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Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diver-
sify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked 
to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining nor-
mal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced plu-
ripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; 
these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms 
underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the 
vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly grow-
ing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses 
recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methyla-
tion) in the regulation of cellular pluripotency. 
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REVIEW

Introduction

The ability to self-renew indefinitely and differenti-
ate into all cells of the body makes human pluripotent 
stem cells (hPSCs), including human embryonic stem 
cells (hESCs) and induced pluripotent stem cells (hiP-
SCs), valuable for research and clinical applications 
that require specific cell types. Although recent studies 
have greatly advanced our understanding of cellular 
pluripotency and its potential utility, it is still unclear 
how these cells establish, maintain and modulate their 
pluripotency during cellular reprogramming and dif-
ferentiation. Recent evidence indicates that the complex 
signaling networks involved in the regulation of cellu-
lar pluripotency are tightly controlled through multiple 
mechanisms, including post-translational modifications 

(PTMs). PTMs diversify and extend protein function 
beyond what is dictated by gene transcripts. They revers-
ibly or irreversibly alter the structure and properties of 
proteins through biochemical reactions (Figure 1), and a 
variety of PTMs allow eukaryotic cells to dynamically 
regulate their signal integration and physiological states. 
As analytical approaches have improved, the biological 
influences of many types of PTMs have been identi-
fied and are routinely analyzed in many systems. The 
importance of PTMs is known historically because of 
their effects on the enzymatic activity of kinases [1] and 
protein degradation [2]. Based on previous and emerging 
data, it seems evident that PTMs are involved in regulat-
ing almost all cellular events, including gene expression, 
signal transduction, protein-protein interaction, cell-cell 
interaction, and communication between the intracellular 
and extracellular environment [3]. Therefore, perturba-
tion of PTMs in cells frequently affects cell physiology 
as a whole. In addition, the alteration of cellular states 
(e.g., differentiation of hPSCs or malignant transforma-
tion of primary cells) may be accompanied by acquisi-
tion of unique PTM hallmarks. 

In this review, we summarize recent progress in un-
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derstanding the roles of PTMs in hPSCs, with particular 
emphasis on protein glycosylation, phosphorylation, 
acetylation and methylation. In addition, we discuss how 
these PTMs may be involved in regulation of the pluri-
potency and differentiation of hPSCs.

Cellular pluripotency and hPSCs

Pluripotent stem cells (PSCs) are capable of giving 
rise to all the differentiated adult cell types. Initially, 
human embryos acquired from in vitro fertilization 
procedures were the source material used for isolating 
pluripotent hESCs from the inner cell mass (ICM) of 
blastocysts. More recently, the use of defined transcrip-
tion factors to convert human somatic cells into hiPSCs 
has become a widely-used approach to establish cellular 
pluripotency in differentiated cells (Figure 2). In 2013, 
Tachibana et al. [4] have succeeded in the derivation of 
hPSCs (nuclear transfer-ESCs) from somatic cell-nuclear 
transfer human embryos, providing another approach for 
reprogramming the somatic nuclei to pluripotency. 

Since the first method for generating hiPSCs through 
cellular reprogramming was reported in 2007 [5], a vari-
ety of somatic cell types, different combinations of tran-
scription factors and different vehicles to deliver these 

factors into cells have been used successfully to improve 
the derivation efficiency of hiPSCs. Over the past six 
years, extensive research using high-information-content 
methods to study hESCs and hiPSCs has led to a consid-
erable amount of information about genomic and epig-
enomic stability, and genome-wide transcriptional and 
DNA methylation profiles of pluripotent cells. Recent 
studies indicate that the variation within undifferenti-
ated hiPSC lines is within the range of that seen in hESC 
lines, suggesting that hiPSCs and hESCs are essentially 
indistinguishable [6-12]. However, while hPSCs are rou-
tinely shown to be capable of differentiation into a wide 
variety of cell types, there are reports of considerable 
variation among hPSCs in their response to specific in 
vitro differentiation protocols [11, 13-15]. These findings 
suggest that the response of different hPSCs to specific 
culture conditions may differ even when their gene ex-
pression and epigenetic characteristics in the pluripotent 
state are virtually identical; this raises an intriguing pos-
sibility that these responses are controlled at the protein 

Figure 1 Proteins in eukaryotic cells can be edited after transla-
tion by a wide variety of reversible and irreversible PTM mecha-
nisms. The structure, stability and function of proteins in the 
cells can be dynamically altered by these PTMs. Four types of 
PTMs (glycosylation, phosphorylation, acetylation and methyla-
tion) are indicated by highlighted colors and primarily discussed 
in this review.

Figure 2 The derivation and differentiation of hPSCs. To obtain 
hESCs, the inner cell mass of a human blastocyst is isolated 
and cultured in vitro. To generate hiPSCs, differentiated cells 
are reprogrammed using a combination of different transcription 
factors (e.g., OCT4/POU5F1, SOX2, KLF4 and MYC) to estab-
lish cellular pluripotency in the cells. Both hESCs and hiPSCs 
are capable of differentiating into functional cells derived from 
all the three germ layers in embryos.
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modification level.
Many systems biology approaches have been applied 

in the stem cell biology field to acquire global insights 
into how cellular pluripotency is regulated in both the 
pluripotent and differentiated states. These types of stud-
ies have been usually focused on genomic, epigenetic 
and transcriptomic characteristics, with less appreciation 
for the protein expression and PTMs. However, because 
of the numerous cell activities that are directly governed 
by proteins, there is no doubt that the regulation of pro-
tein components in hPSCs should have profound influ-
ences on cellular pluripotency and differentiation capac-
ity. The consequences of altering proteins at the post-
translational level in hPSCs are thus interesting issues 
applicable to the regulation of pluripotency.

Advances in molecular biology and protein biochem-
istry have led to the development of several modern 

technologies to better examine the expression, post-
translational modification and functional alteration of 
proteins at single-protein and proteomic levels [16-21]. 
Discoveries based on these methods have shed light on 
the importance of many PTMs in controlling protein 
functions, signaling networks and cell fates in hPSCs.

Protein glycosylation in hPSCs

Glycoproteins and protein glycosylation
It is well known that protein glycosylation plays a 

critical role in the regulation of protein structure [22], 
signal transduction [23], cell-cell and cell-environment 
interactions [24-26], immune responses [27, 28], hor-
mone action [29], cancer progression [30] and embry-
onic development [31, 32]. In the glycosylation process, 
carbohydrate units can be covalently linked to proteins 

Figure 3 N-linked and O-linked protein glycosylation occurs in the ER and Golgi apparatus. The synthesis of precursor gly-
cans (mannose-rich glycans) begins on the cytosolic face of the ER and is completed after the glycans are flipped into the ER 
lumen and further branched by adding more units of mannose and glucose. ER-resident glycosyltransferases (GTs) transfer 
the precursor glycans to asparagine residues on nascent proteins to form N-linked precursor glycans. When the proteins are 
transported into the Golgi apparatus, the N-linked precursor glycans are edited by Golgi-resident glycosidases (GSs) and GTs 
to form mature and structurally-diverse N-linked glycans. O-linked protein glycosylation is mainly performed by Golgi-resident 
GTs.
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and edited through various biochemical reactions that are 
catalyzed by glycosyltransferases (GTs) and glycosidases 
in the endoplasmic reticulum (ER) and Golgi apparatus 
(Figure 3). There are four major types of protein gly-
cosylation in mammalian cells: N-linked glycosylation, 
O-linked glycosylation, C-linked mannosylation and gly-
piation [33]. Among these types of protein glycosylation, 
N-linked and O-linked glycomodifications are the most 
abundant in cells. N-linked glycosylation often occurs on 
a large variety of nascent proteins. O-linked monosac-
charide modification of N-acetylglucosamine (GlcNAc) 
on serine, threonine or amino acid residues in close 
proximity to tyrosine phosphorylation sites is frequently 
observed in many cells. At these sites, glycosylation 
may contribute to the regulation of signaling pathways 
through a direct competition with serine and threonine 
phosphorylation or by indirectly perturbing the phospho-
rylation of tyrosine [34].

Pluripotency-associated protein glycosylation
Multiple lines of evidence support the importance of 

protein glycosylation and its potential role in the regula-
tion of cellular pluripotency and differentiation of hPSCs. 
Many pluripotency-associated antigens (e.g., SSEA3/4 
and TRA1-60/1-81) on the surface of hPSCs are glyco-
proteins or glycolipids [35-38], implying that specific 
glycosylation patterns could be hallmarks of cellular 
pluripotency and that they may be functionally important 
in its maintenance. Despite the relatively limited sample 
numbers and types of hPSCs, several studies using mass 
spectrometry [39, 40] to analyze the glycan components 
of glycoproteins isolated from hPSCs and differentiated 
cells demonstrated that protein glycosylation differs con-
siderably between pluripotent and non-pluripotent cells. 
This “glycome shift” occurring in response to a change 
in pluripotency of human cells has been suggested by 
many other reports in which certain glycan-binding lec-
tins showed preferential reactivity or cytotoxicity in em-
bryonal carcinoma and germ-cell tumors [41-45]. More 
recently, several studies have used lectin microarrays 
and transcriptomic analysis to perform large-scale, high-
throughput characterization of protein glycosylation and 
glycosyltransferase expression in various types of undif-
ferentiated hPSCs and differentiated cells. These studies 
have provided definitive evidence showing significant 
differences between the glycomic fingerprints associ-
ated with these distinct cellular states [46-48] and led to 
the identification of a lectin biomarker that can be used 
to isolate viable hPSCs [48]. Regardless of the different 
methods used in these studies, their results appear to be 
in agreement with the idea that two types of glycomodifi-
cations, fucosylation and sialylation, are typically altered 

when hPSCs lose their pluripotency [39, 40, 46, 48, 49]. 
This suggests that these two types of protein glycosyl-
ation may be involved in the regulatory mechanisms un-
derlying cellular pluripotency and lineage specification. 
In support of this idea, many studies have demonstrated 
that fucosylation and sialylation are crucial for normal 
embryonic development and cell maturation, and that 
deficiencies in these glycomodifications can lead to the 
impairment of embryogenesis and somatic stem cell dif-
ferentiation in mammalians and other vertebrates [31, 
32, 50-52]. Moreover, certain fucosyltransferases and 
sialyltransferases are preferentially expressed in hPSCs 
[46, 48], suggesting a role for these enzymes in mainte-
nance of the pluripotency-associated profile. Although 
the mechanisms by which these glycosyltransferases may 
participate in the regulation of pluripotency and differ-
entiation of hPSCs have not been well characterized, it is 
likely that their enzymatic activity orchestrates the func-
tions of many pluripotency-related signaling molecules. 

A recent report published by Jang et al. [53] described 
how O-linked glycosylation influences cellular pluri-
potency and somatic cell reprogramming by acting on 
core components of the mouse pluripotency signaling 
network. They provided definitive evidence that Pou5f1/
Oct4 and Sox2 are modified by O-linked-N-acetylglu-
cosamine (O-GlcNAc) particularly in undifferentiated 
mouse embryonic stem cells (mESCs), and that the O-
GlcNAc modification of Thr228 of Pou5f1 enhances the 
transcriptional activity of Pou5f1 to induce many pluri-
potency-related genes, maintain self-renewal of mESCs 
and reprogram mouse embryonic fibroblasts (MEFs) [53]. 
Although a similar regulatory mechanism has not yet 
been examined in hPSCs, this study demonstrated a di-
rect link between protein glycosylation and pluripotency 
regulation that is highly likely to exist in human cells as 
well. Interestingly, O-GlcNAc transferase (Ogt) has also 
been identified as a stable binding partner for 5-methyl-
cytosine hydroxylases Tet1 and Tet2 in mESCs, indicat-
ing that the protein glycosylation activity of Ogt may 
participate in the regulation of CpG island methylation 
and thus gene expression [54]. These studies also sug-
gested that it may be possible to manipulate pluripotency 
in mammalian cells for research or clinical applications 
by controlling protein glycosylation.

Many mitogens and morphogens play important roles 
in the establishment and maintenance of cellular pluripo-
tency in hPSCs in vitro. Additionally, there are numerous 
growth factors and cytokines involved in the optimiza-
tion of signaling circuits during cell lineage specification 
and normal embryonic development. One of the most 
commonly used growth factors for culturing hPSCs is 
fibroblast growth factor 2 (FGF2), which is a member 
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of the FGF protein family and modulates the function of 
multiple cell types by binding to FGF receptors (FGFRs) 
on the cell surface. It is known that FGF2 is a heparin 
sulfate-binding protein [55, 56], and that the magnitude 
of cell signaling triggered by FGF2 can be determined 
by the amount of heparin sulfate proteoglycans (HSPGs) 
on the cell surface, which facilitate the efficient binding 
of FGF2 to FGFRs [57]. The N-linked glycosylation of 
FGFR1 appears to interfere with the interaction between 

FGFR1, FGF2 and heparin sulfate by increasing steric 
hindrance and reducing the binding affinity of FGFR1 to 
its ligands [58]. Like FGF2, other signaling factors such 
as Notch, Wnt proteins and epidermal growth factors 
(EGFs), are intimately involved in the determination of 
stem cell fate [59, 60]. The activities of these key regula-
tors of cell differentiation and their associated signaling 
pathways are also influenced by their own glycosyla-
tion state and extracellular HSPGs [51, 61-64]. Indeed, 

Figure 4 Cell signaling pathways governed by protein phosphorylation and critically involved in embryonic development and 
the regulation of pluripotent states in PSCs. Many growth factor receptors on the cell surface are receptor kinases. Upon 
ligand binding, these receptor kinases are fully activated and phosphorylate downstream, intracellular kinases to initiate 
phosphorylation signaling cascades that frequently regulate the translocation and activity of several transcription factors (e.g., 
Myc, β-Catenin and Smad proteins) and the expression of pluripotency- or differentiation-associated genes. These signal 
transduction pathways are highly interactive with each other and influenced by other proteins (e.g., HSPG) on the cell surface 
or in the microenvironment. Several protein phosphatases (e.g., PTEN and Shp2) that negatively control protein phosphory-
lation also play critical roles in the modulation of this signaling network and the differentiation potential of PSCs.
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defects in protein glycosylation machinery frequently 
lead to the impairment of developmental signaling, the 
retardation of embryogenesis in animal models and the 
pathogenesis of human congenital disorders [31, 32, 50-
52, 62, 65-69], highlighting alternative mechanisms by 
which protein glycosylation may regulate pluripotent and 
differentiated states in hPSCs.

Utility of pluripotency-associated glycosylation for re-
generative medicine

Although the potential mechanisms and functional 
significance of protein glycosylation in the regulation of 
cellular pluripotency in hPSCs require further explora-
tion, the possible utility of unique glycosylation profiles 
in hPSCs has been appreciated and exploited in relevant 
fields. To ensure the safety of cells differentiated from 
hPSCs for cell-based therapy, it is critical to remove re-
sidual undifferentiated hPSCs that are potentially tumori-
genic. Moreover, to enhance the reproducibility and ef-
ficiency of differentiation methods, it may be desirable to 
select homogeneous undifferentiated hPSC populations 
in which all the cells have similar capacities and respons-
es to differentiation stimuli. Differential surface glycosy-
lation features between hPSCs and non-pluripotent cells 
have been used to develop methods to remove undiffer-
entiated cells and purify differentiated cell types [48, 70]. 
Also, the binding kinetics of glycan/glycoprotein-binding 
probes (e.g., lectins and antibodies) and the density of 
their ligands on the cell surface can be monitored using 
microfluidic devices and used to track early events dur-
ing cell differentiation [71]. Protein glycosylation marks 
in hPSCs can thereby be considered potential targets for 
developing a rigorous strategy for the quality control of 
hPSCs and their differentiated derivatives.

Protein phosphorylation in hPSCs

Protein phosphorylation and signaling cascades
Similar to protein glycosylation, protein phosphoryla-

tion is involved in the regulation of a broad spectrum 
of cellular processes and states. The phosphorylation 
state of proteins in typical eukaryotic cells is mainly 
determined by the activity of protein kinases and phos-
phatases on their substrates. The covalent conjugation 
of phosphate groups to peptides frequently alters protein 
function by inducing conformational changes in proteins 
or by affecting protein-protein/enzyme-substrate interac-
tions. Many kinases and phosphatases are also phospho-
rylation substrates, thereby forming mutually-dependent 
and hierarchically-regulated signaling loops and cascades 
[72]. Cell fate determination in hPSCs strongly depends 
on the balance between pluripotency and differentia-

tion signalings. As shown in Figure 4, many signaling 
pathways critically involved in the embryonic develop-
ment and the modulation of gene expression for cellular 
pluripotency and differentiation are initiated from the 
activation of growth factor receptors that are known re-
ceptor tyrosine kinases (RTKs; e.g., FGFR and IGF1R) 
or receptor serine/threonine kinases (e.g., TGFβR and 
BMPR1/2). It is notable that these signaling pathways 
have frequent crosstalk with each other, and that the 
steady state of cellular pluripotency is established on top 
of an intricate and yet delicately-balanced molecular in-
teraction network [73, 74]. 

Regulation of pluripotency by protein phosphorylation 
and dephosphorylation

In the stem cell field, many efforts are made to dissect 
the signaling networks regulated by protein phosphory-
lation in hPSCs and understand how they function as a 
whole to regulate cellular pluripotency and differentiation. 
Advances in protein mass spectrometry have enabled 
the global, quantitative analysis of dynamic changes in 
phosphorylated proteins in cells. Several recent studies 
used phosphoproteomic approaches to systematically 
investigate phosphorylated proteins in hPSCs. The study 
done by Swaney et al. [75] identified of more than 11 
000 unique phosphopeptides that corresponded to more 
than 10 000 non-redundant phosphorylation sites in 
hESCs. Five of these phosphorylation sites were local-
ized to POU5F1 (also known as OCT4) and SOX2 [75]. 
Van Hoof et al. [76] discovered that the phosphoryla-
tion state of about 50% of protein phosphorylation sites 
that they identified was dynamically regulated and rap-
idly changed in hESCs, responding to the induction of 
differentiation. These phosphorylation sites included 
three consecutive serine residues that flank an upstream 
SUMOylation site and regulate the phosphorylation-
dependent SUMOylation of SOX2 [76]. Moreover, the 
comparison between the proteomes and phosphopro-
teomes of a small number of hESCs and hiPSCs revealed 
functionally-associated differences in protein expres-
sion and phosphorylation in these two types of hPSCs, 
possibly related to residual regulatory characteristics of 
the somatic cells used for generating the hiPSCs [10]. 
It is therefore plausible that the protein phosphorylation 
modulates pluripotency in hPSCs by acting on the key 
factors, which are essential for pluripotency in addi-
tion to numerous signal transduction molecules. Indeed, 
there have been several reports suggesting that protein 
phosphorylation that acts directly on POU5F1, NANOG, 
SOX2, KLF4 and MYC may affect the function of these 
transcription factors in the regulation of cellular pluripo-
tency [77]. Variations in protein expression and the phos-
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phorylation state of different hPSC lines may affect their 
responses to environmental stimuli. Like glycoproteins, 
phosphoproteins appear to convey information regarding 
the pluripotent state of hPSCs. Specific types of protein 
phosphorylation are less likely to be identified as “pluri-
potency-associated” biomarkers due to the lower degree 
of structural complexity of protein phosphorylation com-
pared with that of protein glycosylation. However, it is 
likely that the phosphoproteome or a subset of phospho-
proteins could provide a sensitive and useful biomarker 
for monitoring pluripotency and differentiation in hPSCs.

It is clear that both kinases and phosphatases play 
critical roles in the proper operation of cell signaling me-
diated by protein phosphorylation. Unlike many kinases 
that have been well studied in somatic cells and hPSCs, 
the importance of protein phosphatases in the regulation 
of cellular pluripotency is less appreciated. Despite the 
overwhelming amount of attention that has been focused 
on kinases in mammalian PSCs, protein phosphatases 
(alkaline phosphatase in particular) remain one of the 

earliest-discovered and most commonly used biomarkers 
for cellular pluripotency [78, 79], indicating the potential 
functional significance of protein phosphatases in PSCs. 
Indeed, emerging data have shown that several phos-
phatases (e.g., PTEN and Shp2) are important for the dif-
ferentiation capacity and lineage specification of human 
and murine PSCs. Moreover, suppression of these pro-
tein phosphatases inhibits hPSC exit from the pluripotent 
state during differentiation [80-82]. These studies also 
illustrate how phosphatases affect cellular pluripotency 
by altering protein phosphorylation in various signaling 
pathways, and establish a strong rationale for the devel-
opment of a strategy to stabilize pluripotency by specific 
interference with the activity of certain phosphatases.

Phosphorylation signaling is potentially influenced by 
genetic variations and proteoglycans in hPSCs

Numerous studies have suggested that the expression 
and activity of many protein kinases and phosphatases 
can be influenced by single nucleotide polymorphisms 

Figure 5 The antagonistic actions of HATs and HDACs are required for regulating the acetylation of histone and non-histone 
proteins in many types of mammalian cells, including mouse and human PSCs. HATs transfer acetyl groups onto proteins 
and HDACs remove the acetyl groups. The acetylation state of histones affects chromatin structure and dictates the acces-
sibility of promoter regions to the transcriptional machinery and the activation of gene expression. In the pluripotent state, 
cells appear to have higher levels of global histone acetylation and chromatin accessibility for transcriptional machinery. The 
acetylation state and functions of many non-histone proteins are also controlled by HATs and HDACs.
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(SNPs) or rare point mutations existing in human genom-
es. These genetic variations are functionally associated 
with the differential regulation of signal transduction and 
the unequal susceptibility to a variety of disorders among 
different individuals [83-91]. A global analysis of SNP 
marks in hPSC genomes revealed that the duplication 
or deletion of several genes (e.g., NRAS, AKT3, RASA3 
and DUSP15) involved in phosphorylation signaling 
networks frequently occurs in hPSCs during cellular re-
programming and long-term culture [92]. Although cor-
relations between the differentiation capacity of hPSCs 
and these genetic variations have not been systematically 
examined, it is feasible that cellular pluripotency and dif-
ferentiation propensity may differ in different hPSC lines 
partially due to intrinsic genetic variation that alters cell 
signaling mediated by protein phosphorylation. 

As mentioned earlier, protein glycosylation and extra-
cellular proteoglycans are critical for modulating growth 
factors and plasma membrane-bound receptor kinases 
to which they bind (Figure 4). This suggests that protein 
glycosylation and phosphorylation are highly interactive 
in hPSCs, and that the perturbation of glycomodifications 
or glycoprotein expression on the cell surface may be 
frequently accompanied by drastic changes in phospho-
rylation signaling networks and the pluripotent state.

Protein acetylation in hPSCs

Histone/non-histone proteins and protein acetylation
As shown in Figure 5, two types of key regulators, 

histone acetyltransferases (HATs) and histone deacety-
lases (HDACs), dynamically control the acetylation state 
of histones. The antagonistic actions of these enzymes on 
histones serve as an important mechanism for the epige-
netic regulation of gene expression [93]. In addition to 
histones, many non-histone proteins have been identified 
as the substrates of HATs and HDACs [94]. There are 
numerous examples showing that the acetylation state of 
proteins is highly relevant to their stability and activity 
in cells. Defects in protein acetylation frequently result 
in severe abnormalities of development and physiology 
due to the dysregulation of gene expression and protein 
function in animal models, and are pertinent to the patho-
genesis of many human diseases [95-97]. In addition, 
undifferentiated mESCs appear to have a higher level of 
global histone acetylation with transcriptional hyperac-
tivity as compared to their differentiated derivatives [98]. 
These observations not only suggest the importance of 
protein acetylation in controlling cellular state and dif-
ferentiation capacity, but also rationalize approaches to 
potentially correct these abnormalities or treat diseases 
by targeting HATs and HDACs.

Regulation of pluripotency by protein acetylation and 
HDAC inhibitors

There are five families of HDACs expressed in mam-
malian cells, including class I (HDAC1, 2, 3, and 8), 
class IIa (HDAC4, 5, 7, and 9), class IIb (HDAC6 and 
10), class III (SIRT1-7) and class IV (HDAC11). Efforts 
studying HDACs as therapeutic targets in malignant 
cells have led to the development of a series of small-
molecule inhibitors, particularly inhibitors of class I and 
II HDACs, that block their ability to catalyze protein 
deacetylation [95]. One of the most well-known HDAC 
inhibitors is suberoylanilide hydroxamic acid (SAHA, 
Vorinostat), currently used as an anticancer therapeutic 
agent to treat patients with cutaneous T-cell lymphoma.

Interestingly, many HDAC inhibitors, including 
SAHA, valproic acid (VPA), trichostatin A (TSA) and 
sodium butyrate, are known to significantly enhance the 
efficiency of reprogramming mouse or human somatic 
cells into iPSCs [99-102], suggesting that suppression of 
HDAC activity and regulation of protein acetylation is 
important for the establishment and modulation of cel-
lular pluripotency. Among these HDAC inhibitors, VPA 
also enables the efficient induction of iPSCs from MEFs 
without the expression of exogenous Myc, as well as the 
successful reprogramming of human dermal fibroblasts 
(HDFs) to generate hiPSCs with ectopic expression of 
only POU5F1 and SOX2 [100]. Although sodium bu-
tyrate appeared to substitute for ectopically-expressed 
MYC and KLF4 and remarkably increased the yield of 
hiPSCs from HDFs [101], it facilitated miPSC produc-
tion in a Myc-dependent fashion and adversely affected 
reprogramming efficiency in the absence of ectopically-
expressed Myc in MEFs [102]. Despite these reported 
discrepancies between mouse and human somatic cells, 
it is generally agreed that treatment of somatic cells with 
HDAC inhibitors during reprogramming can induce 
changes that drive cells toward the pluripotent state 
due to increased histone acetylation and activation of 
gene expression. Two recent studies showed that the nu-
cleosome remodeling and deacetylation (NuRD) complex 
containing HDAC1 and HDAC2 is functionally associ-
ated with suppression of pluripotency-associated gene 
expression and promotion of lineage commitment in 
mESCs [103, 104]. These studies reiterate the significant 
role of HDACs in the regulation of cellular pluripotency 
and suggest that HDACs regulate pluripotency through a 
mechanism involving chromatin remodeling.

It has been shown that many deacetylases are local-
ized to the cytoplasm or frequently shuttle between the 
cytoplasm and nucleus [105]. This cytoplasmic local-
ization provides these enzymes with the opportunity to 
interact with many non-histone proteins to modulate 
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their acetylation state and function. Among all the class 
I, class II and class IV HDACs, HDAC3, 4, 5, 6, 7, 9, 10 
have well-characterized non-histone substrates. Many of 
these non-histone substrates (e.g., TP53, MEF2, RUNX2, 
STAT1, STAT3, NFKB1, CTNNB1/β-catenin, HIF1A 
and tubulin) are intrinsically involved in the regulation 
of cellular pluripotency, proliferation and differentia-
tion [96, 105]. In fact, several reports have indicated the 

importance of HDAC-mediated deacetylation of non-
histone proteins for lineage specification and normal dif-
ferentiation of particular cell types from stem cells [106-
108]. Jain et al. [109] recently reported that the acetyla-
tion of TP53 at Lys373 leading to the stabilization of TP53 
plays an important role in the initiation of differentiation 
in hESCs. As HDAC inhibitors (e.g., TSA) enhance the 
acetylation of TP53 at Lys373 [110, 111], it is possible 

Figure 6 The biochemical reactions of arginine and lysine methylation are catalyzed by protein arginine methyltransferases 
(PRMTs) and protein lysine methyltransferases (PKMTs) in cells. Depending on the number of methyl groups and types of 
methyltransferases that are involved in methylation, the reactions can result in the production of monomethylarginine, sym-
metric dimethylarginine, asymmetric dimethylarginine, monomethylated, dimethylated or trimethylated lysine in peptides. The 
asterisk indicates the ability of human type III PRMT (PRMT7) to convert arginine residues of proteins into monomethylargi-
nines but not any form of dimethylarginines is debatable.
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that treatment with these inhibitors may influence cell 
fate decisions in cells that undergo reprogramming or 
differentiation. This may occur through modulating the 
post-translational regulation of TP53 and other signaling 
molecules that are relevant to embryogenesis or pluri-
potency, in addition to altering chromatin structures and 
gene expression. 

Besides HDAC1-11, the sirtuins (SIRT1-7, class III 
HDACs) regulate the deacetylation of numerous pro-
teins. Sirtuins are a unique group of NAD+-dependent 
protein deacetylases that are virtually unaffected by 
most HDAC inhibitors currently available [112]. To un-
derstand the potential roles of sirtuins in the context of 
pluripotency regulation, several studies have character-
ized SIRT1-deficient hESCs and Sirt1-knockout mESCs. 
SIRT1 knockdown in hESCs or knockout in mESCs 
appears to have negligible effects on the expression of 
pluripotency factors prior to the induction of differentia-
tion [113, 114]. However, downregulation of SIRT1 oc-
curs in hESCs undergoing differentiation and it leads to 
the effective expression of developmental genes that are 
epigenetically repressed by the SIRT1-mediated deacety-
lation of histones H3 and H4 in pluripotent hESCs [113]. 
In addition, hESCs with SIRT1 knockdown show greater 
changes in the expression of pluripotency-related and 
differentiation-related genes in response to differentiation 
cues, compared to wild-type hESCs [113]. Interestingly, 
Sirt1 deficiency impedes the downregulation of pluripo-
tency factors, delays the induction of differentiation fac-
tors, and compromises hematopoietic lineage capacity in 
mESCs undergoing differentiation [114]. Although more 
studies are needed to comprehensively understand how 
SIRT1 exerts its function on the determination of cell 
fate in different types of PSCs, these findings indicate 
that the regulation of histone acetylation by sirtuins may 
greatly influence differentiation programs and lineage 
commitment.

It has been shown that SIRT1 can suppress TP53 
(p53)-mediated apoptosis by deacetylating and inhibiting 
TP53 [115, 116]. SIRT2 is also implicated in regulat-
ing the activity of several transcription factors, includ-
ing TP53 and FOXO1 [117-119]. Consistent with these 
studies, SIRT1 alleviates the Tp53-mediated suppression 
of Nanog expression by blocking Tp53 acetylation and 
nuclear translocation in mESCs [120]. In addition, the 
deacetylation of FOXO1 by SIRT2 leads to a reduction 
in mouse adipocyte differentiation [119, 121]. A more 
recent study reveals that SIRT1 is elevated during cell 
reprogramming and facilitates the generation of miPSCs 
partially through the negative regulation of Tp53 acety-
lation and transcriptional activity [122], suggesting that 
the SIRT1-mediated protein deacetylation of non-histone 

substrates may play an important role in the establish-
ment and maintenance of cellular pluripotency in hP-
SCs. The deacetylation and modulation of different non-
histone proteins by sirtuins during cell differentiation 
also provides a possible explanation for the perplexing 
and somewhat contradictory observations of phenotypic 
alterations induced by SIRT1 deficiency in hESCs and 
mESCs. Indeed, all the sirtuins have been shown to inter-
act with non-histone substrates [123], which may vary in 
amount and composition in different cells.

Given the fact that most HDAC inhibitors can target 
multiple members within the HDAC family, the iden-
tification of any HDAC(s) and its substrate(s) funda-
mentally associated with pluripotency or differentiation 
remains an important and challenging task. Hopefully, 
the discovery of such HDACs will allow us to better 
understand the influence of HDAC inhibitors in hPSCs 
and how to select or design HDAC inhibitors for dif-
ferent purposes in regenerative medicine. In addition, 
the significance of HATs and their mechanism of action 
with regard to the regulation of cellular pluripotency 
in hPSCs could be equally interesting. Recent reports 
have shown that defects in HATs, including Mof (Males 
absent on the first, also known as Myst1 or Kat8), Trrap 
(Transformation/transcription domain-associated pro-
tein) and Ep300 (p300), result in phenotypical alterations 
in cellular pluripotency and differentiation in mESCs 
[124-126]. In addition, the conditional deletion of Trrap 
depletes the hematopoietic stem cell pool in mice [127]. 
Interestingly, the transcriptional activity of Krüppel-
like factor 4 (KLF4), one of the transcriptional factors 
used for producing hiPSCs [5], is regulated by EP300-
mediated acetylation in human cancer cells [128]. These 
findings highlight the need to examine HATs in hPSCs to 
understand their potential roles in the regulation of pluri-
potency in human cells.

Pluripotency is potentially affected by interactions be-
tween protein acetylation and phosphorylation

Like the crosstalk between glycosylation and phos-
phorylation of proteins, there are many identified inter-
actions between protein acetylation and phosphoryla-
tion signaling. For example, the translocation of class 
IIa HDACs is under the control of Ca2+/calmodulin-
dependent protein kinase (CaMK), cAMP/protein ki-
nase A (PKA) and protein kinase D (PKD)-mediated 
phosphorylation [129-133]. The phosphorylation of 
HDAC3 at Ser424 reduces its deacetylase activity and is 
antagonistically regulated by casein kinase II (CK2) and 
serine/threonine protein phosphatase 4 (PP4) [134]. The 
inactivation of SIRT2 through inhibitory phosphoryla-
tion at Ser368 is mediated by cyclin-dependent kinases 
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(CDK), CDK1, 2 and 5 [135, 136]. HDAC1, 3 and 6 are 
implicated in the enhancement of AKT signaling through 
their specific interactions with protein phosphatase 1 
(PP1) [137] and AKT [138]. Moreover, SIRT1 (SIR2α) 
modulates TGFβ-induced apoptosis by facilitating the 
deacetylation and degradation of Smad7 [139]. These po-
tential regulatory interactions not only add another layer 
of complexity to the molecular mechanisms underlying 
cellular pluripotency regulated by protein acetylation, but 
also remind us that the treatment with HDAC inhibitors 
that selectively inhibit different types of HDACs may 
lead to distinct consequences in cellular reprogramming 
or differentiation of hPSCs.

Protein methylation in hPSCs

Overview of protein methylation
The identity of the enzymes causing protein methyla-

tion remained unknown until the heterogeneous nuclear 
ribonucleoprotein (hnRNP) methyltransferase 1 (HMT1, 
also known as RMT1) was first discovered in Saccha-
romyces cerevisiae less than 20 years ago [140]. Since 
then, numerous types of protein methyltransferases and 
their orthologs have been identified in yeast, fruit flies 

and mammals [141, 142]. It is now clear that protein 
methylation has profound influences on many biological 
events and that defects in protein methyltransferases may 
lead to severe phenotypic abnormalities during embryo-
genesis [143, 144]. Two types of protein methylation, 
arginine and lysine methylation (Figure 6), and their rel-
evant methyltransferases have been frequently described. 
There are 10 members in the protein arginine methyl-
transferase (PRMT) family and more than 30 members in 
the protein lysine methyltransferase (PKMT) family ex-
pressed by mammalian cells [143, 144]. Like HATs, one 
of the most frequently described substrates for PRMTs 
and PKMTs is histone. Unlike acetylated lysine residues 
on histones, which are generally associated with the ac-
tivation of gene expression, the methylation of different 
lysine residues on histones may lead to either activation 
or suppression of gene expression.

Regulation of pluripotency by protein methylation
It has been reported that the methylation of histone H3 

lysine 4 (H3K4), H3K36 and H3K79 is associated with 
active gene expression [145-147], and that the methyla-
tion of histone H3K9, H3K27 and H4K20 is involved in 
gene silencing [148-151]. Due to its functional impact on 

Figure 7 An illustration of amino acid residues where acetylation, methylation and phosphorylation frequently occur in core 
histones. Certain lysines (e.g., H3K4, H3K9 and H3K27) may be modified by either acetylation or methylation. Trimethylation 
of H3K4 and H3K27 gives rise to the bivalent chromatin marks found at the transcription start sites of many genes involved 
in lineage commitment and development in undifferentiated hPSCs. The majority of these bivalent marks resolve into one or 
the other at each particular gene during cell differentiation, depending on the expression state of the genes in differentiated 
derivatives. In general, genes induced during the differentiation of hPSCs retain the H3K4 methylation marks, and genes si-
lenced during differentiation retain the H3K27 methylation marks. The phosphorylation of amino acid residues (e.g., H3S10 
and H3S28) in close proximity to these lysines could influence their methylation-acetylation switch.
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transcription, it is foreseeable that histone methylation 
may participate in the regulation of pluripotent states by 
modulating the expression of pluripotency factors. In 
fact, several reports have described genome-wide histone 
methylation patterns in hESCs and the dynamic changes 
in bivalent chromatin marks (e.g., methylation of H3K4 
and H3K27; Figure 7) that are associated with the ex-
pression levels of pluripotency and differentiation factors 
during cell differentiation [152, 153]. Many recent stud-
ies further examined correlations between gene expres-
sion and the methylation states of H3K4 and H3K27 in 
hESCs committing to the specific cell lineages and hiP-
SCs reprogrammed from somatic cells [154-156]. These 
studies suggest that histone methylation and chromatin 
remodeling are critical for the cardiac and pancreatic dif-
ferentiation and are highly similar between hESCs and 
hiPSCs. Furthermore, the data obtained from murine 
systems also demonstrated an essential role of Carm1 
(coactivator-associated arginine methyltransferase 1)-me-
diated histone arginine methylation in the regulation of 
cellular pluripotency in mESCs [157, 158] and revealed 
the importance of histone lysine methylation for balanc-
ing quiescent and active states of hair follicle stem cells 
in vivo [159].

Being one of the additive PTMs, protein methyla-
tion is theoretically reversible and under the control of 
antagonistic reactions catalyzed by protein methyltrans-
ferases and demethylases. Unlike the intense attention 
paid to deacetylases in protein acetylation research, 
protein demethylases seem to receive much less atten-
tion than methyltransferases from researchers in relevant 
fields. Several studies have uncovered a requirement for 
H3R17/R26 methylation by methyltransferase Carm1 in 
the maintenance of mESC pluripotency [157, 158], the 
association between the aberration in mouse hair follicle 
stem cells and the deficiency of H3K27 methylation due 
to Ezh1 and Ezh2 knockouts [160], the function of Ezh1 
and Ezh2 to regulate mESC pluripotency [161], and the 
involvement of H3K27 demethylase Kdm6a in the mi-
gration and differentiation of hematopoietic stem cells 
[162]. Therefore, it would be an interesting question to 
ask whether and how protein demethylases govern the 
cellular pluripotency and differentiation of mammalian 
PSCs. Consistent with this idea, a recent report showed 
that H3K36 demethylase Kdm2b substitutes for Myc and 
promotes miPSC production by facilitating early gene 
activation in reprogramming [163]. Similarly, another 
report showed that H3K27 demethylases KDM6A and 
KDM6B modulate the differentiation of definitive endo-
derm from hESCs by activating WNT3 and its relevant 
signaling pathways [164]. 

Similar to protein acetylation on non-histone sub-

strates, it is also anticipated that non-histone proteins 
can be regulated by protein methylation. Indeed, the 
methylation of many non-histone proteins (e.g., TP53, 
ESR1, NFKB1, E2F1, RB and STAT3) that have critical 
functions in signal transduction or transcriptional regula-
tion has been linked to the activation or suppression of 
their functions [165]. An important mechanism by which 
the methylation of non-histone proteins modulates cell 
signaling is through regulating protein-protein interac-
tion between components of signaling networks. For 
example, the interaction of TP53 with Tip60, L3MBTL1, 
TP53BP1, and SIRT1 is critical for the activity of TP53 
and is influenced by its methylation [166-168]. In addi-
tion, it has been shown that the Set7/9-mediated methy-
lation of Rb facilitates the interaction between Rb and 
HP1, critical for Rb-dependent cell cycle arrest, tran-
scriptional repression, and differentiation of myoblasts 
[169]. This suggests that protein methylation could also 
participate in the regulation of differentiation by affect-
ing non-histone molecules and their associated signaling 
networks in hPSCs.

As shown in Figure 7, lysine residues where acety-
lation primarily occurs in core histone proteins are in 
close proximity to several serine phosphorylation sites. 
In addition, certain lysines may be modified by either 
acetylation or methylation. The competition between 
acetylation and methylation occurring on H3K27 acts as 
an antagonistic switch for the gene expression repressed 
by polycomb group proteins [170], while kinase signal-
ing leading to the phosphorylation of nearby amino acid 
residues (e.g., Ser28) can also influence the methylation-
acetylation switch of H3K27 [171]. These findings in-
dicate that histone acetylation and phosphorylation may 
profoundly affect the expression of many genes regulated 
by the bivalent chromatin methylation marks in hPSCs. 
The amino acid residues subjected to acetylation, methy-
lation and phosphorylation in non-histone proteins are 
also likely to have similar interactions that directly de-
termine protein functions. Therefore, the actual mecha-
nisms underlying protein methylation and its phenotypic 
consequences in the context of cellular pluripotency and 
differentiation are likely far more complicated than what 
was originally thought. 

Concluding remarks and future directions

Cellular pluripotency is a fascinating feature of hP-
SCs that has drawn the attention of researchers from 
multiple fields. As hESCs and hiPSCs continue to hold 
great promise for the success of regenerative medicine, 
it is crucial for us to dissect the molecular mechanisms 
underlying cellular pluripotency in human cells from 
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additional perspectives, not just those involving genom-
ics, epigenetics and transcriptomics. Emerging evidence 
shows that PTMs profoundly influence the regulation of 
cellular pluripotency through a variety of mechanisms. 
The complexity of PTMs provides many accessible 
targets and more possibilities for characterizing hPSCs 
and directing their differentiation. Like the requirement 
for protein-protein interaction between POU5F1, SOX2 
and a stem cell coactivator complex for the maintenance 
and establishment of cellular pluripotency [172], there 
could be many novel and important protein functions that 
rely on appropriate PTMs and cannot be directly identi-
fied at the transcriptional or translational levels in stem 
cells. This necessitates comprehensive investigations 
of PTMs in hPSCs to uncover critical and yet unknown 
mechanisms that are responsible for tuning pluripotency-
associated signaling and cellular plasticity in hPSCs.

In this review, we have summarized many intriguing 
findings with regard to four major types of PTMs in the 
context of cellular pluripotency of hPSCs. In addition 
to what we have discussed here, there are other types of 
PTMs (e.g., ubiquitination and SUMOylation) that occur 
in human cells and have well-documented roles in the 
maintenance of normal function of various proteins and 
the integrity of cell signaling pathways. Their potential 
roles in the regulation of cellular pluripotency [173, 174] 
merit further exploration. Due to the high level of com-
plexity associated with the distinct properties and differ-
ent functionalities of different PTMs on various types of 
proteins, generalizing the effects of different PTMs on 
the regulation of cellular pluripotency may be nearly im-
possible. With our review, we hope to highlight this com-
plexity and remind our audience that alterations in PTMs 
can greatly impact cellular pluripotency and should be 
considered when stem cells are subjected to manipula-
tions for research and clinical purposes. We believe that 
in the near future many more important discoveries will 
be made by studying PTMs in human stem cells, and that 
the investigation of pluripotency-associated PTMs will 
be a valuable approach to understanding these remark-
able cells.
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