

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis(nitrato- $\kappa^2 O, O'$)barium]bis(μ -L-histidine- $\kappa^3 O, O':O$]

P. Arularasan,^a G. Chakkaravarthi^{b*} and R. Mohan^{a*}

^aDepartment of Physics, Presidency College, Chennai 600 005, India, and ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com, professormohan@yahoo.co.in

Received 28 September 2013; accepted 6 October 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.048; data-to-parameter ratio = 23.1.

In the polymeric title compound, $[Ba(NO_3)_2(C_6H_9N_3O_2)_2]_n$, the Ba^{II} atom is located on a crystallographic twofold axis and is coordinated by ten O atoms. Six are derived from two zwitterionic L-histidine molecules that simultaneously chelate one Ba^{II} atom and bridge to another. The remaining four O atoms are derived from two chelating nitrates. The molecules assemble to form a chain along [010]. In the crystal, chains are linked *via* N-H···O and N-H···N hydrogen bonds, generating a three-dimensional network.

Related literature

For the biological activity of histidine, see: Eichler *et al.* (2005); Wimalasena *et al.* (2007). For standard bond lengths, see: Allen *et al.* (1987). For related structures, see: Andra *et al.* (2010); Gokul Raj *et al.* (2006).

Experimental

b = 4.7226 (1) Å
c = 8.3180 (3) Å
$\beta = 105.432 \ (1)^{\circ}$
V = 943.11 (5) Å

Z = 2Mo $K\alpha$ radiation $\mu = 2.18 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.695, T_{max} = 0.780$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.019\\ wR(F^2) &= 0.048\\ S &= 1.15\\ 3281 \text{ reflections}\\ 142 \text{ parameters}\\ 2 \text{ restraints}\\ \text{H-atom parameters constrained} \end{split}$$

T = 295 K $0.18 \times 0.14 \times 0.12 \text{ mm}$

metal-organic compounds

6598 measured reflections 3281 independent reflections 3281 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

 $\begin{array}{l} \Delta \rho_{max} = 1.40 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -1.32 \ e \ \mathring{A}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 1164 \ \mbox{Friedel pairs} \\ \mbox{Absolute structure parameter: } 0.004 \\ (13) \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O4 ⁱ	0.86	2.29	2.854 (3)	123
$N1 - H1 \cdots O5^{ii}$	0.86	2.37	3.121 (3)	146
$N3-H3B\cdotsO1^{iii}$	0.89	2.19	3.029 (2)	158
$N3-H3C\cdots O3^{iv}$	0.89	2.05	2.867 (3)	153
$N3-H3A\cdots N2^{v}$	0.89	1.94	2.827 (3)	174

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{3}{2}, -z + 1;$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1;$ (iii) -x + 1, y, -z + 1; (iv) x, y + 1, z - 1; (v) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5259).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Andra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). *Acta Cryst.* E66, 02713.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eichler, J. F., Cramer, J. C., Kirk, K. L. & Bann, J. G. (2005). *ChemBioChem*, 6, 2170–2173.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, 01178–01180.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wimalasena, D. S., Cramer, J. C., Janowiak, B. E., Juris, S. J., Melnyk, R. A., Anderson, D. E., Kirk, K. L., Collier, R. J. & Bann, J. G. (2007). *Biochemistry*, 46, 14928–14936.

supplementary materials

Acta Cryst. (2013). E69, m597 [doi:10.1107/S1600536813027402]

catena-Poly[[bis(nitrato- $\kappa^2 O, O'$)barium]-bis(μ -L-histidine- $\kappa^3 O, O':O$]

P. Arularasan, G. Chakkaravarthi and R. Mohan

1. Comment

Histidine derivatives are used in enzyme mechanisms and biomolecular interactions (Eichler *et al.*, 2005; Wimalasena *et al.*, 2007). We herein, report the crystal structure of the title compound (I), (Fig. 1). The geometric parameters of *L*-histidine moiety of (I) are comparable with the reported related structures (Andra *et al.*, 2010; Gokul Raj *et al.*, 2006).

The Ba atom sits on a crystallographic twofold axis and is co-ordinated by 10 O atoms, with six O atoms from carboxylate groups of *L*-Histidine and four O atoms from two nitrates. The Ba—O distances, ranging from 2.767 (5) to 2.966 (2) Å, are within normal range (Allen *et al.*, 1987).

The molecule coordinate through O to form a one dimensional chain, extending along [010]. The chains are interlinked through N—H···N and N—H···O hydrogen bonds (Table 1 & Fig. 2).

2. Experimental

The title compound was synthesized from the starting materials of L –histidine (3.1030 g) and barium nitrate (2.6133 g) which were taken in water. Single crystals suitable for X-ray diffraction were grown by the slow evaporation technique at room temperature.

3. Refinement

The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. For N-bound H atoms, N—H = 0.86-0.89 Å, and $U_{iso}(H) = 1.2-1.5$ $U_{eq}(N)$. The components of anisotropic displacement parameters in the direction of the N1—C3 bond were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in *SHELXL97* (Sheldrick, 2008). The maximum and minimum residual electron density peaks of 1.40 and -1.32 eÅ⁻³, respectively, were located 0.69 Å and 0.73 Å from the Ba atom, respectively.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

A portion of the polymeric structure in (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. The symmetry codes are : (*a*) x, -1+y, z; (*c*) 1-x, -1+y, 2-z; (*d*) 1-x, y, 2-z.

Figure 2

The packing of (I), viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

catena-Poly[[bis(nitrato- $\kappa^2 O, O'$)barium]-bis(μ -L-histidine- $\kappa^3 O, O':O$]

Crystal data	
$[Ba(NO_3)_2(C_6H_9N_3O_2)_2]$	V = 943.11 (5) Å ³
$M_r = 571.68$	Z = 2
Monoclinic, C2	F(000) = 564
Hall symbol: C 2y	$D_{\rm x} = 2.013 {\rm ~Mg} {\rm ~m}^{-3}$
a = 24.9063 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 4.7226 (1) Å	Cell parameters from 6604 reflections
c = 8.3180(3) Å	$\theta = 2.6 - 34.9^{\circ}$
$\beta = 105.432 \ (1)^{\circ}$	$\mu = 2.18 \text{ mm}^{-1}$

T = 295 KBlock, colourless

Data collection

Bruker Kappa APEXII	6598 measured reflections
diffractometer	3281 independent reflections
Radiation source: fine-focus sealed tube	3281 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
ω and φ scan	$\theta_{\rm max} = 34.9^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -39 \rightarrow 40$
(SADABS; Sheldrick, 1996)	$k = -6 \rightarrow 7$
$T_{\min} = 0.695, \ T_{\max} = 0.780$	$l = -13 \rightarrow 11$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$

 $wR(F^2) = 0.048$ $w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$ S = 1.15where $P = (F_o^2 + 2F_c^2)/3$ 3281 reflections $(\Delta/\sigma)_{max} < 0.001$ 142 parameters $\Delta\rho_{max} = 1.40$ e Å⁻³2 restraints $\Delta\rho_{min} = -1.32$ e Å⁻³Primary atom site location: structure-invariant
direct methodsAbsolute structure: Flack (1983), 1164 Friedel
pairsSecondary atom site location: difference Fourier
mapAbsolute structure parameter: 0.004 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.18 \times 0.14 \times 0.12 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.31466 (7)	0.2871 (5)	0.4170 (3)	0.0239 (4)	
C2	0.26202 (8)	0.1922 (6)	0.3475 (3)	0.0304 (4)	
H2	0.2451	0.0343	0.3795	0.036*	
C3	0.27774 (8)	0.5757 (17)	0.2181 (3)	0.0335 (5)	
H3	0.2722	0.7264	0.1436	0.040*	
C4	0.35756 (8)	0.1666 (6)	0.5623 (3)	0.0290 (5)	
H4A	0.3439	-0.0118	0.5935	0.035*	
H4B	0.3623	0.2948	0.6561	0.035*	
C5	0.41435 (6)	0.1163 (13)	0.5298 (2)	0.0215 (7)	
Н5	0.4297	0.3001	0.5099	0.026*	
C6	0.45415 (7)	-0.0175 (5)	0.6835 (2)	0.0210 (3)	
N1	0.23922 (7)	0.3754 (6)	0.2217 (3)	0.0325 (4)	
H1	0.2062	0.3656	0.1559	0.039*	

N2	0.32423 (7)	0.5272 (4)	0.3354 (3)	0.0295 (5)	
N3	0.40970 (7)	-0.0632 (4)	0.3806 (2)	0.0228 (3)	
H3A	0.3830	-0.1914	0.3737	0.034*	
H3B	0.4420	-0.1508	0.3889	0.034*	
H3C	0.4014	0.0447	0.2896	0.034*	
N4	0.37614 (8)	-0.6072 (6)	1.0220 (3)	0.0332 (4)	
01	0.47815 (7)	-0.2417 (4)	0.6626 (2)	0.0307 (3)	
O2	0.45918 (6)	0.1055 (13)	0.81973 (19)	0.0294 (4)	
03	0.41918 (7)	-0.6466 (7)	1.1390 (3)	0.0470 (6)	
04	0.33641 (9)	-0.7646 (8)	1.0069 (4)	0.0721 (10)	
05	0.37673 (8)	-0.4073 (15)	0.9258 (3)	0.0556 (6)	
Bal	0.5000	-0.4123	1.0000	0.01742 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0190 (6)	0.0295 (10)	0.0223 (8)	0.0045 (7)	0.0037 (6)	-0.0027 (7)
C2	0.0230 (7)	0.0366 (11)	0.0318 (10)	0.0004 (7)	0.0078 (7)	-0.0016 (9)
C3	0.0314 (7)	0.0362 (14)	0.0296 (8)	0.0084 (12)	0.0024 (6)	0.004 (2)
C4	0.0245 (7)	0.0423 (15)	0.0203 (8)	0.0088 (7)	0.0060 (6)	0.0015 (7)
C5	0.0199 (5)	0.026 (2)	0.0174 (6)	0.0013 (9)	0.0026 (4)	0.0025 (9)
C6	0.0183 (6)	0.0243 (8)	0.0183 (7)	-0.0019 (6)	0.0015 (5)	0.0044 (6)
N1	0.0196 (6)	0.0449 (12)	0.0288 (9)	0.0058 (7)	-0.0007 (6)	-0.0050 (8)
N2	0.0245 (6)	0.0315 (14)	0.0288 (8)	0.0010 (6)	0.0006 (6)	-0.0009 (7)
N3	0.0214 (6)	0.0292 (9)	0.0173 (7)	0.0016 (6)	0.0043 (5)	0.0019 (6)
N4	0.0239 (7)	0.0451 (13)	0.0306 (10)	-0.0018 (8)	0.0074 (7)	-0.0103 (9)
O1	0.0340 (7)	0.0345 (9)	0.0228 (7)	0.0136 (7)	0.0059 (6)	0.0055 (6)
O2	0.0357 (5)	0.0258 (12)	0.0207 (5)	-0.0022 (12)	-0.0031 (4)	-0.0052 (12)
O3	0.0274 (7)	0.0762 (18)	0.0357 (10)	-0.0054 (9)	0.0056 (7)	0.0222 (11)
O4	0.0427 (11)	0.092 (2)	0.088 (2)	-0.0382 (13)	0.0288 (13)	-0.0513 (19)
O5	0.0467 (9)	0.0721 (16)	0.0462 (11)	0.020 (2)	0.0091 (8)	0.018 (3)
Ba1	0.01895 (5)	0.01937 (6)	0.01343 (5)	0.000	0.00342 (3)	0.000

Geometric parameters (Å, °)

C1—C2	1.360 (3)	N3—H3B	0.8900
C1—N2	1.374 (3)	N3—H3C	0.8900
C1—C4	1.496 (3)	N4—O4	1.217 (3)
C2—N1	1.360 (4)	N4—O5	1.240 (6)
С2—Н2	0.9300	N4—O3	1.255 (3)
C3—N2	1.320 (3)	N4—Ba1	3.271 (2)
C3—N1	1.353 (7)	O1—Ba1	2.8300 (17)
С3—Н3	0.9300	O2—Ba1 ⁱ	2.767 (5)
C4—C5	1.528 (3)	O2—Ba1	2.907 (5)
C4—H4A	0.9700	O3—Ba1	2.8022 (19)
C4—H4B	0.9700	O5—Ba1	2.9664 (18)
C5—N3	1.482 (4)	Ba1—O2 ⁱⁱ	2.767 (5)
С5—С6	1.530 (3)	Ba1—O2 ⁱⁱⁱ	2.767 (5)
С5—Н5	0.9800	Ba1—O3 ^{iv}	2.8022 (19)
C6—O2	1.249 (4)	Ba1—O1 ^{iv}	2.8300 (17)

C6—O1	1.251 (3)	Ba1—O2 ^{iv}	2.907 (5)
C6—Bal	3.180 (2)	Ba1—O5 ^{iv}	2.9664 (18)
N1—H1	0.8600	Ba1—C6 ^{iv}	3.180 (2)
N3—H3A	0.8900		
C2—C1—N2	109.63 (19)	O3—Ba1—O1 ^{iv}	70.91 (6)
C2—C1—C4	128.2 (2)	O2 ⁱⁱ —Ba1—O1	75.58 (9)
N2—C1—C4	122.15 (19)	O2 ⁱⁱⁱ —Ba1—O1	135.86 (7)
N1—C2—C1	106.0 (2)	O3 ^{iv} —Ba1—O1	70.91 (6)
N1—C2—H2	127.0	O3—Ba1—O1	123.50 (5)
C1—C2—H2	127.0	O1 ^{iv} —Ba1—O1	146.92 (9)
N2—C3—N1	110.5 (5)	O2 ⁱⁱ —Ba1—O2 ^{iv}	178.12 (13)
N2—C3—H3	124.8	O2 ⁱⁱⁱ —Ba1—O2 ^{iv}	112.65 (5)
N1—C3—H3	124.8	O3 ^{iv} —Ba1—O2 ^{iv}	110.73 (6)
C1—C4—C5	114.35 (19)	O3—Ba1—O2 ^{iv}	108.08 (8)
C1—C4—H4A	108.7	$O1^{iv}$ —Ba1— $O2^{iv}$	45.61 (7)
C5—C4—H4A	108.7	O1—Ba1—O2 ^{iv}	102.75 (7)
C1—C4—H4B	108.7	O2 ⁱⁱ —Ba1—O2	112.65 (5)
C5—C4—H4B	108.7	O2 ⁱⁱⁱ —Ba1—O2	178.12 (14)
H4A—C4—H4B	107.6	O3 ^{iv} —Ba1—O2	108.08 (8)
N3—C5—C4	111.5 (2)	O3—Ba1—O2	110.73 (6)
N3—C5—C6	110.6 (3)	O1 ^{iv} —Ba1—O2	102.75 (7)
C4—C5—C6	109.95 (18)	O1—Ba1—O2	45.61 (7)
N3—C5—H5	108.2	O2 ^{iv} —Ba1—O2	65.47 (13)
С4—С5—Н5	108.2	O2 ⁱⁱ —Ba1—O5 ^{iv}	109.27 (11)
С6—С5—Н5	108.2	O2 ⁱⁱⁱ —Ba1—O5 ^{iv}	71.53 (14)
O2—C6—O1	125.7 (3)	O3 ^{iv} —Ba1—O5 ^{iv}	43.25 (9)
O2—C6—C5	116.9 (3)	O3—Ba1—O5 ^{iv}	137.28 (10)
O1—C6—C5	117.4 (2)	O1 ^{iv} —Ba1—O5 ^{iv}	82.88 (6)
O2—C6—Bal	66.1 (3)	O1—Ba1—O5 ^{iv}	96.85 (7)
O1—C6—Ba1	62.55 (11)	O2 ^{iv} —Ba1—O5 ^{iv}	71.66 (13)
C5—C6—Ba1	160.70 (18)	O2—Ba1—O5 ^{iv}	107.53 (13)
C3—N1—C2	107.9 (2)	O2 ⁱⁱ —Ba1—O5	71.53 (14)
C3—N1—H1	126.0	O2 ⁱⁱⁱ —Ba1—O5	109.27 (11)
C2—N1—H1	126.0	O3 ^{iv} —Ba1—O5	137.28 (10)
C3—N2—C1	105.9 (3)	O3—Ba1—O5	43.25 (9)
C5—N3—H3A	109.5	O1 ^{iv} —Ba1—O5	96.85 (7)
C5—N3—H3B	109.5	O1—Ba1—O5	82.88 (6)
H3A—N3—H3B	109.5	O2 ^{iv} —Ba1—O5	107.53 (13)
C5—N3—H3C	109.5	O2—Ba1—O5	71.66 (13)
H3A—N3—H3C	109.5	$O5^{iv}$ —Ba1—O5	179.1 (3)
H3B—N3—H3C	109.5	$O2^{ii}$ —Ba1—C6 ^{iv}	158.50 (8)
04—N4—O5	123.2 (3)	$O2^{iii}$ Ba1 C6 ^{iv}	91.99 (9)
04—N4—O3	119.5 (3)	$O3^{iv}$ —Ba1—C6 ^{iv}	115.73 (5)
O5—N4—O3	117.3 (2)	$O3$ — $Ba1$ — $C6^{iv}$	91.67 (7)
O4—N4—Ba1	156.8 (2)	O1 ^{iv} —Ba1—C6 ^{iv}	23.09 (6)
O5—N4—Ba1	64.94 (12)	$O1$ — $Ba1$ — $C6^{iv}$	125.88 (6)
03—N4—Ba1	57.42 (12)	$O2^{iv}$ —Ba1—C6 ^{iv}	23.14 (7)
C6—O1—Ba1	94.36 (13)	O2—Ba1—C6 ^{iv}	86.16 (8)

C6—O2—Ba1 ⁱ	143.9 (3)	O5 ^{iv} —Ba1—C6 ^{iv}	72.50 (9)
C6—O2—Bal	90.8 (3)	O5—Ba1—C6 ^{iv}	106.94 (10)
Bal ⁱ —O2—Bal	112.65 (5)	O2 ⁱⁱ —Ba1—C6	91.99 (9)
N4—O3—Ba1	100.40 (16)	O2 ⁱⁱⁱ —Ba1—C6	158.50 (8)
N4—O5—Bal	92.81 (15)	O3 ^{iv} —Ba1—C6	91.67 (7)
O2 ⁱⁱ —Ba1—O2 ⁱⁱⁱ	69.23 (15)	O3—Ba1—C6	115.73 (5)
O2 ⁱⁱ —Ba1—O3 ^{iv}	69.64 (6)	O1 ^{iv} —Ba1—C6	125.88 (6)
O2 ⁱⁱⁱ —Ba1—O3 ^{iv}	72.42 (8)	O1—Ba1—C6	23.09 (6)
O2 ⁱⁱ —Ba1—O3	72.42 (8)	O2 ^{iv} —Ba1—C6	86.16 (8)
O2 ⁱⁱⁱ —Ba1—O3	69.64 (6)	O2—Ba1—C6	23.14 (7)
O3 ^{iv} —Ba1—O3	133.48 (13)	O5 ^{iv} —Ba1—C6	106.94 (10)
O2 ⁱⁱ —Ba1—O1 ^{iv}	135.86 (7)	O5—Ba1—C6	72.50 (9)
O2 ⁱⁱⁱ —Ba1—O1 ^{iv}	75.58 (9)	C6 ^{iv} —Ba1—C6	108.20 (8)
O3 ^{iv} —Ba1—O1 ^{iv}	123.50 (5)		
N2-C1-C2-N1	0.3 (3)	C6-O2-Ba1-O1 ^{iv}	178.66 (13)
C4—C1—C2—N1	178.7 (2)	Ba1 ⁱ —O2—Ba1—O1 ^{iv}	26.92 (7)
C2-C1-C4-C5	129.1 (3)	C6—O2—Ba1—O1	9.91 (11)
N2—C1—C4—C5	-52.6 (4)	Ba1 ⁱ —O2—Ba1—O1	-141.84 (10)
C1—C4—C5—N3	-54.6 (4)	C6—O2—Ba1—O2 ^{iv}	151.75 (17)
C1—C4—C5—C6	-177.8 (3)	$Ba1^{i}$ $O2$ $Ba1$ $O2^{iv}$	0.0
N3—C5—C6—O2	-176.0(3)	C6—O2—Ba1—O5 ^{iv}	92.20 (15)
C4—C5—C6—O2	-52.3 (4)	$Ba1^{i}$ —O2—Ba1—O5 ^{iv}	-59.54 (9)
N3—C5—C6—O1	3.0 (3)	C6—O2—Ba1—O5	-88.25 (17)
C4—C5—C6—O1	126.7 (3)	Ba1 ⁱ —O2—Ba1—O5	120.00 (11)
N3—C5—C6—Ba1	-81.9 (5)	C6—O2—Ba1—C6 ^{iv}	162.49 (12)
C4—C5—C6—Ba1	41.8 (9)	$Ba1^{i}$ —O2—Ba1—C6 ^{iv}	10.74 (6)
N2-C3-N1-C2	0.4 (4)	Ba1 ⁱ —O2—Ba1—C6	-151.75 (17)
C1—C2—N1—C3	-0.4 (3)	N4—O5—Ba1—O2 ⁱⁱ	69.8 (3)
N1—C3—N2—C1	-0.3 (4)	N4—O5—Ba1—O2 ⁱⁱⁱ	10.7 (3)
C2-C1-N2-C3	0.0 (3)	N4—O5—Ba1—O3 ^{iv}	95.3 (2)
C4—C1—N2—C3	-178.6(3)	N4—O5—Ba1—O3	-13.90(19)
O2—C6—O1—Ba1	20.7 (3)	N4—O5—Ba1—O1 ^{iv}	-66.4 (3)
C5-C6-O1-Ba1	-158.23 (19)	N4—O5—Ba1—O1	146.9 (3)
O1—C6—O2—Ba1 ⁱ	112.2 (4)	N4—O5—Ba1—O2 ^{iv}	-111.9 (3)
C5-C6-O2-Ba1 ⁱ	-68.9 (4)	N4—O5—Ba1—O2	-167.6(3)
Ba1—C6—O2—Ba1 ⁱ	132.2 (3)	N4—O5—Ba1—C6 ^{iv}	-87.7 (3)
O1—C6—O2—Ba1	-20.0(3)	N4—O5—Ba1—C6	168.1 (3)
C5-C6-O2-Ba1	158.9 (2)	O2—C6—Ba1—O2 ⁱⁱ	154.08 (15)
O4—N4—O3—Ba1	153.1 (2)	O1—C6—Ba1—O2 ⁱⁱ	-44.19 (13)
O5—N4—O3—Ba1	-26.4(3)	C5—C6—Ba1—O2 ⁱⁱ	50.8 (6)
O4—N4—O5—Ba1	-155.0 (3)	O2—C6—Ba1—O2 ⁱⁱⁱ	-177.57 (18)
O3—N4—O5—Ba1	24.4 (3)	O1—C6—Ba1—O2 ⁱⁱⁱ	-15.8 (2)
N4	-67.5 (2)	C5-C6-Ba1-O2 ⁱⁱⁱ	79.2 (6)
N4—O3—Ba1—O2 ⁱⁱⁱ	-141.3 (2)	O2-C6-Ba1-O3 ^{iv}	-136.24 (14)
N4—O3—Ba1—O3 ^{iv}	-104.1 (2)	O1-C6-Ba1-O3 ^{iv}	25.49 (14)
N4-O3-Ba1-O1 ^{iv}	137.5 (2)	C5-C6-Ba1-O3 ^{iv}	120.5 (6)
N4—O3—Ba1—O1	-9.1 (2)	O2—C6—Ba1—O3	82.67 (16)
N4	110.6 (2)	O1—C6—Ba1—O3	-115.60 (14)

N4—O3—Ba1—O2	40.7 (2)	C5—C6—Ba1—O3	-20.6 (6)
N4-03-Ba1-05 ^{iv}	-167.1 (2)	O2-C6-Ba1-O1 ^{iv}	-1.61 (15)
N4—O3—Ba1—O5	14.0 (2)	O1—C6—Ba1—O1 ^{iv}	160.12 (10)
N4	127.2 (2)	C5-C6-Ba1-O1 ^{iv}	-104.9 (6)
N4—O3—Ba1—C6	16.0 (2)	O2—C6—Ba1—O1	-161.7 (2)
C6	134.00 (14)	C5—C6—Ba1—O1	95.0 (6)
C6—O1—Ba1—O2 ⁱⁱⁱ	171.74 (13)	O2-C6-Ba1-O2 ^{iv}	-25.57 (16)
C6O1Ba1O3 ^{iv}	-152.92 (15)	O1-C6-Ba1-O2 ^{iv}	136.16 (13)
C6—O1—Ba1—O3	76.98 (16)	C5-C6-Ba1-O2 ^{iv}	-128.8 (6)
C6O1Ba1O1 ^{iv}	-30.33 (12)	O1—C6—Ba1—O2	161.7 (2)
C6	-45.12 (14)	C5—C6—Ba1—O2	-103.3 (6)
C6—O1—Ba1—O2	-9.93 (12)	O2-C6-Ba1-O5 ^{iv}	-95.07 (16)
C6O1Ba1O5 ^{iv}	-117.80 (18)	O1—C6—Ba1—O5 ^{iv}	66.65 (17)
C6—O1—Ba1—O5	61.31 (18)	C5-C6-Ba1-O5 ^{iv}	161.7 (6)
C6O1Ba1C6 ^{iv}	-44.47 (16)	O2—C6—Ba1—O5	84.17 (19)
C6—O2—Ba1—O2 ⁱⁱ	-28.25 (17)	O1—C6—Ba1—O5	-114.11 (18)
Ba1 ⁱ —O2—Ba1—O2 ⁱⁱ	180.000 (1)	C5—C6—Ba1—O5	-19.1 (6)
C6	46.66 (15)	O2—C6—Ba1—C6 ^{iv}	-18.42 (12)
Ba1 ⁱ —O2—Ba1—O3 ^{iv}	-105.09 (7)	O1—C6—Ba1—C6 ^{iv}	143.31 (14)
C6—O2—Ba1—O3	-107.18 (14)	C5-C6-Ba1-C6 ^{iv}	-121.7 (6)
Ba1 ⁱ —O2—Ba1—O3	101.07 (8)		

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*-1, -*z*+2; (iv) -*x*+1, *y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···O4 ^v	0.86	2.29	2.854 (3)	123
N1—H1····O5 ^{vi}	0.86	2.37	3.121 (3)	146
N3—H3 <i>B</i> ···O1 ^{vii}	0.89	2.19	3.029 (2)	158
N3—H3C····O3 ^{viii}	0.89	2.05	2.867 (3)	153
N3—H3A····N2 ⁱⁱ	0.89	1.94	2.827 (3)	174

Symmetry codes: (ii) x, y-1, z; (v) -x+1/2, y+3/2, -z+1; (vi) -x+1/2, y+1/2, -z+1; (vii) -x+1, y, -z+1; (viii) x, y+1, z-1.