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Network analysis of synthesizable materials
discovery
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Assessing the synthesizability of inorganic materials is a grand challenge for accelerating
their discovery using computations. Synthesis of a material is a complex process that
depends not only on its thermodynamic stability with respect to others, but also on factors
from kinetics, to advances in synthesis techniques, to the availability of precursors. This
complexity makes the development of a general theory or first-principles approach to syn-
thesizability currently impractical. Here we show how an alternative pathway to predicting
synthesizability emerges from the dynamics of the materials stability network: a scale-free
network constructed by combining the convex free-energy surface of inorganic materials
computed by high-throughput density functional theory and their experimental discovery
timelines extracted from citations. The time-evolution of the underlying network properties
allows us to use machine-learning to predict the likelihood that hypothetical, computer-
generated materials will be amenable to successful experimental synthesis.
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ynthesis prediction for inorganic materials remains one of

the major challenges in accelerating materials discovery!~4,

mostly because the complexity of the synthesis process itself
hinders the development of a general, first-principles approach to
it3. Thermodynamic stability is one of the main factors that
strongly influence synthesizability of a material, but extracting it
requires the knowledge of the energetics of competing phases.
This bottleneck has recently been addressed for inorganic mate-
rials by high-throughput (HT) density functional theory (DFT)
databases®?, which provide access to systematic DFT calculations
of thousands of existing inorganic materials as well as hypothe-
tical ones. These databases allow the construction of a compre-
hensive energy convex-hull: the multidimensional surface formed
by the lowest energy combination of all phases. Phases that are on
the convex-hull are thermodynamically stable, and tie-lines
connecting two phases indicate two-phase equilibria. Given that
it is composed of stable materials (nodes) connected by tie-lines
(edges), the convex-hull is a naturally occurring thermodynamic
network (Fig. 1), analogous to the world-wide-web, social, cita-
tion, and protein networks!9-14, The information encoded in this
new network of materials can be harnessed with the tools pro-
vided by the emerging paradigm of network science, and forms
the basis of new data-driven models for outstanding materials
challenges, such as predicting synthesizability.

The chronology of discoveries can reveal the dynamics of this
network of materials. The discovery of a material can be
associated with the physical identification and recording of a
new crystal structure and chemistry for a target application or
general scientific exploration. With this definition, to be
traceable as discovered, a material should (i) physically exist,
i.e., be amenable to synthesis or occur in nature, and (ii) have a
record of structural characterization that can serve as a foot-
print for the onset of scientific interest. Both of these criteria
can be traced from crystallographic databases!>1, which are
dominated by structures of existing materials resolved with
diffraction experiments. Assuming the time lag between the
actual synthesis and/or characterization and the publication is
not significant, the time of discovery of a material, and in
particular the implied successful synthesis, can be approxi-
mated to be the earliest cited reference available in such col-
lections (see the “Methods” section).

The thermodynamic information encoded in the convex-hull
is important but not sufficient to explain the successful
synthesis and discovery of a material?. On the other hand, the
collective influence of all complex factors on synthesizability is
already reflected in the measured ground truth: whether a
material was synthesized or not. Thus, when combined with the
historical records on the time of discovery of existing materials,
the dynamics of the resulting temporal stability network
encodes also the circumstantial information beyond thermo-
dynamics that influences discovery. Such information impli-
citly includes scientific and nonscientific effects almost
impossible to capture otherwise at this scale, such as the
availability of kinetically favorable pathways, development of
new synthesis techniques, availability of new precursors,
changes in interest or experience of researchers in a particular
chemistry, structure, or application, and even changes in
policies that influence research directions. Here we combine
the stability information from HT-DFT with the citation-
extracted discovery timeline, both available in the open
quantum materials database (OQMD)%7, and determine the
temporal evolution of the stability network, as more materials
are discovered and added to it. Using the extracted network
properties of materials, we demonstrate how a model can be
developed to estimate the likelihood of synthesis of new,
computationally predicted stable materials.

Results

The materials stability network and its time evolution. The
complete network formed by the current convex-hull in the
chemical space of all elements is extremely dense with 41 million
tie-lines!”. To find the most relevant set of tie-lines for synthesis,
we subsample this network to obtain those that control the sta-
bility of at least one material, ie., those in chemical subspaces
where there is at least one stable material inside the composition
simplex (see “Methods”). This process yields an informative
subset of ~2x 10° tie-lines for synthesis, that is also computa-
tionally tractable for repeated analysis, essential for building a
predictive model as described later. Hereafter, we refer to this
subset as the materials stability network to differentiate it from
the complete network. We then trace retrospectively how this
network was uncovered over time until it reached its present
state. The number of stable materials discovered, N, and the
number of tie-lines defining their equilibria as described above, E,
are both growing with time (Fig. 2a and Supplementary Fig. 1). A
polynomial fit to N(f) shows that the number of stable materials
discovered by year 2025 will reach ~27 x 103 from the present
number of ~22x103. The rate of stable materials discovery
is ~400 year—! today and projected to reach ~540 year—! by 2025,
suggesting that the discovery of stable materials is accelerating.
E is increasing faster than N (Fig. 2b), with a = 1.04 in the den-
sification power-law E(t) ~ N(t)*18. Thus, the materials stability
network is getting denser, which may be explained by researchers
discovering materials closely connected with those already
known, using the latter as stepping stones for the synthesis of new
ones!418, while uncovering the underlying ultimate network!®.

The degree distribution, p(k), where k is the degree of each
node, is one measure of the topology of networks. Here
k corresponds to the number of tie-lines a material has. In
recent years, scale-free networks that obey a power-law distribu-
tion, p(k) ~ k™7, have received significant attention!3. While the
materials stability network is far from a power-law in early times
(e.g., 1960s), it has evolved into a distribution close to it, as shown
in Fig. 3 for 2010 (Supplementary Tables 1 and 2 and
Supplementary Fig. 2). The exponent y becomes constant at
2.6 £ 0.1 after the 1980s (Supplementary Fig. 3), within the range
2 <y <3 as the other scale-free networks like the world-wide-web
or collaborations!?20,

This scale-free character hints at the presence of hubs with
significantly larger k compared with other nodes and a robust
network connectivity?!, implying that materials missing ran-
domly from the network (because they have not been discovered
yet) are not expected to hinder the discovery of others. However,
if there are missing hubs!3, new material classes disconnected
from the present network may be awaiting discovery. The biggest
hub here is O, with nearly 2600 tie-lines, followed by Cu, H,O,
H,, C, and Ge with more than 1100 tie-lines. Elemental N,, Ag,
Si, Fe, Se, Mn, Co, K, Te, and Bi and oxides BaO, CaO, Li,O, SrO,
CuZO, MgO, SiOZ, L3203, A1203, CuO, MnO, ZnO, Y203, Nd203,
MH304, SC203, Gd203, Mn203, FeO, Fe203, Cr203, NIO, BeO,
V,03, and VO, are densely connected with 350 or more tie-lines.
These are the species that play a dominant role in determining
stabilities, and subsequently influencing synthesis of many
materials, whether as starting materials, decomposition products
of precursors, or simply as competing phases.

Analysis of the discovery timelines indicates that the number of
new stable oxygen-bearing materials has been increasing
exponentially and faster than all other chemistries, which is in
line with the observed predominance of oxides as hubs, and also
correlated with the historically high average degree of O-bearing
materials (Supplementary Fig. 4). These trends follow the widely
accepted Barabasi-Albert model for the growth of scale-free
networks2022, where a small difference in the node degrees in the
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Increasing order of material system in phase diagrams
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Fig. 1 Network representation of material phase diagrams. The schematic illustrates phase diagrams with the order of the system ranging from two-
dimensional binary to the 89-dimensional materials stability network central to this work. The energy-composition convex-hull is shown for the binary
system, and all higher-order phase diagrams are projections of their respective N-dimensional convex-hulls to two dimensions, where materials are
represented as nodes and tie-lines as edges. For clarity, only those tie-lines connected to high-degree nodes are shown in the materials stability network,

where the sizes of the nodes are also scaled to reflect their degree
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Fig. 2 Evolution of the size of the materials stability network. a Time
evolution of the number of stable materials (i.e., nodes), N, and tie-lines
(i.e., edges), E, and (b) how the number of nodes and tie-lines vary with
respect to each other. A tie-line is included in the evolving network only
after both nodes it is connecting to are identified as discovered. Dashed
lines in (@) are extrapolations of N and E from the available data (markers
and solid lines) by fitted quadratic polynomials. Dashed line in (b) is a linear
fit to the data (circles). Fits performed in both panels exclude the first four
times steps to obtain fits that are more representative of more recent times.
A plot of the number of stable materials discovered each year as a function
of time is also available in Supplementary Fig. 1

early days gets drastically amplified over time, because of the
preferential attachment of new nodes to higher-degree nodes.
These results also indicate that identifying new hubs in
chemistries, such as pnictides, chalcogenides, halides, or carbides,
may accelerate discovery in those spaces. To corroborate this
hypothesis further, we compared several such chemistries with
oxygen (Supplementary Fig. 4) and observed that as more
materials with a hub-like character emerged among the
phosphorus-bearing materials in the 1960s (as reflected in their
average degree), the discovery in this space accelerated, with a
notable upsurge in the number of new P-bearing stable materials
in later years.
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Fig. 3 Degree distribution among stable materials discovered by the year
2010. The complementary cumulative distribution function (P(k)) of the
degree distribution p(k) of stable materials (circles) is plotted along with
the fitted distributions (solid lines). Each point P(k) represents the
probability that a material has greater than k tie-lines connected to it in the
network. Power-law, truncated power-law (with exponential cutoff), and
positive log-normal distributions are labeled as PL, tPL, and pLN,
respectively. The dashed line shows k.., the lowest degree used in fitting.
Degree distributions of other times are shown in Supplementary Fig. 1

Prediction of materials discovery from network dynamics.
While the evolution of global properties of the network is slow
(Supplementary Fig. 5), the network properties of individual
nodes are evolving rapidly as their local environments change, as
exemplified in Fig. 4a, b for a high-temperature superconductor
YBa,Cu306 and high-ZT thermoelectric BiCuSeO. Since this
temporal evolution encodes circumstantial factors beyond ther-
modynamics that may contribute to discovery (and synthesis),
properties that characterize the state of a material in relation to
the rest of the network can realize a connection between these
explicit or implicit factors and its discovery.

To reproduce that connection, we turn to designing a machine-
learning model based on the network properties of materials,
which we will then use to predict likelihood of synthesis of
hypothetical materials: those created on the computer but have
never been made. The present stability network has about 22,600
materials, of which ~19,200 are physically existing materials from
crystallography databases and can be used in model building, and
~3400 are hypothetical, generated via HT prototyping®23-25,
Prediction of synthesis likelihoods in the latter category can help
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Fig. 4 Network evolution and properties of the machine-learned synthesizability models. a Time evolution of the local environments of two sample
materials (marked with open circles), superconductor YBa,Cu3Og, and thermoelectric BiCuSeO, in the materials stability network. Materials (nodes)
discovered by a given temporal state of the network are shown in blue, whereas those awaiting discovery are red. Node size is proportional to degree.
b Time evolution of the network properties of sample materials YBa,CusO¢ and BiCuSeO, namely, degree and eigenvector centralities (C, and C,), degree
(k), mean-shortest-path (¢), mean degree of neighbors (k,), and clustering coefficient (C), where the vertical dashed lines show the approximate time of
discovery. ¢ Feature contributions to the RF model as derived from the Gini importance. d Pearson correlation coefficients of time-dependent network
properties used in models as features, where pt and tt denote past time and target time, respectively, corresponding to a given sequence of window size of
two (see “Methods"). Variables and names of network properties are used interchangeably in (b), (c), and (d)

bridge the gap between computational discovery and the
real world.

We use six network properties for each material in model
training, namely, degree and eigenvector centralities, degree,
mean shortest path length, mean degree of neighbors, and
clustering coefficient (Fig. 4b and Supplementary Fig. 6). Degree
and eigenvector centralities reflect the relative importance of a
node in influencing stabilities, emphasizing the number of
connections and importance of neighbors, respectively. We
normalize these metrics such that they are mostly independent
of the size of the network?®. We find that degree without
normalization is also useful for capturing the influence of the
temporal state of the network on connectivity. Mean shortest path
length, the mean of the minimum number of tie-lines to travel
from a node to every other node, and mean degree of neighbors
serve as a proxy for ease of access to a particular material in
synthesis. The clustering coefficient indicates how tightly

connected the neighborhood of a material is and may capture
the local environment more immediately related to its synthesis.

Discovery is a time-irreversible event and its prediction is not a
standard machine-learning problem in materials science. Here we
use time evolution of the aforementioned network properties of
materials as features to form the basis of a sequential supervised-
learning problem?”. We adopt a sliding-window approach to train
experimental discovery classifiers and estimate likelihood of
discovery, and the implied synthesis for synthetic materials (see
Fig. 5 and “Methods”). We employ two classification algorithms:
L,-norm regularized logistic regression (LR) for well-calibrated
probabilities, and random forest (RF) for classification accuracy.
The subclass of sequences where a material changes from
undiscovered to discovered in the time domain represents the
rare event of discovery in sequential data, for which we define
stringent event-detection metrics for precision and recall using a
prediction-period approach (see “Methods”)?8, and found these
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Fig. 5 Extraction of sequences from temporal network property data using a
sliding window to use as input for machine learning. The vector Y; stores
the targets to be learned for material j, i.e., encoding whether i is discovered
by a given time-step t or not (as binary labels 1 and 0). C; k; and ¢; are
examples for vectors of different network properties, encoding how those
properties change over time as the network evolves, as explained in the
text. The process of applying a sliding window (here with a width of w =2)
to extract sequences of features and targets (x;, y;¢) is illustrated. ML
stands for the machine-learning task of training and testing classification
algorithms using the extracted data

metrics for LR and RF to be nearly 30% and 90%, respectively, for
detection within +1 time-step and close to 50% and 95% for
detection within +2 time-steps (where larger prediction periods
make the correct classification easier), outperforming baseline
detection metrics by a significant margin (Supplementary Fig. 7).
As another performance evaluation for the present problem,
distributions of the difference between the estimated time-step of
discovery (see “Methods” for how this estimation is done from
classification results) and its true value (At) for the two models
tested in this work are compared in Supplementary Fig. 8, along
with baseline models. For both LR and RF models, distributions
are centered close to zero, with LR showing a tendency to
estimate slightly earlier times with a mean At = —1.6, whereas RF
delivers more precise estimates with mean At = —0.2 (each time-
step is 5-years long in this work). Baseline models yield
distributions with means far from zero. LR has a much broader
distribution than RF, however, with a standard deviation at ~3.5
time-steps, whereas that of RF is at ~1.2 time-steps.

To understand how these models provide accurate predictions
for synthesizability, we investigate the correlations between the
network properties, and how much they contribute to predictions
(Fig. 4c, d). Except the eigenvector centrality with a degree or
degree centrality, distinct features are not too strongly correlated.
Identical features within a time sequence are naturally more
correlated (e.g., degrees in a sequence), but distinct enough for
the models to utilize them (Supplementary Fig. 9). Confirming
the significance of tie-lines in influencing synthesis, degree, and
degree centrality, two closely connected but not highly correlated
metrics, play the biggest roles in decision-making, with
substantial contributions adding up to ~90%. The rest of the
features still play a non-negligible role, providing the
remaining 10%.

Discussion

The trained models can be used in multiple ways, for example, to
predict class labels or probabilities for synthesizability in network
environments pertaining to the present time or a past time. For

the present time, models predict that about 93% of hypothetical
materials in the network have a synthesis probability, p > 0.5. This
prediction is in line with the notion that stable materials in HT-
DFT databases are likely to be more amenable to synthesis.
However, synthesis is a costly process and knowing its likelihood
of success is critical before an attempt in the laboratory. Using
LR’s calibrated probabilities with RF’s more accurate classifica-
tions within the intersection of positive classification sets they
predict (92% identical), we find that out of ~3400 stable hypo-
thetical materials present, only about 10% have p>0.95 for
immediate synthesis (Supplementary Note 1).

Our approach can assist the decisions on where to allocate
synthesis resources after computational design. For example, Kim
et al.23 performed a computational search and suggested new
high-capacity Li;ABO¢ cathodes for Li-ion batteries (A and B
represent different elements), for which we find the likelihoods of
synthesis to range from p =0.52 for Li;SbRhO¢ to p=0.85 for
Li4NiTeOg. In fact, several of those predictions with p > 0.6 were
synthesized?*30. For the novel ABO; perovskites identified in two
recent computational studies’*3!, we find the synthesis like-
lihoods to range from p = 0.54 for PuGaOs; to p = 1 for EuGeOs.
For several of such predictions with p > 0.9, reports of synthesis
exist’>33. For the inverse-Heusler alloys uncovered in a HT
search for spintronics2®, we predict p to be in the range of 0.56
(TiInCo,)-0.94 (FeGeRu,) (a complete list of probabilities is
available in Supplementary Table 3). Today, such computational
studies can rapidly identify hundreds of new hypothetical mate-
rials with target functionalities, but the cost and complexity of
synthesis often hinders systematic attempts for their realization.
The ability to predict synthesis likelihoods is expected to bridge
this gap between computational and experimental research
groups.

The network-based models can also be used to invert the
discovery predictions and find at what point in time a hypothe-
tical material could have already been made. Based on the RF
model, we estimate that only about 10% of the stable hypothetical
materials that are predicted to be synthesizable today were syn-
thesizable by 2005, and only about 30% were synthesizable by
2010 (Supplementary Fig. 10), implying that the progress within
the last 10-15-year period has improved their chances of
synthesis.

Similarly, since most of the materials discovered in the last few
decades have likely been made with contemporary synthesis
methods developed or improved since the mid-20th century
(from sol-gel to advanced deposition methods to new pre-
cursors), models trained only with earlier discoveries should
intuitively predict a majority of the newer materials as unlikely to
be made in the distant past. Indeed, a model trained only with
discoveries up until and including year 2000, yields probability
distributions that consistently shift to higher values with time for
materials discovered after year 2000 (unseen to model) as shown
in Supplementary Fig. 11, confirming that the predictions agree
with our intuition. Besides, almost all materials that were dis-
covered after 2000 are predicted to have p > 0.4 in year 2000 with
this model, i.e., materials with p <0.4 in 2000 were rarely syn-
thesized after 2000. However, the application of the models to
new materials assumes that the mechanisms of materials dis-
covery continue to follow similar trends to those in the past and
present, and therefore by design, the models cannot forecast the
future. For instance, we observe that the probability distributions
predicted by the above model trained with material discoveries
until 2000 cannot clearly differentiate between progression of
most materials discovered in its future (except a fraction of
materials near p =1, where the predictions look correlated with
the discovery timeline), confirming future timeline forecasts
cannot be made for most of the materials (Supplementary
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Fig. 11). Ultimately, the decisions on which materials to make are
made by the scientists and the future is shaped accordingly. The
models merely provide statistical predictions based on the latest
network data they are exposed to, within the limits of their
underlying approximations.

Given the advances in materials discovery techniques, includ-
ing complex and HT experimental or simulation capabilities,
intuitively, the present models are likely a lower bound for the
future synthesis likelihoods, as long as the nonscientific factors,
such as the science policies and funding, remain sustainable.
Demonstrating how network science and machine learning can
be combined to build predictive methods for materials, we expect
the present work to pave the way for new, improved methods for
materials discovery, possibly addressing synthesizability in the
unbounded space of metastable materials (which would require
constructing linkage rules beyond the convex-hull), or examining
applications beyond synthesis.

Methods

Network data and analysis. The network presented in this work is constructed
from the energy-composition convex-hull of OQMD, which is a collection of
systematic DFT calculations of inorganic crystalline materials, and subsequent
properties derived from them, such as formation energies®’. DFT is known to
provide a good compromise between accuracy, especially in terms of determining
relative stabilities of materials, and computational cost, and is the current state-of-
the-art for first-principles HT computations of materials?3435. We used the version
1.1 of the OQMD data available at http://oqgmd.org.

The NetworkX package was used for the calculation of the network properties®.
The maximum-likelihood method was used to fit the distributions and the k.
values were found by minimizing the Kolmogorov-Smirnov distance”-38. The
powerlaw library was used in fitting the distributions38. Goodness-of-fit
comparisons of different distributions are available in Supplementary Table 1. The
method for subsampling of the complete network to obtain the materials stability
network is further described in Supplementary Methods.

Model construction. To prepare the input vectors for training the machine-
learning models, we create multiple sequential training examples (x;, y;,) for each
material i from its temporal data, where feature vector for time ¢, x;, extends to
features for the past times within a window w, and where the target y;, encodes
binary labels 1 and 0, respectively, indicating whether a material was discovered at
that point in time or not (Fig. 5). We adopted w =2 for the present work. We
analyzed the networks with 5-year increments starting from 1945, and found that a
window of width w =2 (i.e., encompassing 10 years) provides sufficient prediction
accuracy, without any need for recurrence (i.e., including past y as part of x).
Network properties of a material pertaining to the times when it was undiscovered
are calculated by hypothetical, individual insertion of that material into the
materials stability network (as if it existed at that point in time). Further details of
each step in model creation can be found in Supplementary Methods. Discovery
times of known materials are approximated by their earliest dated reference for
their structures reported in the ICSD'?, except for the elemental references, which
are defined as discovered (y =1) at all times. We expect this approximation to (i)
reasonably hold, given that the coarse-enough discretization of the timeline (5
years) would already account for the typical delays between characterization and
publication (e.g., 1-2 years), and (ii) not significantly affect the model training, as
the delays are likely to be in the form of a nearly constant shift for all materials, as
one might intuitively expect the distribution of the delays to be narrow and cen-
tered around 1-2 years at most.

Model training and evaluation. Model training and parts of the evaluation were
performed using scikit-learn?. In training the LR models, we use a larger weight (~2.5
times) for the minority subclass of y = [0,1] (i.e., a material transitioning from
undiscovered to discovered), compared with the other subclasses to obtain evenly
distributed accuracies across all subclasses. RF models use 200 estimators. Models
were also tested against baseline classifiers, including class distribution prediction,
majority and/or constant class prediction, and random classifiers, and found to out-
perform all. Feature importance in the RF model is calculated as the Gini importance.
Calibration is applied to model probabilities; however, given the approximate nature
of this process and the variability in absolute values of the resulting probabilities,
probabilities should be considered mostly to reflect relative likelihoods among
materials. We use five-fold cross-validation (CV) for the evaluation of all models.
We follow event-based strategies for model evaluation that consider the entire
timeline of the materials and test/train splitting of sequences (x;;, y;;) (where i is a
material and ¢ is the time-step) is accordingly performed at the material level. The
standard model evaluation metrics in classification are defined as precision = TP/
(TP + FP), recall = TP/(TP + FN), and F1-score = 2 X precision x recall/(precision

+ recall), where TP, FP, and FN are the number of true positives, false positives,
and false negatives, respectively. While these metrics help evaluate the performance
of algorithms in classifying targets as 0 or 1 in a standard way (and are all above
90% and 70%, respectively, for RF and LR models in material-level splitting

and CV), for the detection of the discovery itself (i.e., the transition from 0 to 1),
which can be described as a rare-event detection in sequential data, modified
definitions for precision and/or recall are more suitable?$. In the present event-
based strategy, the model is assumed to predict a discovery event at the very first
positive prediction it makes in the timeline of that material, and metrics like TP
and FP count whether the target event is captured at the correct time or not, and
precision is calculated accordingly with the same formula as above. Recall becomes
the fraction of target events correctly captured: TP/(total-number-of-discovery-
events). These metrics, however, would equally weight FP’s made one step away
from the ground truth, vs., for example, five steps away from it, where the latter
case can be considered worse from a practical point of view. To partially address
this issue, we employ a prediction-period concept?$, where a ttime range is
defined, such that a discovery prediction would be considered TP if the correct
discovery time falls in that range, or FP if it falls outside. These metrics then
become a function of the size of the prediction period, as we show in
Supplementary Fig. 7. Another approach for model evaluation is the direct
comparison of the difference between the predicted discovery times and their
actual values, as shown in Supplementary Fig. 11, where again the model is
assumed to make the discovery prediction at the very first positive classification it
predicts for a material.

Data availability
Data used in this work are provided as Supporting Data and can also be accessed at
https://data.matr.io/2.
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