infecting viral genomes [8–10, 40]. However, we note that

these studies have typically relied on higher MOI conditions (� 10 PFU/cell; [10]), the use of

vDNA binding proteins to enable genome detection by proxy, or time points post-infection

where vDNA replication proteins are readily detectable. We conclude that PML-NB host fac-

tors rapidly entrap viral genomes shortly after nuclear entry prior to the robust onset of viral

gene expression (Fig 2D).

Asynchronous plaque-edge recruitment studies have shown that PML-NB host factors are

independently recruited to infecting viral genomes [49, 50] in an IFI16-dependent manner

[11, 12, 14], where de novo PML-NB like foci are reformed [10]. We therefore assessed the

composition of vDNA containing PML-NBs, as well as the localization of the PRR IFI16, to

infecting WT HSV-1EdU or HSV-1EdC genomes (Fig 3, S3 Fig). High colocalization frequencies

(weighted colocalization coefficients > 0.7) were observed for all PML-NB component pro-

teins examined (PML, Daxx, Sp100, ATRX, and SUMO2/3) to infecting viral genomes irre-

spective of genome label, with equivalent paired colocalization frequencies observed for

resident PML-NB proteins in mock-infected cells (Fig 3A–3D and 3F, S3 Fig). These data dem-

onstrate that PML-NBs that contained vDNA were indistinguishable in composition from

other PML-NBs within the same infected cell or in mock-infected cells at 90 mpi. Surprisingly,

the colocalization frequency between IFI16 and input viral genomes was below coincident

threshold levels (weighted colocalization coefficients < 0.2; solid line), demonstrating that

IFI16 does not stably localize with viral genomes entrapped within PML-NBs at 90 mpi (Fig

3E and 3F, S3 Fig). These data again contrast with published asynchronous plaque-edge

recruitment studies that have used vDNA binding proteins for genome detection, which have

shown IFI16 and PML to both localize to infecting HSV-1 ICP0-null mutant genomes [11, 13,

14]. As ICP0 has been reported to promote the degradation of IFI16 [11, 28–31], we examined

the recruitment of IFI16 to ΔICP0EdU genomes to investigate the potential effect of ICP0

expression on IFI16 localization to vDNA. No stable localization of IFI16 could be observed to

infecting ΔICP0EdU genomes (S4 Fig), demonstrating that a lack of stable IFI16 recruitment to

viral genomes was not due to low levels of ICP0 expression at 90 mpi (Fig 2C). We note that

IFI16 localization to viral genomes has been reported to be highly dynamic [12, 14], which

could potentially be inhibited by PML-NB entrapment of vDNA. We therefore investigated

the influence of MOI (1, 10, and 50 PFU/cell) and time (15 or 30 mpi) on the recruitment of

hand panels) and 3D rendered image (right-hand panel). Pearson coefficient for PML-vDNA colocalization is shown. Scale bar 2 μm. (C) Nuclear

localization of ICP0 (green) to vDNA (red, white arrow) and PML (cyan) in HSV-1EdU infected cells at 90 mpi. Cut mask (yellow) highlights regions of

colocalization between ICP0, PML, and vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei stained with DAPI (blue). (D) EdU

labelling of viral genomes does not affect the initiation of infection. HFt cells were mock or HSV-1 infected with unlabelled (HSV-1) or EdU labelled (HSV-

1EdU) HSV-1 at an MOI of 3 PFU/cell. Whole cell lysates were collected at the indicated times (hours post-infection; hpi) for western blot analysis to

monitor the rate of PML degradation and the accumulation of the viral immediate early (IE) gene products (ICP0, ICP4). Actin is shown as a loading

control. Molecular mass markers are shown,< denotes the detection of a non-specific background band.

https://doi.org/10.1371/journal.ppat.1006769.g002
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IFI16 and PML to nuclear infecting HSV-1EdU genomes (S5 Fig). While vDNA-IFI16 colocali-

zation could be observed under very high MOI conditions (50 PFU/cell; S5A Fig), quantitation

(n� 250 genomes) revealed the frequency of these colocalization events was not significantly

altered by MOI or time (S5B–S5E Fig). In contrast, PML colocalization with vDNA was

Fig 3. Core PML-NB proteins, but not IFI16, associate with infecting HSV-1 genomes. HFt cells were mock or infected with either HSV-1EdU or HSV-

1EdC at an MOI of 3 PFU/cell. Cells were fixed and permeabilized at the indicated times (mpi; post-addition of virus). vDNA and PML-NB host factors were

detected by click chemistry and indirect immunofluorescence staining, respectively. (A-E) Localization of PML (green), and either Daxx, Sp100, ATRX,

SUMO2/3 (SUMO), or IFI16 (cyan; as indicated) to infecting HSV-1EdU vDNA (red, white arrows). Insets show magnified regions of interest (dashed

boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization between host proteins and vDNA (as

indicated). Weighted colocalization coefficients are shown. Individual channel images shown in S3 Fig. Nuclei were stained with DAPI (blue). (F)

Quantitation of host protein recruitment to infecting viral genomes labelled with EdU (as shown in A-E) or EdC. Boxes: 25th to 75th percentile range; black

line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident threshold level (weighted

colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from a minimum of three independent infections.

https://doi.org/10.1371/journal.ppat.1006769.g003
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significantly reduced in a MOI dependent manner (1–50 PFU/cell), indicative of PML-NB sat-

uration by viral genomes or disruption by ICP0 under these high MOI conditions. PML

recruitment to vDNA also occurred in a time dependent manner, with a significant increase in

colocalization frequency between 15 and 30 mpi (MOI of 10 PFU/cell). As bio-orthogonal

nucleic acid labelling is incompatible with live-cell kinetic studies, we conclude that IFI16 does

not form a stable association with input vDNA following genome entry into the nucleus.

IFI16 recruitment to input viral genomes is not enhanced in the absence of

PML

To test if PML-NBs competitively exclude IFI16 from binding vDNA following nuclear entry,

we investigated the recruitment of IFI16 and Daxx (as a positive control; [49]) to input HSV-

1EdU and ΔICP0EdU genomes in cells depleted of PML (Fig 4, S6 Fig). HFt cells were stably

transduced with lentiviral vectors expressing non-targeting control or PML-targeting short

hairpin RNAs (shCtrl and shPML, respectively; [49]). qRT-PCR and western blotting con-

firmed PML depletion without influencing Daxx or IFI16 expression (Fig 4A and 4B). HSV-

1EdU or ΔICP0EdU infection of shCtrl cells recapitulated observations made in parental HFt

cells (Fig 3, S3 Fig, S4 Fig), demonstrating that lentiviral transduction, shRNA expression, or

puromycin selection did not affect PML-NB entrapment of vDNA or alter IFI16 localization

(Fig 4C–4E). PML depletion did not increase the frequency of IFI16 colocalization with vDNA

during either HSV-1EdU or ΔICP0EdU infection (Fig 4D and 4E, S6 Fig), demonstrating that

PML-NBs do not competitively exclude IFI16 from binding vDNA. In contrast, while Daxx

colocalized with vDNA in a subset of PML depleted cells (Fig 4C, S6A Fig), quantitation

(n� 100 genomes) revealed that the frequency of this colocalization was significantly reduced

compared to control cells irrespective of ICP0 expression (Fig 4E). These data contrast with

asynchronous plaque-edge recruitment studies, where Daxx recruitment to infecting viral

genomes occurs in a PML independent manner under high MOI conditions [49]. We con-

clude that under infection conditions that do not saturate or disrupt PML-NBs by 90 mpi

(MOI < 10 PFU/cell; S5 Fig), Daxx colocalization with vDNA is stabilized by PML at

PML-NBs where Daxx is a resident protein (Figs 2–4, S3 Fig; [48]).

Live cell microscopy studies and asynchronous plaque-edge recruitment assays have

reported that IFI16 is required for PML and Daxx recruitment to infecting viral genomes [11,

12, 14], although no direct evidence of IFI16 colocalization with vDNA or deposition within

PML-NBs was reported to support this hypothesis. We therefore investigated if IFI16 played a

role in PML-NB entrapment of vDNA (Fig 5). HFt cells were stably transduced with lentiviral

vectors expressing non-targeting control or IFI16-targeting short hairpin RNAs (shCtrl and

shIFI16, respectively; [11]). qRT-PCR and western blotting confirmed IFI16 depletion without

influencing PML or Daxx expression (Fig 5A and 5B). HSV-1EdU infection of shCtrl or

shIFI16 cells demonstrated that both PML and Daxx strongly colocalized with vDNA indepen-

dently of IFI16 (Fig 5C–5E). We conclude that IFI16 does not play an essential role in the

entrapment of vDNA within PML-NBs. As we failed to observe any significant recruitment of

IFI16 to infecting HSV-1 genomes under a range of infection conditions, our data suggest that

the stable recruitment of PML and IFI16 to infecting viral genomes occurs with temporally dis-

tinct kinetics.

vDNA entry into the nucleus is not sufficient to induce ISG expression

As asynchronous plaque-edge recruitment assays have played a key role in defining the

recruitment of IFI16 to infecting HSV-1 genomes [11, 13, 14], we conducted analogous assays

to assess the temporal recruitment of PML and IFI16 to both vDNA and ICP4, an IE vDNA

Temporal regulation of intracellular immunity to HSV-1 infection
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Fig 4. Depletion of PML does not enhance the recruitment of IFI16 to infecting viral genomes. HFt cells were stably transduced with lentiviruses

expressing PML-targeting (shPML) or non-targeting control (shCtrl) shRNAs. (A) qRT-PCR quantitation of PML or IFI16 mRNA levels in HFt shCtrl and

shPML cells. Mean (RQ) and standard deviation (RQmin/max) shown and expressed relative to HFt shCtrl cells (1). (B) Western blot analysis of the

expression levels of PML, Daxx and IFI16 in whole cell lysates derived from HFt shCtrl and shPML cells. Actin is shown as a loading control. Molecular

mass markers are shown. (C, D) Localization of PML (green), and either Daxx or IFI16 (cyan; as indicated), to infecting HSV-1EdU vDNA (red, white

arrows) in HFt shCtrl and shPML cells at 90 mpi (post-addition of virus). Cells were infected with HSV-1EdU or ΔICP0EdU at an MOI of 3 PFU/cell. Insets

show magnified regions of interest (dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between PML, IFI16, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei were stained with DAPI (blue). Images for

ΔICP0EdU infected cells are shown in S6 Fig. (E) Quantitation of host protein recruitment to infecting viral genomes (as shown in C, D, S6). Boxes: 25th to

75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident

threshold level (weighted colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from a minimum of four independent infections. ���

P< 0.001, Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g004
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binding protein commonly utilized as a proxy for vDNA in genome recruitment studies [9–11,

14, 40]. Viral DNA labelling was achieved by pulse labelling HSV-1 ICP0-null mutant infected

Fig 5. IFI16 does not influence the recruitment of PML or Daxx to infecting viral genomes. HFt cells were stably transduced with lentiviruses expressing

IFI16-targeting (shIFI16) or non-targeting control (shCtrl) shRNAs. (A) qRT-PCR quantitation of IFI16 or PML mRNA levels in HFt shCtrl and shIFI16

cells. Mean (RQ) and standard deviation (RQmin/max) shown and expressed relative to HFt shCtrl cells (1). (B) Western blot analysis of the expression

levels of IFI16, PML, and Daxx in whole cell lysates from HFt shCtrl and shIFI16 cells. Actin is shown as a loading control. Molecular mass markers are

shown. (C, D) Localization of PML (green), and either IFI16 or Daxx (cyan; as indicated) to infecting HSV-1EdU vDNA (red, white arrows) in HFt shCtrl

and shIFI16 cells at 90 mpi (post-addition of virus). Cells were infected with HSV-1EdU at an MOI of 3 PFU/cell. Insets show magnified regions of interest

(dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization between IFI16, PML, Daxx, and

vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei were stained with DAPI (blue). (E) Quantitation of host protein recruitment

to infecting viral genomes (as shown in C, D). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th

to 95th percentile range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). n� 50 vDNA foci per sample

population from a minimum of four independent infections. ns (not significant), Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g005
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cell monolayers at 24 hours post-infection (hpi) with 1 μM EdU for 6 h. Under these condi-

tions, DNA replication compartments within the body of a developing plaque were clearly

detected (S7 Fig). Cells on the periphery of the plaque-edge were readily observed to contain

EdU positive vDNA foci asymmetrically distributed around the nuclear rim prior to ICP4

detection (Figs 6A, 6C top panels, S7), indicative of input EdU labelled viral genomes that have

yet to initiate a productive gene expression programme. The recruitment of PML to infecting

viral genomes occurred independently of ICP4 expression, with many genome foci observed

to localise in close proximity to PML foci (Fig 6A and 6B). In contrast, IFI16 recruitment only

occurred in cells that expressed ICP4 localized to vDNA at the nuclear rim (ICP4 NR; Fig 6C

and 6D, S7 Fig). These data support previous asynchronous recruitment studies that have used

ICP4 as a proxy for genome detection [11, 14] and demonstrate that PML and IFI16 are

recruited to infecting viral genomes with temporally distinct kinetics, which in the case of

IFI16 correlates with the expression and localization of viral gene products with vDNA (Fig

6D). Importantly, these data suggest that vDNA entry into the nucleus alone may not be suffi-

cient to stimulate the induction of an IFI16-dependent innate immune response, but instead

require the expression of specific viral gene products or the initiation of vDNA replication.

To test this hypothesis, we examined the induction of Mx1, a well-characterized ISG prod-

uct [51], during HSV-1 ICP0-null mutant infection by confocal microscopy. HFt cells were

mock treated, stimulated with IFN-β (as a positive control), or infected with ΔICP0EdU at

input levels which either restrict or permit the initiation of HSV-1 ICP0-null mutant replica-

tion and plaque formation at 24 hpi (MOI 0.1 and 1.0 PFU/cell, respectively; Fig 6E). vDNA

was readily detectible within the nuclei of infected cells under restrictive MOI conditions (0.1

PFU/cell) with a frequency close its expected input genome ratio (Fig 6F) and copy number

(1–2 genomes/infected cell; Fig 6G, S2 Table). Notably, the number of genomes per infected

cell nuclei under permissive conditions (MOI 1 PFU/cell) was lower than expected based on

our input qPCR analysis (~ 25 genomes/cell; Fig 6G, S2 Table). These data indicate that under

MOI conditions that begin to saturate intrinsic host defences (~ 10–20 genome copies/nuclei),

ΔICP0EdU genome detection is lost following the onset of vDNA replication by 24 hpi.

As expected, IFN-β stimulation efficiently induced Mx1 expression 24 h post-treatment

(Fig 6H and 6I). In contrast, infection with ICP0-null mutant HSV-1 only stimulated Mx1

expression at genome input levels sufficient to stimulate the onset of viral replication and pla-

que formation (MOI 1.0 PFU/cell; Fig 6E, 6H and 6I). High-resolution Z-series imaging

revealed that viral genomes remained stably entrapped within PML-NBs under restrictive

MOI conditions (0.1 PFU/cell) at 24 hpi (Fig 6J). These data demonstrate that under infection

conditions that restrict the initiation of ICP0-null mutant HSV-1 replication, viral genome

entry into the nucleus alone is not sufficient to stimulate the induction Mx1 ISG expression.

vDNA replication is required for the induction of innate immunity

As PML-NB entrapped HSV-1 ICP0-null mutant genomes failed to stimulate the induction of

Mx1 expression, we next examined the kinetics of ISG induction during HSV-1 infection

under MOI conditions that enabled the onset of viral replication (MOI 1 PFU/cell; Fig 7). As

expected, HSV-1 ICP0-null mutant infection efficiently induced the transcription (by 8–9 hpi)

and expression (by 16 hpi) of three independent ISG products (Mx1, ISG15, and ISG54), a host

response that was significantly impaired during WT HSV-1 infection (Fig 7A–7C). Impor-

tantly, the induction of ISGs only occurred under infection conditions that enabled the onset

of ICP0-null mutant HSV-1 replication and plaque-formation (� 1.0 PFU/cell; Figs 6E and

7D). Consistent with our microscopy observations (Fig 6H and 6I), these data demonstrate

that saturation of intrinsic host defences is required for the robust induction of ISGs during
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Fig 6. Nuclear entry of vDNA is not sufficient to induce robust Mx1 ISG expression. (A-D) Recruitment of PML, IFI16, and eYFP.ICP4 to ΔICP0

infecting viral genomes in an asynchronous plaque-edge recruitment assay (as described in [10]). HFt cells were infected with ΔICP0 expressing eYFP.ICP4

under conditions (MOI 2 PFU/cell) that enable plaque-formation to occur. Cells were pulse labelled at 24 hpi with 1 μM EdU for 6h to label vDNA. (A, C)

Localization of eYFP.ICP4 (green), PML or IFI16 (cyan; as indicated) to vDNA (red) in newly infected cells on the periphery of a developing plaque-edge.
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HSV-1 ICP0-null mutant infection. As IFI16 binds to a range of DNA structures that may be

produced during vDNA replication [52], we next investigated the role of vDNA replication

in the induction of ISGs. ISG transcript levels were monitored in the presence of the vDNA

replication inhibitors PAA (phosphonoacetic acid) and ACG (acycloguanosine), two well-

characterized herpesvirus DNA replication inhibitors [53–57]. PAA efficiently inhibited the

induction of both Mx1 and ISG15 transcript levels in a dose-dependent manner (Fig 7E), while

ACG treatment had only a modest inhibitory effect at concentrations sufficient to restrict

HSV-1 plaque formation (� 50 μM; Fig 7F, S1 Table). Inhibition of ISG induction by PAA was

virus-specific, as ISG transcript levels were readily induced by IFN-β stimulation in the pres-

ence of PAA (Fig 7G). By way of contrast, JAK inhibition by Ruxolitinib (Ruxo) effectively

blocked ISG induction following IFN-β stimulation (Fig 7G; [58, 59]), consistent with a key

role for JAK in IFN-mediated innate immune signalling [60]. JAK inhibition also effectively

blocked ISG induction during HSV-1 ICP0-null mutant infection (Fig 7H). Importantly, this

inhibition occurred in the presence 50 μM ACG (Fig 7I), demonstrating that JAK activity is

specifically required to induce ISG expression during the initiating cycle(s) of HSV-1 ICP0--

null mutant vDNA replication by 9 hpi. Together with our microscopy observations (Fig 6),

these data demonstrate that the onset of vDNA replication is required for the robust induction

of ISG expression during HSV-1 ICP0-null mutant infection.

Dual roles for both PML and IFI16 in the regulation of intrinsic and innate

immunity to HSV-1 infection

As the induction of innate immunity during HSV-1 ICP0-null mutant infection was inhibited

by Ruxolitinib, we next examined the effect of JAK inhibition on WT and ICP0-null mutant

HSV-1 replication (Fig 8). At a concentration sufficient to inhibit ISG induction (5 μM; Fig

7G–7I), Ruxolitinib treatment had no effect on the relative plaque formation efficiency (PFE)

of either WT or ICP0-null mutant HSV-1 (Fig 8A). These data indicate that innate immune

signalling and the induction of ISGs does not directly contribute to the cellular restriction and

plaque-formation defect of an HSV-1 ICP0-null mutant observed in restrictive cell types

(� 1000 fold; [33, 35, 61]). In contrast, virus yield assays demonstrated that Ruxolitinib treat-

ment enhanced the levels of ICP0-null mutant, but not WT, HSV-1 propagation (Fig 8B).

Thus, under infection conditions that saturate intrinsic host defences and enable the onset of

HSV-1 ICP0-null mutant replication (MOI of� 1 PFU/cell; Fig 6E), innate immune defences

act to restrict virus propagation. By way of contrast, depletion of IFI16 or PML enhanced both

the PFE and virus yield of an HSV-1 ICP0-null mutant (Fig 8C and 8D; [11, 49]). Importantly,

Cut mask (yellow) highlights regions of colocalization between either PML or IFI16 and vDNA (as indicated). Weighted (w.) colocalization coefficients

shown. (B, D) Quantitation of PML and IFI16 recruitment to infecting vDNA in the presence or absence of eYFP.ICP4 at the nuclear rim (ICP4 NR and

ICP4 -ve, respectively; as shown in A and C). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to

95th percentile range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). n = 100 plaque-edge cells +ve for vDNA

per PML or IFI16 sample population from 4 independent infections. ��� P< 0.001, ns (not significant), Mann-Whitney U-test. (E-I) Mx1 expression is only

induced under infection conditions that permit ΔICP0 plaque formation. (E) Number of plaques detected at 24 hpi following ΔICP0 infection of HFt cells

at an input MOI of 0.1 or 1 PFU/cell (as indicated). n = 3, means and standard deviations shown. (F) Quantitation of ΔICP0EdU nuclear genomes in HFt

cells (as infected in E). Boxes: 25th to 75th percentile range; black line: median; whiskers: 5th to 95th percentile range. n� 250 cells derived from 3

independent experiments per condition. (G) Frequency of ΔICP0EdU genomes detected within infected cell nuclei (as described in E/F). Boxes: 25th to 75th

percentile range; black line: median; whiskers: minimum and maximum range of sample. (H) HFt cells were mock treated, IFN-β stimulated (100 IU/ml),

or infected with ΔICP0 at a MOI of 0.1 or 1 PFU/cell. Samples were fixed at 24 post-treatment and analysed by confocal microscopy for Mx1 (green) ISG

expression. (I) Quantitation of Mx1 positive cells (as shown in H). n� 250 cells derived from 3 independent experiments per condition. (J) PML-NB

entrapment of vDNA is maintained under low MOI conditions (0.1 PFU/cell) that restrict ΔICP0EdU replication and plaque formation at 24 hpi. 3D

reconstruction of high-resolution Z-series confocal images showing PML entrapment of ΔICP0EdU vDNA. Single channel maximum intensity projection

images (left), 3D rendered images of the whole nucleus showing PML (green) and vDNA (red), with a single vDNA focus entrapped by PML (dashed box;

right). Scale bar 2 μm. Enlargement of PML entrapped vDNA (centre-right). Scale bar 0.5 μm. Cut mask (yellow) highlights colocalization between PML

and vDNA (far-right). Pearson coefficient for PML-vDNA colocalization shown. Nuclei were stained with DAPI (blue).

https://doi.org/10.1371/journal.ppat.1006769.g006
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Fig 7. Inhibition of vDNA replication impairs the induction of innate immunity during HSV-1 infection. HFt cells were mock, WT, or ΔICP0 HSV-1

infected at an MOI of 1 PFU/cell (unless stated otherwise). Samples were collected at the indicated times (hours; h) post-treatment or infection. (A) Relative
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no additional increase in virus yield was observed on Ruxolitinib treatment of IFI16 or PML

depleted cells (Fig 8D), indicative of an impaired innate immune response in these cells during

HSV-1 ICP0-null mutant infection. Correspondingly, qRT-PCR demonstrated that the induc-

tion of ISGs (Mx1, ISG15, ISG54) was significantly impaired in both IFI16 or PML depleted

cells in response to HSV-1 ICP0-null mutant infection at 9 hpi (Fig 8E and 8F). These data

identify a novel role for PML in the induction of ISGs and the regulation of innate immunity

during HSV-1 infection. Collectively, our data demonstrate that PML plays dual roles in the

temporal regulation of intrinsic and innate immune defences that are dependent on viral

genome delivery to the nucleus and the onset of vDNA replication, respectively.

As intrinsic and innate immune defences to HSV-1 infection are known to be cell-type

dependent [34, 35, 62], we next investigated if there was a correlation between cell line permis-

siveness to HSV-1 ICP0-null mutant replication and the entrapment of viral genomes by

PML-NB host factors (Fig 9). Relative to permissive osteosarcoma cells (U2OS, SAOS), which

do not require ICP0 to stimulate the onset of HSV-1 replication [34], RPE cells demonstrated

equivalent levels of HSV-1 ICP0-null mutant restriction to HFt cells (� 1000-fold reduction in

PFE, Fig 9A). Western blot analysis revealed that all these cell lines expressed similar levels of

PML, Daxx, and IFI16 (Fig 9B). However, infection with HSV-1EdU demonstrated a significant

reduction in the colocalization frequency of PML and Daxx to infecting viral genomes between

permissive (U2OS, SAOS) and restrictive (HFt, RPE) cell-types (Fig 9C and 9D). Importantly,

in many instances neither PML nor Daxx was observed to localize with infecting viral genomes

in permissive cell types (Fig 9C, bottom panels). Thus, we have identified a correlation between

the stable entrapment of vDNA by PML-NBs and the requirement for ICP0 to stimulate the

efficient onset of HSV-1 infection in restrictive (HFt, RPE), but not permissive (U2OS, SAOS),

cell-types. As U2OS and SAOS cells do not express ATRX (Fig 9B; [63, 64]), a known core con-

stituent protein of PML-NBs and an intrinsic antiviral regulator to HSV-1 infection [64–66],

we investigated the requirement for ATRX to mediate PML-NB entrapment of vDNA. HFt

cells were stably transduced with lentiviral vectors expressing non-targeting control or ATRX-

targeting short hairpin RNAs (shCtrl and shATRX, respectively; [65]). qRT-PCR and western

blotting confirmed ATRX depletion, which had a modest effect on PML mRNA transcript lev-

els without influencing PML or Daxx expression levels (Fig 9E and 9F). HSV-1EdU infection of

shCtrl or shATRX cells demonstrated that depletion of ATRX led to a distinct population of

viral genomes with a reduced colocalization frequency with PML (left-hand dotted box; Fig

9G). Notably, low levels of ATRX colocalization were still observed with vDNA in a significant

proportion of ATRX depleted cells (right-hand dotted box; Fig 9G). Quantitation (n� 200

genomes per condition) revealed that there was a significant difference in PML recruitment to

vDNA in ATRX depleted cells (Fig 9H). We conclude that ATRX, either directly or indirectly,

contributes to the entrapment of vDNA within PML-NBs following nuclear entry.

mRNA levels of Mx1, ISG15, and ISG54 during WT or ΔICP0 HSV-1 infection. n = 2, means (RQ) and standard deviations (RQmin/max) are shown and

expressed relative to mock (1). (B) Western blot analysis of the expression levels of ISGs (ISG15, Mx1, ISG54), viral proteins (ICP0, ICP4, VP5), and actin

(as a loading control), from whole cell lysates of mock, IFN-β stimulated (100 IU/ml), WT or ΔICP0 HSV-1 infected HFt cells at the indicated times.

Molecular mass markers are shown. (C) Quantitation of ISG expression levels (as shown in B). n = 3, means and standard deviations shown expressed

relative to mock (1). �� P< 0.01, ��� P< 0.001, ns (not significant); two-tailed t-test. (D) Relative mRNA levels of Mx1 and ISG15 in mock or ΔICP0

infected HFt cells (MOI of 0.01 to 1 PFU/cell, as indicated). n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

ΔICP0 MOI 1 (1). (E, F) Relative mRNA levels of Mx1 and ISG15 in mock or ΔICP0 infected HFt cells in the presence of phosphonoacetic acid (PAA) or

acycloguanosine (ACG) at the indicated concentrations. n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

ΔICP0 (1). � P< 0.05, �� P< 0.01, ��� P< 0.001, ns (not significant); two-tailed t-test. (G) Relative mRNA levels of Mx1 and ISG15 in mock or IFN-β
stimulated (100 IU/ml) HFt cells co-incubated in the presence Ruxolitinib (5 μM; Ruxo) or PAA (1.6 mg/ml), as indicated. n = 2, means (RQ) and standard

deviations (RQmin/max) are shown and expressed relative to IFN-β treatment (1). (H, I) Relative Mx1 and ISG15 mRNA levels in mock or ΔICP0 infected

HFt cells treated with Ruxo (2.5–10 μM, as indicated) or Ruxo (5 μM) and ACG (50 μM), as indicated. n = 2, means (RQ) and standard deviations (RQmin/

max) are shown and expressed relative to ΔICP0 infection (1).

https://doi.org/10.1371/journal.ppat.1006769.g007
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Finally, we compared restrictive (HFt, RPE) and permissive (U2OS, SAOS; [62]) cell types

to mount an innate immune response to HSV-1 ICP0-null mutant infection under infection

conditions that permitted the onset of viral replication (MOI 1 PFU/cell). Surprisingly,

qRT-PCR analysis demonstrated that only HFt cells induced ISG (Mx1, ISG15, ISG54) expres-

sion during HSV-1 ICP0-null mutant infection (Fig 10A, top panels; [62]). This was not due to

a defect in IFN pathway signalling, as all four cell-types were responsive to exogenous IFN-β
stimulation (Fig 10A, bottom panels). Correspondingly, only HFt cells showed enhanced levels

of HSV-1 ICP0-null mutant propagation following JAK inhibition by Ruxolitinib (Fig 10B).

We conclude that RPE cells, which are highly restrictive to HSV-1 ICP0-null mutant

Fig 8. Dual roles for PML and IFI16 in the regulation of intrinsic and innate immunity to HSV-1 infection. (A) HFt cells were DMSO or Ruxolitinib

(5μM; Ruxo) treated and infected with serial dilutions of WT or ΔICP0 HSV-1 for 24 h prior to immuno-staining for plaque formation. Plaque counts

expressed relative to control cell monolayers (# of plaques treated / # of plaques DMSO control) at equivalent serial dilutions of virus and presented as

relative plaque formation efficiency (PFE). n� 3, means and standard deviations shown. (B) HFt cells were DMSO or Ruxo treated and infected with WT

(MOI 0.001 PFU/cell) or ΔICP0 (MOI 1 PFU/cell) HSV-1. Cell released virus (CRV) was harvested at the indicated times (hpi) and CRV titres determined

on U2OS cells. n = 3, means and standard deviations shown. (C) Stably transduced HFt cells expressing non-targeting control (shCtrl), or targeting IFI16

(shIFI16) or PML (shPML) shRNAs, were infected with WT or ΔICP0 HSV-1 (as in A). Plaque counts expressed relative to infected shCtrl cell monolayer

plaque counts (1) and presented as relative PFE. n = 3, means and standard deviations shown. (D) shCtrl, shIFI16, or shPML HFt cells were treated with

DMSO or Ruxo and infected with either WT or ΔICP0 HSV-1 (as in B). CRV was collected at the indicated times (hpi) and titres determined on U2OS

cells. n = 3, means and standard deviations shown. (E, F) Relative Mx1, ISG15, and ISG54 mRNA levels in HFt shCtrl, shIFI16, or shPML cells mock or

ΔICP0 infected (MOI 1 PFU/cell) at 9 hpi. n = 3, means (RQ) and standard deviations (RQmin/max) shown and expressed relative to ΔICP0 infected shCtrl

(1). ��� P< 0.001; two-tailed t-test.

https://doi.org/10.1371/journal.ppat.1006769.g008
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Fig 9. PML-NB entrapment of infecting HSV-1 vDNA occurs in a cell type and ATRX dependent manner. (A) U2OS, SAOS, RPE, and HFt cells were

infected with serial dilutions of WT or ΔICP0 HSV-1 for 24 h. Plaque counts expressed relative to U2OS, a cell line permissive to ΔICP0 replication [34], (#

of plaques / # of plaques U2OS control) at equivalent serial dilutions of virus and presented as relative plaque formation efficiency (PFE). n� 3, means and

standard deviations shown. (B) Western blot analysis of the relative expression levels of PML, Daxx, ATRX, and IFI16 in whole cell lysates derived from

HFt, RPE, U2OS and SAOS cells. Actin is shown as a loading control. Molecular mass markers are indicated. (C) Localization of PML (green) and Daxx

(cyan) to HSV-1EdU vDNA (red, white arrows) in restrictive (HFt, RPE) and permissive (U2OS, SAOS) cell types at 30 mpi (post-addition of virus; MOI of

3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights

regions of colocalization between PML, Daxx, and vDNA (as indicated). Weighted (w.) colocalization coefficients shown. (D) Quantitation of PML and

Daxx recruitment to infecting vDNA in restrictive (HFt, RPE) and permissive (U2OS, SAOS) cell lines (as shown in C). Boxes: 25th to 75th percentile range;

black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident threshold level (weighted

colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from 4 independent infections. (E-H) ATRX is required for efficient PML-NB
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replication (Fig 9A), are defective in aspects relating to intracellular innate signalling in

response to HSV-1 infection. These data support our microscopy observations (Fig 6) and

inhibitor studies (Figs 7 and 8), and collectively demonstrate that intrinsic and innate host

immune responses to HSV-1 infection are temporally distinct and functionally separable arms

of host immunity.

In summary, we show that the temporal recruitment of host immune regulators to infecting

viral genomes plays an important role in the sequential regulation of intrinsic and innate

immunity during HSV-1 infection. We identify PML-NBs to entrap vDNA shortly after

nuclear entry in an ATRX-dependent and IFI16-independent manner. We identify a novel

role for PML in the induction of innate immunity in response to HSV-1 infection that corre-

lates with the recruitment of IFI16 into vDNA complexes associated with ICP4 and the onset

of vDNA replication. These intracellular host defences are counteracted by ICP0, which

entrapment of vDNA. HFt cells were stably transduced with lentiviruses expressing ATRX-targeting (shATRX) or non-targeting control (shCtrl) shRNAs.

(E) qRT-PCR quantitation of ATRX or PML mRNA levels in HFt shCtrl and shATRX cells. Mean (RQ) and standard deviation (RQmin/max) shown and

expressed relative to HFt shCtrl cells (1). (F) Western blot analysis of the relative expression levels of ATRX, PML, and Daxx in whole cell lysates from HFt

shCtrl and shATRX cells. Actin is shown as a loading control. Molecular mass markers are shown. (G) Scatter plot showing paired w. colocalization

coefficients of ATRX and PML to individual nuclear infecting viral genomes in shCtrl (blue) and shATRX (red) cells infected with HSV-1EdU at an MOI of

3 PFU/cell at 90 mpi (post-addition of virus). n� 200 genomes per sample population. Dotted boxes highlight genome populations identified to have

altered distribution of colocalization frequency in comparison to infected shCtrl cells. (H) Quantitation of PML and ATRX recruitment to infecting viral

genomes (as shown in G). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile

range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). � P< 0.05, ��� P< 0.001; Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g009

Fig 10. PML-NB entrapment of vDNA does not lead to the induction of innate immunity. (A) Relative Mx1, ISG15, and ISG54 mRNA levels in cell lines

restrictive (HFt, RPE) or permissive (U2OS, SAOS) to HSV-1 ICP0-null mutant (ΔICP0) infection. Cells were mock treated, IFN-β (100 IU/ml) stimulated,

or infected with ΔICP0 at an MOI of 1 PFU/cell for 9 h. n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

mock for each cell line (1). (B) Restrictive (HFt, RPE) or permissive (U2OS, SAOS) cell lines were infected with ΔICP0 at an MOI of 1 PFU/cell and treated

with either DMSO or Ruxolitinib (Ruxo, 5μM). CRV was harvested at 48 hpi and titres determined on U2OS cells. n = 3, means and standard deviations

shown and expressed as relative fold-change to DMSO titres (1) for each cell line. � P< 0.05, ��� P< 0.001, ns (not significant); two-tailed t-test.

https://doi.org/10.1371/journal.ppat.1006769.g010
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induces the degradation of PML from the outset of infection to release viral genomes

entrapped within PML-NBs to stimulate the onset of HSV-1 lytic replication.

Discussion

A key aspect in the regulation of intracellular host immunity during herpesvirus infection is

the rapid recruitment of host immune factors to infecting viral genomes. This nuclear response

to infection has been linked to viral genome silencing, as part of a pre-existing intrinsic

immune defence, and the activation of innate immune signalling pathways (reviewed in [1, 4,

32]). However, the temporal recruitment of these host immune regulators to infecting viral

genomes upon vDNA entry into the nucleus has remained poorly defined due to the technical

challenges associated with low genome copy-number detection.

Microscopy studies have historically relied on the use of viral mutants, high MOI condi-

tions, and vDNA binding proteins to investigate the recruitment of host immune regulators to

infecting viral genomes. Whilst informative, such approaches can readily saturate intrinsic

host defences that restrict the initiation of viral gene expression due to high input genome

loads [35]. Consequently, the temporal sequence of events that influence the sequential regula-

tion of intracellular host immunity upon vDNA entry into the nucleus has remained poorly

defined, specifically during WT herpesvirus infections that express a full complement of

immune antagonists. Here we quantitatively examine the recruitment of intrinsic and innate

immune regulators to infecting WT and ICP0-null mutant HSV-1 genomes under a range of

relatively low MOI conditions (� 3 PFU/cell) within the first 15–90 mpi (post-addition of

virus). We show that PML, the principle scaffolding protein of PML-NBs [48], plays tempo-

rally distinct and functionally separable roles in the regulation of intrinsic and innate immune

defences activated in response to HSV-1 infection through the entrapment of viral genomes

(Figs 2 and 6) and the induction of ISG expression following the onset of vDNA replication

(Fig 7), respectively. These observations reconcile many longstanding issues within the field as

to the importance of PML and PML-NBs during primary herpesvirus infection and the

requirement for ICP0 to stimulate the onset of HSV-1 lytic replication, as discussed below.

Immuno-FISH experiments conducted by Gerd Maul and colleagues over 20 years ago

originally identified that infecting HSV-1 genomes localize in close proximity to PML-NBs

under infection conditions that enabled detection of ICP8 [8], an essential component of the

vDNA replication complex [67]. These pioneering observations have stimulated a field of

research that has uncovered fundamental roles for many PML-NB associated proteins in the

regulation of intracellular host immunity against a range of DNA and RNA viral pathogens

(reviewed in [1, 20, 21, 68]). PML-NBs are highly dynamic nuclear sub-domains, with resident

proteins (PML, Sp100, and Daxx) in constant exchange with the surrounding nucleoplasm

[10]. Correspondingly, asynchronous plaque-edge recruitment assays (examples of which are

shown in Fig 6, S7 Fig; [9]) have shown that many PML-NB component proteins re-localize to

sites in close proximity to infecting HSV-1 genomes under high MOI conditions, where de
novo PML-NB like foci are reformed [10]. These observations have set the paradigm for intrin-

sic immunity during herpesvirus infection, where pre-existing PML-NB host factors re-localize

to infecting viral genomes to mediate the transcriptional repression of viral gene expression

[19, 49, 50, 69]. However, recent live-cell microscopy studies have proposed an alternate mech-

anism, whereby vDNA becomes transiently associated with host factor(s) within the nucleo-

plasm (notably Daxx and IFI16; [12, 14]) prior to deposition at PML-NBs, although no

evidence for Daxx or IFI16 colocalization with vDNA or deposition within PML-NBs was

reported. Using click chemistry, we demonstrate for the first time that infecting WT and

ICP0-null mutant HSV-1 genomes are rapidly entrapped within PML-NBs following nuclear
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entry (30–90 mpi; Figs 2 and 6J). While we cannot rule out a recruitment model of genome

entrapment, specifically the re-localization of PML-NB host factors that are in immediate

proximity to nuclear infecting viral genomes, our data support a deposition model as: (i)

PML-NBs that contained vDNA were indistinguishable in composition from other PML-NBs

within the same infected nucleus or mock-infected cells (Fig 3A–3D, S3 Fig); (ii) Depletion of

PML reduced Daxx colocalization with vDNA, indicative of a transient association stabilized

by PML at PML-NBs where Daxx is a resident protein (Fig 4E; [48, 49]); (iii) Depletion of

ATRX, a binding partner of Daxx [70], reduced the frequency of PML colocalization with

vDNA in a significant subset of infected cells (Fig 9E–9H). These observations support a depo-

sition model of vDNA entrapment at pre-existing PML-NBs that contain a core complement

of PML-NB host factors and implicate the Daxx/ATRX complex in this process, consistent

with live-cell microscopy observations [12]. These observations are consistent with co-deple-

tion experiments [19, 50, 69], which have shown PML-NB proteins to act cooperatively to

restrict the initiation of HSV-1 ICP0-null mutant replication under low MOI conditions (� 1

PFU/cell, 6E; < 25 genome copies/cell, S2 Table). We therefore provide spatial context to these

studies, as repressed viral genomes remain stably entrapped within PML-NBs at 24 hpi (Fig

6J), a host response that is impaired in cell types permissive to HSV-1 ICP0-null mutant repli-

cation which lack ATRX (U2OS, SAOS; Fig 9A–9D; [34, 63, 64]). Thus, we identify PML-NB

entrapment of vDNA as a key intrinsic antiviral host defence to WT herpesvirus nuclear infec-

tion, a conclusion consistent with genome localization studies in HSV-1 latently infected cells

by immuno-FISH [71–73]. We demonstrate that this intrinsic PML-NB host defence occurs in

a range of restrictive cell types relevant to primary HSV-1 infection (Figs 2 and 9) and inde-

pendently of the induction of ISG expression (Figs 6H–6J, 7D and 10A), demonstrating that

this host response does not directly contribute to the sensing of viral nucleic acids that leads to

the induction of innate immunity.

Our data highlights the importance of ICP0 to promote the onset of WT HSV-1 infection

under low MOI conditions [33–35]. ICP0 is known to localize to PML-NBs from the outset of

infection in a PML isoform and SUMO-dependent manner [17, 22, 74, 75], where it targets

PML and other SUMO-modified component proteins for ubiquitination and proteasome-

dependent degradation [17, 25–27, 74, 75]. As ICP0 does not preferentially localize to PML-

NBs that contain vDNA (Fig 2C), our data indicate that these vDNA containing nuclear bodies

are likely to be equivalent in their respective PML isoform composition and SUMO modi-

fication status at this extremely early stage of nuclear infection. Thus, cell-wide PML-NB dis-

ruption through ICP0 mediated degradation of PML ensures viral genome release and the

dispersal of associated PML-NB host factors that repress the onset of viral gene expression [19,

49, 50, 66, 69]. This hypothesis is supported by our depletion experiments that show reduced

Daxx localization with vDNA in PML depleted cells (Fig 4E), and accounts for why many

PML-NB resident host factors known to restrict HSV-1 ICP0-null mutant replication (includ-

ing Daxx, ATRX, and PIAS1) are not directly targeted for degradation by ICP0 [19, 66]. Thus,

the correct complement of host factors within pre-existing PML-NBs is likely to play an

important role in mediating the cellular restriction of viral gene expression from the outset of

nuclear infection. These observations account for why many herpesviruses encode IE gene

products that disrupt the structural organization of PML-NBs (reviewed in [1, 68]), and the

respective abilities of these proteins to complement the replication and plaque-forming defect

of an HSV-1 ICP0-null mutant in restrictive cell types [76–79].

Our observation that repressed HSV-1 ICP0-null mutant genomes remain stably entrapped

within PML-NBs without inducing ISG expression (Figs 6E–6J and 7D) has significant impli-

cations with respect to host PRR sensing of vDNA and the regulation of innate immunity dur-

ing herpesvirus infection. The sensing of foreign DNA and the activation of innate immune
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signalling pathways can occur through multiple pathways and PRRs, including TLR9, RIG-I,

MAVS, AIM2, DNA-PK, cGAS, and IFI16 (reviewed in [4–6]). Of these, IFI16 has received

significant attention due to its role as a vDNA PRR in the induction of ISG expression and

type-I IFN production during herpesvirus infection [28, 29, 80–84]. Correspondingly, micros-

copy assays have shown IFI16 to be recruited to infecting HSV-1 genomes in a pyrin domain-

dependent manner in association with PML-NB host factors [11, 12, 14]. This host response

was initially reported to be antagonized by the ubiquitin ligase activity of ICP0 [28, 29],

although subsequent studies have shown other viral and cellular factors are likely to be

involved [11, 30, 31]. IFI16 recruitment studies have relied on the use of vDNA binding pro-

teins to enable viral genome detection by proxy, or on extrapolation of altered patterns in

IFI16 nuclear localization to infer IFI16-vDNA association in restrictive cell types. Thus, the

temporal kinetics of IFI16 recruitment to vDNA and its subsequent association with PML-NB

host factors has remained poorly defined, specifically under MOI conditions relevant to WT

herpesvirus infections. In contrast to PML-NB host factors, we failed to observe any significant

frequency of stable colocalization between IFI16 and vDNA up to 90 mpi (post-addition of

virus; Figs 3 and 5, S5 Fig), even in the absence of PML or ICP0 (Fig 4E). While we cannot

exclude the possibility of highly transient IFI16 interactions with vDNA (S5A Fig; [12, 14]),

our data indicates that IFI16 does not play an essential role in the entrapment of viral genomes

by PML-NBs (Fig 5; [11, 14]). Importantly, under infection conditions that do not saturate or

antagonize intrinsic PML-NB host defences (HSV-1 ICP0-null mutant MOI < 1 PFU/cell, Fig

6E; < 25 genome copies/cell, S2 Table), we demonstrate vDNA entry into the nucleus alone is

not sufficient to stimulate a robust innate immune response (Figs 6E–6J and 7D). Induction of

innate immunity only occurred under MOI conditions sufficient to saturate intrinsic host

defences leading to the onset of HSV-1 ICP0-null mutant replication and plaque-formation

(MOI� 1 PFU/cell; Figs 6E and 7D). Under such conditions, we identified a clear kinetic dif-

ference in the stable recruitment of PML and IFI16 to infecting viral genomes, which in the

case of IFI16 correlated with the recruitment of ICP4 (the major IE viral transcription factor)

to vDNA and the onset of viral gene expression (Fig 6A–6D). Thus, we have identified a tem-

poral boundary in the recruitment of intrinsic and innate immune regulators to infecting viral

genomes that could represent a shift in host response; from an intrinsic defence centred on the

repression of viral gene expression to the induction of innate immune signalling that promotes

an antiviral state to restrict virus propagation. This hypothesis is supported by our observation

that the induction of innate immunity requires the onset of vDNA replication (Fig 7E and 7I).

IFI16 is reported to recognise nucleosome free DNA in a sequence independent manner [85–

87], with high binding affinity for G quadraplex, branched or cruciform DNA structures [52].

Thus, it likely that the recruitment of IFI16 to infecting viral genomes is stabilised following

the onset of vDNA replication that produces an abundance of such DNA structures [57]. This

hypothesis may account for why PAA, but not ACG, is capable of inhibiting the induction of

ISG expression (Fig 7E and 7F). As inactivation of the vDNA polymerase by PAA would be

expected to impair the initiation of vDNA replication [53, 57], while ACG treatment would

lead to the accumulation of stalled vDNA replication products [54]. Thus, we hypothesize that

the topology of replicating vDNA is important for the stable recruitment of IFI16 on to vDNA

that leads to the induction of ISG expression and type-I IFN production during herpesvirus

infection. We note that other viral and cellular factors are likely to contribute to the induction

of innate immunity under alternative infection conditions, for example excessively high MOI,

UV inactivation, or the use of viral mutants defective in multiple genes, which may deliver or

generate PAMPs for PRR detection at different stages of infection.

While it is clear that IFI16 plays a key role in the induction of ISG expression during her-

pesvirus infection, we have also identified an important and novel role for PML in this host
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response to HSV-1 infection (Fig 8). Depletion of PML significantly reduced the levels of ISG

transcript accumulation observed at 9 hpi during HSV-1 ICP0-null mutant infection (Fig 8F),

a time point which proceeds ISG expression (16 hpi; Fig 7B). Thus, under infection conditions

that saturate intrinsic PML-NB host defences during HSV-1 ICP0-null mutant infection

(MOI� 1 PFU/cell, ~ 25 genome copies/cell), PML plays a significant role in mediating the

induction of ISG transcription. Correspondingly, pharmacological inhibition of JAK signalling

by Ruxolitinib [58, 59] did not enhance HSV-1 ICP0-null mutant propagation in either IFI16

or PML depleted cells (Fig 8D). Collectively, these data demonstrate that PML plays an impor-

tant role in the induction of innate immunity in response to HSV-1 infection that restricts the

propagation of HSV-1 following the successful saturation of PML-NB intrinsic host defences.

These observations are consistent with reports highlighting a role for PML to mediate the

induction of innate immunity in response to other human herpesviruses [88–90], and a grow-

ing body of literature suggesting that specific PML isoforms play an important role in mediat-

ing the transcriptional regulation of cytokine signalling (reviewed in [91]). Notably, PML has

been reported to mediate the recruitment of activated STAT1 and 2, along with HDAC1 and

2, onto ISG promoters (ISG54, CXCL10) during human cytomegalovirus (HCMV) infection

[90]. This host response is antagonized by the HCMV IE gene product IE1 [88, 90], a viral pro-

tein known to disrupt PML-NBs and to relieve the intrinsic cellular restriction of an HSV-1

ICP0-null mutant [78]. As JAK activity is well known to be required for STAT phosphoryla-

tion [60], these observations are consistent with our inhibitor studies (Figs 7H, 7I, 8B and 8D),

which show JAK activity to play an important role in the induction of ISGs during HSV-1

ICP0-null mutant vDNA replication at 9 hpi. Consistent with STAT1 depletion studies [61],

JAK inhibition did not influence the intrinsic restriction of an HSV-1 ICP0-null mutant (Fig

8A). These data contrast with depletion studies, which show a clear cooperative role for

PML-NB host factors to restrict the initiation of HSV-1 ICP0-null replication [19, 50, 69].

Taken together with our observations in RPE cells (Figs 9A and 10), which are restrictive to

ICP0-null HSV-1 replication but defective in innate immune signalling, these data show that

PML plays dual roles in the temporal regulation of both intrinsic and innate immunity in

response to HSV-1 infection. Host defences that are counteracted by ICP0 through the degra-

dation of PML and disruption of PML-NBs from the outset of infection.

In conclusion, we have shown for the first time that the differential recruitment of host

immune regulators to infecting viral genomes plays a fundamental role in the sequential regu-

lation of intrinsic and innate immune defences following HSV-1 nuclear infection. We have

identified dual roles for PML in the regulation of these intracellular defences to HSV-1 infec-

tion that are dependent on vDNA entry into the nucleus and the onset of vDNA replication,

respectively. Our analysis reconciles many long-standing questions as to the importance of

PML and PML-NBs in the regulation of intracellular host immunity during HSV-1 infection.

Our data highlights the importance of viral antagonists that disrupt PML-NBs to inactivate

and evade key intracellular immune defences from the outset of infection, thereby promoting

the onset of replication, propagation, and ultimately transmission to new hosts. Moreover, we

demonstrate the versatility and sensitivity of bio-orthogonal labelling of viral nucleic acid to

investigate the temporal recruitment of host immune regulators to infecting viral genomes

during infection.

Materials and methods

Cells and drugs

Primary human foreskin fibroblast cells (HFs) were obtained from Thomas Stamminger

(Department of Urology, University of Erlangen; [49]) and immortalized (HFt) by retrovirus
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transduction to express the catalytic subunit of human telomerase, as previously described

[18]. HFt, retinal pigmented epithelial (RPE-1; ATCC, CRL-4000), Human osteosarcoma

(U2OS and SAOS; ECACC, 92022711 and 89050205), primary human foetal lung fibroblast

(MRC-5; ATCC, CCL-171), and adult human keratinocyte (HaCat; a gift of F. Rixon,

MRC-UoG CVR) cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; Life Tech-

nologies, 41966). HFt cells were cultured in the presence of 5 μg/ml of Hygromycin (Invitro-

gen, 10687–010) to maintain hTERT expression. Transduced HFt cells expressing shRNAs

were cultured in the presence of Puromycin (Sigma-Aldrich, P8833; 1 μg/ml or 0.5 μg/ml for

selection or maintenance, respectively). Primary human embryonic lung fibroblast (HEL 299;

ECACC, 87042207) cells were maintained in Minimum Essential Medium Eagle (MEM;

Sigma-Aldrich M5650) supplemented with 2 mM L-Glutamine (Life Technologies, 25030–

024) and 1 mM Sodium Pyruvate (Life Technologies, 11360–039). Baby hamster kidney fibro-

blast (BHK-21 C13; a gift of R. Everett, MRC-UoG CVR) cells were grown in Glasgow Mini-

mum Essential Medium (GMEM; Life Technologies, 21710–025) supplemented with 10%

Tryptose Phosphate Broth (TPB; Life Technologies, 18050–039). Medium for all cell lines was

supplemented with 10% foetal bovine serum (FBS; Life Technologies, 10270), 100 units/ml

penicillin, and 100 μg/ml streptomycin (Life Technologies, 15140–122). All cell lines were

maintained at 37˚C in 5% CO2. 5-Ethynyl-2’-deoxyuridine (EdU; Sigma-Aldrich, T511285),

5-Ethynyl-2’-deoxycytidine (EdC; Sigma-Aldrich, T511307), 2’-deoxyruridine (dU; Sigma-

Aldrich, D5412), and Ruxolitinib (Ruxo; Sellechchem, S1378) were prepared in DMSO and

used at the indicated concentrations. Acycloguanosine (ACG, Sigma-Aldrich, A4669), Phos-

phonoacetic acid (PAA, Sigma-Aldrich, 284270), and Interferon beta (IFN-β; Calbiochem,

407318) were prepared in Milli-Q H2O and used at the indicated concentrations.

Viruses

Wild-type HSV-1 strain 17syn+ (HSV-1), its ICP0-null mutant derivative dl1403 (ΔICP0;

[33]), and their respective variants that express eYFP.ICP4 [40] were propagated and titrated

as described [35]. For EdU labelling of viral genomes, RPE cells were infected with either

HSV-1 (MOI 0.001 PFU/cell) or ΔICP0 (MOI 0.5 PFU/cell). At 24 h post-infection (hpi), EdU

or EdC was added at a final concentration of 0.5 μM, unless otherwise indicated. Fresh EdU/

EdC was pulsed into infected cultures at 24 h intervals until extensive cytopathic effect was

observed, typically 3 to 4 days post-infection. Supernatants containing labelled cell released

virus (CRV) were clarified by centrifugation (423 xg for 10 min) and filtered through a

0.45 μm sterile filter and pelleted using a Beckman TLA100 Ultracentrifuge (33,800 xg for 3h

at 4˚C). Virion pellets were resuspended and pooled in 500 μl complete DMEM medium, and

titrated in U2OS cells as described [35].

Plasmids and lentiviral transduction

Plasmids encoding short hairpin (sh) RNAs against a non-targeted control sequence (shCtrl;

5’-TTATCGCGCATATCACGCG-3’), PML (shPML; 5’-AGATGCAGCTGTATCCAAG-3’),

ATRX (shATRX; 5’- CGACAGAAACTAACCCTGTAA-3’), or IFI16 (shIFI16; 5’-CCAC

AATCTACGAAATTCA-3’) were used to generate lentiviral supernatant stocks for transduc-

tion of HFt cells as described [11, 49, 65]. Pooled and stably transduced cells were used for

experimentation.

Antibodies

The following antibodies were used for immunofluorescence or western blotting: Primary rab-

bit polyclonal: anti-actin (Sigma-Aldrich, A5060), anti-Daxx (Upstate, 07–471), anti-ATRX
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(Santa Cruz, H300), anti-PML (Bethyl Laboratories, A301-167A; Jena Biosciences, ABD-030),

anti-Sp100 (GeneTex, GTX131569), anti-SUMO2/3 (Abcam, ab22654), anti-Mx1 (Santa Cruz,

sc-50509;ProteinTech, 13750-1-AP), anti-ISG15 (ProteinTech, 15981-1-AP), and anti-ISG54

(IFIT2, proteinTech, 12604-1-AP). Primary mouse monoclonal: anti-ICP0 (11060, [92]), anti-

ICP4 (58s, [93]), anti-VP5 (DM165, [94]), anti-SUMO2/3 (Abcam, ab81371), anti-PML

(abcam, ab96051), anti-IFI16 (abcam, ab55328; Santa Cruz, sc-8023). Primary antibodies were

detected using the following secondary antibodies: DyLight-680 or -800 conjugated anti-rabbit

or -mouse (Thermo; 35568 and SA5-35571), Alexa -488, -555, or -647 conjugated anti-rabbit,

or -mouse (Invitrogen; A21206, A21202, A31572, A31570, A31573, A31571), HRP conjugated

anti-mouse (Sigma-Aldrich, A4416).

Plaque Forming Efficiency (PFE)

Unless otherwise stated, cells were infected with serial dilutions of HSV-1 or ΔICP0 and

rocked every 10 min for 1 h prior to overlay with medium supplemented with 2% Human

Serum (HS; MP Biomedicals, 2931149). 24 to 36 hpi, cells were washed twice in PBS (Sigma-

Aldrich, D1408), simultaneously fixed and permeabilized in 1.8% formaldehyde (Sigma-

Aldrich, F8775) and 0.5% NP40 (BDH, 56009) in PBS for 10 min, then washed twice in 0.1%

Tween in PBS (PBST). Cells were blocked with 5% skimmed milk powder (SMP; Marvel) in

PBST (blocking buffer) for 30 min before incubation with an anti-VP5 monoclonal antibody

diluted in blocking buffer for 90 min. Cells were washed three times with PBST, incubated

with HRP conjugated anti-mouse IgG diluted in blocking buffer for 60 min, then washed with

PBST three times. Plaques were visualized with True Blue peroxidase developing solution

(Insight, 50-78-02) according to the manufacturer’s instructions, and washed with Milli-Q

H2O prior to plaque counting or imaging using an Axio Observer Z.1 microscope (Zeiss) with

differential interference contrast. For plaque formation efficiency (PFE) assays, plaque counts

are expressed relative to the number of plaques on control HFt or U2OS infected cell monolay-

ers (as indicated) at the equivalent dilution of input virus. Results presented as relative fold

change (number of plaques sample/number of plaques sample control). Plaque diameters were

measured using Zen blue (Zeiss) imaging software.

Viral yield assays

Cells were infected with either HSV-1 (MOI 0.001 PFU/cell), or ΔICP0 (MOI 1 or 2 PFU/cell,

as indicated) and rocked every 10 min for 1 h prior to overlay with complete medium contain-

ing either 5 μM Ruxolitinib or DMSO as a carrier control. Supernatants containing cell

released virus (CRV) were collected at the indicated times post-infection. Virus titres were cal-

culated by titration on U2OS cells as described [35].

Particle counting

Equal volumes of virus suspension and polystyrene latex spheres (Agar Scientific, AGS130-02)

at a known concentration per ml were mixed in 2 volumes of TNE buffer (20 mM Tris [pH

7.5], 0.5 M NaCl, and 1 mM EDTA). 5 μl of suspension was then added to a glow discharged

EM grid (Agar Scientific, S162-4), allowed to rest for 1 min, washed three times in deionised

water, and stained with Ammonium Molybdate (2% (w/v) pH 7.2). Dry grids were examined

using a JEM2200 FS electron microscope (JEOL) and images captured using an Ultrascan

4000 charge-coupled-device (CCD) camera (Gatan). Multiple images (n� 6) per sample were

used for virus particle and latex bead enumeration and used to calculate the number of parti-

cles per ml of virus stock inoculum.

Temporal regulation of intracellular immunity to HSV-1 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006769 January 8, 2018 25 / 36

https://doi.org/10.1371/journal.ppat.1006769


Western blotting

Treated or infected cells were washed twice with PBS. Whole cell lysates were collected in

SDS-PAGE loading buffer containing 4 M Urea (Sigma-Aldrich, U0631) and 50 mM Dithio-

threitol (DTT; Sigma-Aldrich, D0632). Proteins were resolved on NuPAGE 4–12% Bis-Tris

Protein gels (Invitrogen, NP0322BOX) in MES (Invitrogen; NP0002) or MOPS buffer (Invi-

trogen, NP0001) and transferred onto 0.2 μm nitrocellulose membrane (Amersham,

15249794) for 90 min at 30 volts in Novex transfer buffer (Invitrogen, NP0006-1) according to

the manufacturer’s instructions. Membranes were blocked in PBS with 5% FBS (Block) for a

minimum of 1 h at room temperature. Membranes were incubated in primary antibody

diluted in Block for a minimum of 1 h, washed three times with PBST for 5 min each, then

incubated in secondary antibody diluted in Block for 1 h. Following three 5 min washes in

PBST, one 5 min wash in PBS, and one rinse in Milli-Q H2O, membranes were imaged on an

Odyssey Infrared Imager (LiCor). The intensity of protein bands was quantified with Odyssey

Image Studio Software.

Immunofluorescence and confocal microscopy

Cells were seeded overnight on to 13 mm coverslips prior to treatment or infection at the indi-

cated MOI and time points at 37˚C. For click chemistry assays, cells were washed in serum

free DMEM prior to overlay in complete medium or fixation. At indicated time points, cells

were washed twice in CSK buffer (10 mM HEPES, 100 mM NaCl, 300 mM Sucrose, 3 mM

MgCl2, 5 mM EGTA), simultaneously fixed and permeabilized in 1.8% formaldehyde and

0.5% Triton-X100 (Sigma-Aldrich, T-9284) in CSK buffer for 10 min, and washed twice in

CSK. Coverslips were then blocked with 2% HS in PBS for 30 min prior to click chemistry fol-

lowed by immunostaining. Where applicable, EdU-labelled vDNA was detected using the

Click-iT Plus EdU Alexa Fluor 555 Imaging Kit (ThermoFisher scientific, C10638) according

to the manufacturer’s instructions. For host and viral protein labelling, cells were incubated

with primary antibodies diluted in 2% HS in PBS for 60 min, then washed in PBS three times,

before incubation with secondary antibodies and DAPI (Sigma-Aldrich, D9542) in 2% HS in

PBS for 60 min. Coverslips were then washed in PBS three times, and twice in Milli-Q H2O

prior to mounting on Citiflour AF1 (Agar Scientific, R1320). Coverslips were examined using

a Zeiss LSM 880 confocal microscope using the 63x Plan-Apochromat oil immersion lens

(numerical aperture 1.4) using 405 nm, 488 nm, 543 nm, 594 nm, and 633 nm laser lines. Zen

black software (Zeiss) was used for image capture, generating cut mask channels, and calculat-

ing weighted colocalization coefficients. High-resolution Z-series images were captured under

LSM 880 Airy scan deconvolution settings using 1:1:1 capture conditions at 0.035 μm intervals.

Images were processed using Imaris (Bitplane) software to produce rendered 3D image recon-

structions and to calculate Pearson colocalization coefficients. Exported images were processed

with minimal adjustment using Adobe Photoshop and assembled for presentation using

Adobe Illustrator.

Virion genome release assay

In vitro virion DNA release assays were conducted as essentially described in [47]. Briefly,

1x108 PFU of virus preparation was diluted in ice-cold TNE buffer in the presence or absence

of GuHCl (2M final concentration; Sigma-Aldrich, G3272). Samples were incubated on ice for

60 mins prior to the addition of ice-cold Methanol (final concentration 60%). Samples were

dried onto poly-D-lysine (Sigma-Aldrich, P7405) treated coverslips for 60–90 mins at 4˚C

prior to fixation in PBS containing 1.8% formaldehyde and 0.5% Triton-X100 for 10 mins at

RT. Samples were washed twice in PBS and blocked in PBS containing 2% FBS for 10 mins at
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RT. Samples were processed for click chemistry to detect EdU or EdC labelled vDNA and

immuno-stained for VP5 to detect viral capsids (as described above). High-resolution Z-series

images were captured under LSM 880 Airy scan deconvolution settings at 0.2 μm intervals (as

described above) and the number of capsids and EdU or EdC labelled viral genomes were

quantified in Zen blue (Zeiss) from maximum intensity projection images.

Plaque-edge recruitment assays

HFt cells were infected with ΔICP0 EYFP.ICP4 at an MOI of 2 PFU/cell to enable the initiation

of viral replication and plaque formation, as previously described [9]. At 24 hpi, infected cell

monolayers were pulsed with 1 μM EdU for 6h prior to fixation and immunostaining, as

described above.

Quantitative RT-PCR

Cells were mock, HSV-1, or ΔICP0-infected at the indicated MOI, and total RNA collected at

9 hrs post-infection unless otherwise stated. Where applicable, all drug treatments were added

at the indicated concentration 1 h after inoculum adsorption. Total RNA was isolated using

the RNAeasy Plus Kit (Qiagen, 74134) according to the manufacturer’s instructions. Reverse

transcription (RT) was performed using the TaqMan Reverse Transcription Reagents kit (Life

Technologies, N8080234) with oligo(dT) primers. cDNA samples were analyzed in triplicate

using TaqMan Fast Universal PCR Master Mix (Life Technologies, 4352042) with the follow-

ing TaqMan gene specific primer-(FAM/MGB) probe mixes (Life Technologies): PML (assay

ID Hs00231241_m1), IFI16 (assay ID Hs00986757_m1), ATRX (assay ID HS00997529_m1),

Mx1 (assay ID HS00895608_m1) ISG15 (assay ID HS01921425_s1), ISG54 (assay ID Hs0192

2738_s1), or GAPDH (4333764F) on a 7500 Fast Real time PCR system (Applied Biosystems).

Relative mRNA levels were determined using the ΔΔCt method, normalized to GAPDH, and

expressed relative to indicated treatments. Data presented is from a minimum of two indepen-

dent biological replicates, each analysed in triplicate (RQ/RQmin/max). Means (RQ) and stan-

dard deviations (RQmin/max) are presented. For input viral genome quantitation, vDNA was

extracted from infected HFt cells harvested at 90 mpi. Cells were trypsinised, pelleted by cen-

trifugation (500 xg, 10 min), washed twice in PBS, and resuspended in PBS containing 1% SDS

and 300mM Sodium acetate (pH 5.2). Total DNA was isolated by phenol chloroform extrac-

tion and ethanol precipitation, and resuspended in Tris buffer (10mM Tris-HCl pH 8.5).

qPCR was performed using two virus specific (UL30 and UL36) primer-probe sets with dis-

tinct fluorophores (Sigma-Aldrich; S3 Table) in duplex reactions performed in triplicate per

biological replicate. Quantitation was performed against standards of known concentration

derived from a purified infectious HSV-1 17syn+ BAC clone (SR27 DNA, [95]; a kind gift

from Andrew Davison MRC-UoG CVR).

Supporting information

S1 Fig. HSV-1 replication is sensitive to EdU or EdC labelling in a cell type and ICP0-de-

pendent manner. (A, D, G) RPE or HEL cells (as indicated) were infected with 100 PFU of

either WT or ΔICP0 HSV-1 and incubated in the presence of DMSO, ACG (50 μM), EdU or

EdC (0.5–10 μM, as indicated) for 24 h. Plaque counts were determined and expressed relative

to DMSO control (1) and presented as relative PFE. n� 3, means and standard deviations

shown. (B, E, H) RPE or HEL cells (as indicated) were infected (as in A) and plaque diameters

measured at 24 hpi. Boxes: 25th to 75th percentile range; black line: median plaque size; whis-

kers: 5th to 95th percentile range. n� 100 plaque measurements from 4 independent infections.

(C, F, I) RPE or HEL cells (as indicated) were infected with either WT (MOI 0.001 PFU/cell)
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or ΔICP0 (MOI 2 PFU/cell) HSV-1 in the presence of EdU or dU at the indicate concentra-

tions. CRV was collected at 48 hpi and titres determined on U2OS cells. n� 3, means and

standard deviations are shown.

(EPS)

S2 Fig. Detection of viral genomes within HSV-1EdC virions requires permeabilization of

the capsid by GuHCl treatment. 1x108 PFU of HSV-1EdC virions were incubated in TNE

buffer or TNE buffer containing 2M GuHCl at 4˚C for 60 mins, as described in [47]. EdC

labelled vDNA (red) and capsids (green) were detected by click chemistry and indirect immu-

nofluorescence staining for VP5 (the major capsid protein), respectively.

(EPS)

S3 Fig. PML-NB proteins entrap vDNA upon nuclear entry. Individual channel images

for data presented in Fig 3. Localization of PML (green) with HSV-1EdU vDNA (red, white

arrows), and PML-NB constituent proteins (Daxx, Sp100, ATRX, SUMO2/3) or IFI16 (cyan,

as indicated) at 90 mpi (post-addition of virus; MOI of 3 PFU/cell) or equivalent mock infected

cells (as indicated). Insets show magnified regions of interest (dashed boxes) highlighting host

protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between host proteins and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S4 Fig. PML-NBs entrap HSV-1 vDNA in an ICP0-independent manner. Confocal micros-

copy images as for data presented in Fig 3 for ΔICP0EdU infection. Localization of PML

(green) with infecting ΔICP0EdU vDNA (red, white arrows) and PML-NB constituent proteins

(Daxx, Sp100, ATRX, SUMO2/3) or IFI16 (cyan, as indicated) at 90 mpi (post-addition of

virus; MOI of 3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlight-

ing host protein localization with vDNA. Cut mask (yellow) highlights regions of colocaliza-

tion between host proteins and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S5 Fig. IFI16 and PML colocalization with vDNA over a range of MOI. (A,B) HFt cells were

infected with HSV-1EdU over a range of MOIs (1–50 PFU/cell, as indicated). Cells were fixed

and permeabilized at 90 mpi (post-addition of virus). vDNA, IFI16 and PML, were detected by

click chemistry and indirect immunofluorescence staining, respectively. (A) Confocal micros-

copy images showing IFI16 (green) dots at the nuclear rim in association with PML (cyan) and

vDNA (red) at an MOI of 50. White arrow highlights vDNA colocalization with IFI16 and

PML. Yellow arrow highlights vDNA colocalization with PML only. Correspondingly coloured

insets show magnified regions of interest (dashed boxes). Cut mask (yellow) highlights regions

of colocalization between IFI16, PML, and vDNA (as indicated). Weighted (w.) colocalization

coefficients shown. (B) Scatter plot showing paired w. colocalization coefficients of IFI16 and

PML to individual nuclear infecting viral genomes (as described above). n� 250 genomes

per sample population derived from a minimum of two independent infections. (C) Quantita-

tion of host protein recruitment to infecting viral genomes (as in B). Boxes: 25th to 75th percen-

tile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th

percentile range. Solid line indicates coincident threshold level (weighted colocalization

coefficients < 0.2). (D) HFt cells were HSV-1EdU infected at an MOI 10 PFU/cell. Cells were

fixed and permeabilized at either 15 or 30 mpi (post-addition of virus). Scatter plot showing

paired w. colocalization coefficients of IFI16 and PML to individual nuclear infecting viral

genomes. n� 60 genomes per sample population derived from a minimum of two
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independent infections. (E) Quantitation of host protein recruitment to infecting viral

genomes (as shown in D). Boxes: 25th to 75th percentile range; black line: median weighted

(w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coinci-

dent threshold level (weighted colocalization coefficients < 0.2). �� P< 0.01, ��� P< 0.001, ns

(not significant); Mann-Whitney U-test.

(EPS)

S6 Fig. Depletion of PML does not enhance IFI16 recruitment to ΔICP0EdU infecting viral

genomes. Individual channel images for data presented in Fig 4 for ΔICP0EdU infection. Local-

ization of PML (green), and either Daxx or IFI16 (cyan; as indicated) to infecting ΔICP0EdU

vDNA (red, white arrows) in HFt shCtrl and shPML cells at 90 mpi (post-addition of virus;

MOI of 3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlighting

host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between PML, IFI16, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S7 Fig. Recruitment of IFI16 and eYFP.ICP4 to ΔICP0EdU vDNA in an asynchronous pla-

que-edge recruitment assay. HFt cells were infected with ΔICP0.eYFP.ICP4 at an MOI of 2

PFU/cell for 24h prior to pulse labelling with EdU for 6h. Representative images show the cel-

lular localization of eYFP.ICP4 (green), vDNA (red), and IFI16 (cyan) in cells associated with

a developing ΔICP0.eYFP.ICP4 plaque. (Left) Wide-field view of the plaque-body with newly

infected cells on the periphery of the plaque-edge highlighted (dashed boxes; regions of inter-

est 1–3). (Right) Single cell images of regions of interest (dashed boxes 1–3, respectively) show-

ing nuclei at different stages of infection. Box 1: Infected nucleus with robust vDNA

replication compartments. Box 2: Asymmetrically infected nucleus with early stage vDNA rep-

lication compartments. Box 3: Asymmetrically distributed EdU labelled nuclear infecting viral

genomes that have yet to initiate viral IE (eYFP.ICP4) gene expression. IFI16 is only detected

in association with vDNA that has initiated IE gene expression.

(EPS)

S8 Fig. PML-NB entrapment of vDNA occurs in a cell type dependent manner. Individual

channel images from data presented in Fig 10. Localization of PML (green) and Daxx (cyan)

with vDNA (red, white arrows) in HSV-1EdU infected HFt, RPE, U2OS, or SAOS cells at 30

mpi (post-addition of virus; MOI 3 PFU/cell). Insets show magnified regions of interest

(dashed boxes) highlighting PML and Daxx localization with vDNA. Cut mask (yellow) high-

lights regions of colocalization between PML or Daxx and vDNA (as indicated). Weighted

colocalization coefficients are shown.

(EPS)

S1 Table. EdU or EdC treatment of infected cell monolayers inhibits wild-type (strain

17syn+) and ICP0-null mutant (dl1403/ΔICP0) HSV-1 plaque formation efficiency (PFE)

in a cell-type and dose-dependent manner. Plaque counts expressed relative to DMSO con-

trol monolayers, (# of plaques treated / # of plaques DMSO control) at equivalent serial dilu-

tions of virus and presented as relative plaque formation efficiency (PFE). n� 3, means and

standard deviations (in brackets) shown. Small plaque phenotypes at 24–36 hpi highlighted.

(DOCX)

S2 Table. Particle to PFU and genome to PFU ratios of EdU labelled wild-type and ICP0--

null mutant (dl1403/ΔICP0) HSV-1 stock preparations in permissive (U2OS) and restric-

tive (HFt) cell types. Mean particles/ml determined from a minimum of 6 independent fields
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of view. Mean PFU/ml determined from 3 independent titrations on either U2OS or HFt (as

indicated). Mean genome copy number/U2OS PFU determined from triplicate qPCR reac-

tions from 2 independent experiments. PS, plate stock (no ultracentrifugation).

(DOCX)

S3 Table. Primer-probe sets used for HSV-1 vDNA quantitation by qPCR.

(DOCX)
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