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Abstract

Background/Introduction: Widespread network disruption has been hypothesized to be an important
predictor of outcomes in patients with refractory temporal lobe epilepsy (TLE). Most studies examining
functional network disruption in epilepsy have largely focused on the symmetric bidirectional metrics of
the strength of network connections. However, a more complete description of network dysfunction im-
pacts in epilepsy requires an investigation of the potentially more sensitive directional metrics of informa-
tion flow.
Methods: This study describes a whole-brain magnetoencephalography-imaging approach to examine resting-
state directional information flow networks, quantified by phase-transfer entropy (PTE), in patients with TLE
compared with healthy controls (HCs). Associations between PTE and clinical characteristics of epilepsy syn-
drome are also investigated.
Results: Deficits of information flow were specific to alpha-band frequencies. In alpha band, while HCs exhibit a
clear posterior-to-anterior directionality of information flow, in patients with TLE, this pattern of regional infor-
mation outflow and inflow was significantly altered in the frontal and occipital regions. The changes in informa-
tion flow within the alpha band in selected brain regions were correlated with interictal spike frequency and
duration of epilepsy.
Conclusions: Impaired information flow is an important dimension of network dysfunction associated with the
pathophysiological mechanisms of TLE.
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Impact Statement

A complete description of network dysfunction in temporal lobe epilepsy (TLE) requires investigation of the flow of infor-
mation in brain networks. In this whole-brain magnetoencephalography imaging study, using an information theory measure,
phase-transfer entropy, we examine the strength and directionality of information flow in patients with TLE. Abnormal in-
formation flow was documented and was associated with clinical measures related to epilepsy in certain brain regions. The
approach described here may provide a useful framework to investigate network dysfunction in other neurological and psy-
chiatric disorders.
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Introduction

Among people with epilepsy that is refractory to treat-
ment with medications, those who have seizures aris-

ing from a focal region may have curative or palliative
treatment directed at that region using surgery or neurosti-
mulation. Traditionally, the origin of seizures in focal epi-
lepsy was considered to be anatomically isolated. More
recently, neuroscience has transformed our understanding
of brain networks, and the classic concept of ‘‘epileptogenic
zone’’ has been replaced by that of ‘‘ictal network’’ (Zijl-
mans et al., 2019). Deciphering the relationship of patho-
physiological mechanisms of epilepsy on the functional
anatomy of brain networks provides a direct link to probe
the seizure semiology—the clinical manifestation of the
spread of ictal activity in the brain. A reliable, quantifiable,
and objective biomarker of network disruption in people
with focal epilepsy versus those without neurologic disease
could serve as a key measure, therefore in delineating re-
gions of interest for further inquiry and in providing a met-
ric for correlative analyses.

Technological developments in noninvasive neuroimag-
ing combined with powerful network modeling tools have
opened new opportunities to characterize and quantify the
patterns of network disruption in epilepsy more accurately
than before. Indeed, widespread network disruption has
been reliably demonstrated in patients with epilepsy and
has been identified as an important contributor to cognitive
deficits as well as a predictor of surgical outcome (Bonilha
et al., 2015; Englot et al., 2015; He et al., 2017; Martire
et al., 2020; Morgan et al., 2017; Pressl et al., 2019). Current
methods examining functional network disruption in epi-
lepsy are largely focused on the strength of network connec-
tions, inferred from statistical dependencies between the
time series of neuronal activity at different brain regions.
A complete description of network dysfunction in focal epi-
lepsy, however, requires an investigation of the flow of infor-
mation as well as the strength of network connections.
Recent neuroimaging studies using magnetoencephalogra-
phy (MEG) have reliably used statistical measures of infor-
mation flow such as phase-transfer entropy (PTE) and
directional PTE (dPTE) on beamformer-reconstructed time
series data of neuronal activation to demonstrate typical in-
formation flow in resting-state brain networks (Hillebrand
et al., 2016). How focal epilepsy affects this information
flow in the human brain remains unknown, and identification
of such patterns will further refine network biomarkers of
seizure semiology, of seizure onset zone, and of patterns of
cognitive dysfunction in people with epilepsy.

A handful of studies have used electroencephalography
(EEG) to study network information flow in patients with a
common type of focal epilepsy, temporal lobe epilepsy
(TLE); because it is generally believed (but not proven;
see, e.g., Wiebe, 2000) to be relatively heterogenous and
prevalent, TLE has been the common choice for such studies.
Several other studies have applied entropy metrics to locate
the seizure onset zone in patients with TLE with promising
results. A combined PTE and graph theory approach on
EEG sensor data identified the EEG sensors closest to the sei-
zure onset and provided a quantitative measure to localize
the epileptogenic zone in patients with TLE (Wang et al.,
2017). Using intracranial EEG electrodes, an analysis utiliz-

ing a symbolic transfer entropy (TE) measure was able to re-
liably identify the hemisphere containing the seizure onset
zone without observing ictal activity (Staniek and Lehnertz,
2008). These studies indicate that TE calculated on data
obtained during the interictal period is a sensitive index to
quantify the functional integrity of the seizure network in
TLE. However, no study has examined large-scale informa-
tion flow changes across brain networks in TLE using nonin-
vasive reconstructions of brain activity.

The transfer-entropy measures, such as PTE, are catego-
rized into entropic measures. According to Robinson and
colleagues (2013), such measures derive estimates of infor-
mation computations that are not seen in power and energy
estimates and have the ability to uncover a hidden dynamical
structure in turbulent or chaotic dynamics in resting state. It
can therefore be expected that TLE-specific turbulent dy-
namics, which may exist even in interictal resting state as a
form of the spread of ictal activity in the brain, would be cap-
tured by using entropic measures.

In the current study, we used MEG-imaging (MEGI), with
its millisecond precise temporal resolution and superior spa-
tial resolution compared with EEG, to investigate abnormal-
ities in information flow, choosing as our population a group
of patients with medically refractory TLE who were surgical
candidates.

Specifically, using whole-brain activity reconstructions,
we quantified PTE and dPTE in the alpha (8–12 Hz) and
delta/theta (1.5–7.5 Hz) frequency bands in a cohort of pa-
tients with TLE and in a cohort of age-matched healthy con-
trols (HCs). Furthermore, we examined the associations of
PTE and dPTE with clinical measures, including spike fre-
quency and duration of epilepsy. We tested the hypotheses
(1) that patients with TLE will exhibit frequency-specific
deficits in measures of information flow compared with
age-matched healthy participants and (2) that these deficits
will be correlated with clinical measures related to epilepsy.

Materials and Methods

Subjects

Nineteen study subjects with TLE were selected from
patients referred for MEG as part of a presurgical clinical
epilepsy evaluation at the University of California, San Fran-
cisco (UCSF) Biomagnetic Imaging Laboratory (BIL) between
June 1, 2004, and July 18, 2018, and who then underwent sur-
gical resection for medically refractory epilepsy following the
MEG recordings. Twelve out of these 19 subjects were pre-
viously included in a published work from the laboratory re-
garding connectivity (Englot et al., 2015). For comparison,
20 control subjects aged younger than 56 years and with no
known history of seizure or neurological disorder were in-
cluded for analysis; their studies were recorded during the
same period. All procedures were carried out in full compliance
with the UCSF clinical research policies and with the approval
of the UCSF Committee on Human Research. This study was
approved by the UCSF Institutional Review Board (IRB).

Data acquisition and preprocessing

Each subject underwent MEG recording inside a magnet-
ically shielded room with a 275-channel whole-head axial
gradiometer system (MEG International Services Ltd.,
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Coquitlam, British Columbia, Canada). Ten- to 40-min
resting-state MEG recording was collected from each subject,
while lying supine with eyes closed (sampling rate, 600 Hz or
1 kHz). This study protocol required the participants to be
awake as much as possible during the epoch of interest.

As the first step of data preprocessing, all the subjects’
data were downsampled to 600 Hz, and cardiac and blink
artifacts were removed using an independent component
analysis (Ablin et al., 2018). The recorded sensor time series
were then segmented into 12-sec-duration epochs. Noisy ep-
ochs, for example, those containing artifact caused by head
or body motion, were removed based on visual inspection
of data. In addition, an automatic artifact rejection tool as
implemented in the Fieldtrip toolbox (Oostenveld et al.,
2011) was used to remove the epochs with muscle artifact.
From the remaining clean epochs, 10 epochs were chosen
for analysis, that is, total 120-sec resting-state sensor time se-
ries were used for analysis for each subject. After these arti-
fact rejection procedures, the sensor time series were filtered
using a 1–55 Hz bandpass filter. Spike frequency was calcu-
lated using the clinical annotations of ‘‘spike’’ in the resting-
state sensor signal (10–40 min) for each subject as marked by
a certified MEG-EEG technologist and reviewed by a clinical
neurophysiologist and epileptologist magnetoencephalogra-
pher (H.E.K.) before inclusion.

To provide anatomical head models for MEG analysis,
a high-resolution 3D T1-weighted whole-brain volumetric
magnetic resonance imaging (MRI) was acquired for each
subject using a 3T scanner (Excite; GE). For all participants,
the outline of the brain on the structural scans was extracted,
and the segmented brain was treated as a volume conductor
model for the source reconstruction described below. Core-
gistration of the MEG data with the structural MRI was per-
formed based on three fiducial coil positions (nasion and left
and right preauricular). The result of the coregistration was
confirmed by visual inspection. The signal preprocessing
and coregistrations were performed using the Fieldtrip tool-
box in MATLAB (Oostenveld et al., 2011).

Source reconstruction

For source reconstruction, 6-mm regular voxels were gen-
erated in the brain region of a template MRI, ‘‘HCP40 MNI
1.25 mm.nii,’’ that was derived from 40 HCP subjects in
MNI152 space (Fan et al., 2016) resulting in 8191 voxels.
The generated voxels were warped into individual head
model, and then individual magnetic lead field vectors
were computed on each voxel as a forward model using a
single-shell model approximation (Nolte, 2003). The voxels
for each subject were indexed to the Brainnetome atlas (Fan
et al., 2016). The Brainnetome atlas is composed of 210 cor-
tical regions and 36 subcortical regions. In our analyses,
among these total 246 brain regions, we focused on the
210 cortical brain regions where MEG source reconstruc-
tions are considered to work well. These cortical regions,
and their abbreviations used in this study, have been listed
in the Supplementary Materials (Supplementary Tables S1
and S2). Montreal Neurological Institute (MNI) coordinates
of the regions are also presented in the tables.

An array-gain scalar beamforming method (Sekihara
et al., 2004) was applied to the 120-sec sensor time series
to obtain source-localized activity for all brain regions.

Beamformer weights were calculated in the time domain,
and the data covariance matrix for beamforming was com-
puted using the whole 120-sec time series; singular value
truncation with 220 components was used when inverting
the covariance matrix. This beamforming provided voxel-
level source timecourses on the 6-mm volumetric grids in
the brain. Using the Brainnetome atlas (Fan et al., 2016),
210 cortical region representative source timecourses were
extracted: for each cortical region, the voxel-level source
timecourse that had the maximum power was designated as
the region-of-interest (ROI) representative (Hillebrand
et al., 2012). The 210 ROI-level representative source time-
courses were digitally filtered using a Fourier transform
into delta/theta (1.5–7.5 Hz), alpha (8–12 Hz), and beta
(12–30 Hz) frequency bands before computing connectivity
metrics, resulting in frequency-specific ROI-level time-
courses si t; fð Þf gi = 1, ..., 210 (t denotes time points, and i is
the label for ROI) for each frequency band (f denotes a
label for the frequency bands, i.e., f = delta/theta, alpha,
or beta). Note that for our analyses, the delta (1.5–4 Hz)
and theta (4–7.5 Hz) frequency bands were grouped together
into one larger band, the delta/theta band, because the anal-
ysis results did not differ substantially between these bands
in an exploratory analysis. Computation of source recon-
structions and connectivity metrics described above were
performed using the custom-made MATLAB code.

Phase-transfer entropy

PTE (Lobier et al., 2014) was used to evaluate pairwise
directional interactions between ROI timecourses, and is
considered to represent the information flow between the
ROIs based on phase timecourses, hi t; fð Þf gi = 1, ..., 210, that
were derived using the Hilbert transform of the bandpass-
filtered ROI-level timecourses, si t; fð Þf gi = 1, ..., 210. PTE is
an extension of the TE measure (Bossomaier et al., 2016;
Vicente et al., 2011) that was originally proposed by
Schreiber (2000):

PTEi!j fð Þ = I(hj tþ d; fð Þ; hi t; fð Þjhj t; fð Þ)
= +

t

p(hj tþ d; fð Þ, hj t; fð Þ,

hi t; fð Þ)log2

p(hj tþ d; fð Þjhj t; fð Þ, hi t; fð Þ)
p(hj tþ d; fð Þjhj t; fð Þ) ,

(1)

where d is a delay, p �, �ð Þ is joint probability, p( � j � ) is con-
ditional probability, and I(Y ; XjZ) represents conditional mu-
tual information between Y and X conditioned with Z. In the
Expression (1), i denotes an ROI that plays a role in sending
phase information, that is, a ‘‘sender,’’ and j denotes an ROI
that plays a role in receiving phase information, that is, a ‘‘re-
ceiver.’’ According to Lobier and colleagues (2014), PTE is
more robust than original real-valued TE as a measure of net-
work connectivity.

To evaluate PTE, we used a binning method with the num-
ber of bins, Nbin, set to 15. Phase [0,2p) is accordingly discre-
tized into 15 bins of equal width, reducing continuous state
space. This binning step thus serves to represent phase in a
simpler, symbolic way (Staniek and Lehnertz, 2008), and
the calculation of PTE is therefore computationally efficient.
To evaluate the joint and conditional probabilities included
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in the definition [Eq. (1)], the symbolized phase timecourses
for all 10 epochs were used in computations for each subject.

For the delay d, we chose d =ð Þ5f � 1
s ~8:33 ms, where

fs = 600 Hzð Þ is the sampling frequency, although we ac-
knowledge that PTE depends on the choice of d (Lobier
et al., 2014). The reason for the choice is as follows: the typ-
ical delay associated with the conduction of neuronal activity
from various brain areas to the corpus callosum in humans is
typically 5–10 ms (Terasaki and Okazaki, 2002; Tomasi
et al., 2012). Our chosen delay parameter of *8.3 ms corre-
sponds to this typical delay magnitude. PTE, given the above
choice of d, may therefore capture the effect of a sender i at
one side of the brain on a receiver j located in the opposite
hemisphere of the brain if there is in fact information flow
between them; we may thus consider this choice suitable
for querying pairwise information flow in the whole brain.
In addition, this value of d is almost the same as that used
in Hillebrand and colleagues (2016) and Engels and col-
leagues (2017), especially for the alpha band signal with
about 10 Hz, and so, we believe this choice to be justified.

It is known that TE estimates are generally biased, especially
for small-sample sizes (Marschinski and Kantz, 2002), that is,
TE may have a nonzero value even if there is no causal link.
This is also the case for PTE calculations, and so, a bias correc-
tion is needed (Gourévitch and Eggermont, 2007). To remove
bias from PTEi/j, an estimate of PTE is also made for shuffled

data, PTEshuffled
i!j fð Þ = I(hj tþ d; fð Þ; hshuffled

i t; fð Þjhj t; fð Þ), and

then this is subtracted from PTEi!j fð Þ (Gourévitch and Egger-

mont, 2007). Here hshuffled
i t; fð Þ is a direct shuffle of ith ROI

phase timecourse. This shuffle estimate was repeated 10
times for each hi t; fð Þ by randomizing the order of time points,

and PTEshuffled
i!j fð Þ was evaluated as an average of results

obtained from the 10 trials. In addition to this bias correction,
following Gourévitch and Eggermont (2007), we introduced
normalization and defined a normalized PTE (NPTE) as

NPTEi!j fð Þ =
PTEi!j fð Þ� PTEshuffled

i!j fð Þ
H(hj tþ d; fð Þjhj t; fð Þ) 2 0, 1½ �, (2)

where H(Y jZ) is the Shannon entropy of Y conditioned with
Z. This represents the fraction of information in jth ROI
phase timecourse that cannot be explained by its own past,
but can be explained by the past of ith ROI phase timecourse.

By computing NPTEi!j fð Þ for all pairwise cortical ROIs,
a matrix form of NPTE, which has NROI · NROI dimensions
[NROI = 210ð Þ: the number of Brainnetome ROIs on the cor-
tical region], is obtained. A vector-form regional measure,
regional NPTE, can be defined by averaging over the compo-
nents of the NPTE matrix along receiver jð Þ array dimension
or sender ið Þ array dimension. Specifically, the regional
NPTEs were defined as follows:

NPTEout i; fð Þ = 1

NROI� 1
+

j 6¼ið Þ
NPTEi!j fð Þ (3)

and

NPTEin j; fð Þ = 1

NROI� 1
+

i 6¼jð Þ
NPTEi!j fð Þ: (4)

NPTEout i; fð Þ, which results from averaging along receiver
jð Þ array, denotes regional information outflow at a brain re-

gion i, and NPTEin j; fð Þ, which results from averaging along
sender ið Þ array, denotes regional information inflow at a
brain region j. Regional NPTE corresponds to ‘‘node
strength’’ in the NPTE network in graph theory terminology
(Sporns, 2010).

In addition, we defined dPTE, which quantifies the relative
preferred direction of information flow, by

dPTEi!j fð Þ = NPTEi!j fð Þ�NPTEj!i fð Þ
NPTEi!j fð ÞþNPTEj!i fð Þ 2 � 1, 1½ �: (5)

In this definition of directionality, dPTEi!j fð Þ = 0 in the
case of no preferred direction. The form of the Expression
(5) is analogous to the laterality index [or laterality quotient,
e.g., Eq. (1) in Oldfield (1971)] that is often used in neuroi-
maging research to assess brain hemispheric dominance.

Regional dPTE was also defined, considering a dPTE ma-
trix is antisymmetric, as follows:

dPTE i; fð Þ = 1

NROI� 1
+

j 6¼ið Þ
dPTEi!j fð Þ: (6)

This denotes the likelihood of the ith ROI being an infor-
mation sender on average in comparison with other ROIs,
and thus, a negative dPTE i; fð Þ denotes the likelihood of
the ith ROI being an information receiver on average. For vi-
sualizing these regional metrics, the BrainNet Viewer tool-
box (Xia et al., 2013) was used.

Statistics

To evaluate deviation in directional information flow, in-
cluding global, regional, or matrix measures, in people
with TLE, we compute Z scores for each patient relative to
the measure’s mean and standard deviation in the HC
group, weighted by its sign:

Zk =
wk �wHC

rHC
� sgn wHC

� �
, (7)

where wk is the value of the connectivity metric, represent-
ing global, regional, or matrix directional information
flow, k = 1, . . . , 19ð Þ denotes the study subject label of
TLE patients, wHC denotes an average of the metrics
wHCs, and rHC denotes the standard deviation of wHCs.
The sign function allows us to identify that a negative
(positive) Zk indicates the decrease (increase) for NPTE
or dPTE. We also performed correlation analysis with
the spike frequency and duration of epilepsy, as well as es-
timations of the differences between groups, HC and TLE,
in the connectivity metrics.

We tested for demographic differences between the TLE
and HC groups, including age, using the unpaired Student’s
t-test, and gender difference using the v2 test.

To compare group-level NROI · NROI NPTE or dPTE ma-
trices between TLE and HC groups, we used one-sample
t-tests for Zks and obtained p values that were then corrected
by the false discovery rate (FDR) (Benjamini and Hochberg,
1995). The FDR-corrected p values were defined as signifi-
cant at p < 0.001 for NPTE and p < 0.01 for dPTE matrices,
respectively. Since the dPTE matrix is antisymmetric (Sup-
plementary Materials section 4), only the components be-
longing to its upper triangle, that is, NROI · (NROI� 1)=2
components, are considered for the FDR correction.
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To compare group-level regional NPTE or dPTE values
between TLE and HC, we used nonparametric permutation
tests (Nichols and Holmes, 2002) for Zks and obtained p val-
ues. As discussed in detail in Eklund and colleagues (2015), a
nonparametric permutation test is based on a small number
of assumptions and has here been proven to yield more accu-
rate results than parametric methods. The drawback of a per-
mutation test is the increase in computational complexity.
For example, a group analysis needs to be repeated 1000–
10,000 times. In our analysis, the number of the permutations
was set at 10,000. As before, the p values were corrected by
the FDR, and the FDR-corrected p values were defined to be
significant at p < 0.05.

For the correlation analyses, Pearson’s correlation coeffi-
cients, r, were calculated between regional Zks and the
spike frequency and between regional Zks and the duration
of epilepsy, respectively. Permutation tests were used to
evaluate r and the corresponding p values were obtained.
The p values were corrected by the FDR, and the FDR-
corrected p values were defined to be significant at p < 0.05.

In Supplementary Materials (section 5), we have shown
results of the similar analyses done using a different connec-
tivity metric, imaginary coherence (ImCoh), for reference.
The same statistical methods described above for dPTE
were used for the ImCoh matrix and its regional values.

Results

Participant characteristics

Table 1 summarizes participant characteristics in this study.
Age [t(37) =�1.82, p = 0.0776] and gender [v2(1,39) = 1.242,
p = 0.265] did not differ between groups.

Spectral characteristics

Patients with TLE showed significant deviations in spec-
tral characteristics compared with HC (Fig. 1). Specifically,
the patients with TLE showed reduced power in the alpha
band and increased power in the low-frequency delta/theta
bands (Fig. 1A). In addition, peak frequency within the
alpha band was shifted to the left (slower) in TLE versus
HC (Fig. 1B). In HC, distributions of the alpha peak frequen-
cies over the brain exhibit a posterior-to-anterior pattern for
HC (Fig. 1C), consistent with the observation of Mahjoory
and colleagues (2020). This pattern is reversed in TLE
(Fig. 1D). This difference is especially notable in the tempo-
ral and occipital regions.

Information flow

Next, we examined the patterns of information flow in pa-
tients with TLE versus HC as represented by NPTE and
dPTE. Information flow in specific frequency bands (i.e.,
alpha, 8–12 Hz; delta/theta, 1.5–7.5 Hz; and beta, 12–
30 Hz) showed regional diversity in strength of outflow and
inflow (Figs. 2 and 3 and Supplementary Fig. S2). For exam-
ple, in HC, considering the alpha band, there was high infor-
mation flow (i.e., with values larger than about 0.03) between
regions with rich local connections at short distances (Fig. 2C)
as defined in the Brainnetome atlas (Supplementary Fig. S1 in
Supplementary Materials) (Fan et al., 2016). Patients with
TLE showed similar regional diversity of information outflow
and inflow as shown in Figure 2F. Such similar regional diver-
sity was observed not only in the alpha band, but in both the
lower (delta/theta) and in higher (beta) frequency bands
(Fig. 3A–F and Supplementary Fig. S2A–F).

Although visually there seems to be little difference be-
tween the in- and outflow NPTE topographies and matrices
for HC and TLE (e.g., Fig. 2A–C vs. D–F for the alpha
band), there are clear quantitative differences in the patterns
of information flow seen in patients with TLE when com-
pared with patterns seen in HC (Fig. 2G–I). These differ-
ences were frequency band specific. Compared with HC,
patients with TLE showed a relative increase in both outflow
and inflow when considering alpha band activity (Fig. 2G–I).
These differences were localized also: patients with TLE
showed higher outflow from bilateral frontal and cingulate
cortices, and higher inflow into bilateral occipital regions,
compared with age-matched HC (Fig. 2G–I and Supplemen-
tary Fig. S7). In Supplementary Figures S8 and S9, we have
shown group comparison of several components in the alpha-
band NPTE matrix (Fig. 2C, F) and the alpha-band regional
NPTE outflow (Fig. 2A, D) and inflow (Fig. 2B, E) to pres-
ent intragroup variability of our data. We see, then, that the
matrix components and regions showing large intragroup
differences in terms of Z scores also show large intragroup dif-
ferences in terms of raw metric values. In contrast to these dif-
ferences seen in alpha band patterns, patients with TLE only
showed a moderate degree of change in beta band information
flow when compared with HC (Supplementary Fig. S2G–I),
and only a limited change of information flow within the
delta/theta band (Fig. 3G–I) compared with HC. For example,
TLE patients showed some increased delta/theta outflow from
limited bilateral frontal regions and reduced delta/theta outflow
and inflow within several occipitoparietal regions. Collectively,
these findings indicate that regional information outflow and in-
flow are significantly altered in patients with TLE and that
these changes vary across different frequency bands and are
seen most prominently in the alpha band.

Directional information flow

Next, we examined whether TLE is associated with altered
directionality of information flow in the brain. To this end,
we examined the regional patterns of dPTE in patients with
TLE compared with HC. Consistent with previous reports
(Hillebrand et al., 2016), we found distinct patterns of direc-
tional information flow within the alpha, delta/theta, and beta
oscillatory bands in our HC. For example, in the alpha and
beta bands, HC showed a predominant occipital outflow with
an overall pattern of posterior-to-anterior information flow

Table 1. Participant Characteristics

TLE HC p

n 19 20 —
Age, years 33.3 (10.4) 39.2 (9.8) 0.078
Gender, F/M 9/10 6/14 0.265
Duration of epilepsy, years 19.3 (13.2) N/A —
Spike frequency, 1/min 1.2 (1.0) N/A —

n is the number of participants of each group. Values for age, du-
ration of epilepsy, and spike frequency indicate means, and values in
parentheses denote standard deviations.

HC, healthy control; TLE, temporal lobe epilepsy.
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(Fig. 4E and Supplementary Fig. S4A); this was frequency-
specific and not apparent in the delta/theta band. Compared
with this pattern in HC, the patients with TLE showed signif-
icant reductions in directional information flow in the alpha
(Fig. 4F–H) and beta (Supplementary Fig. S4B–D) bands.
The connectogram for the dPTE matrices indicates that the re-
duction of alpha band information flow directionality mostly
involves connections from the occipital cortex to the frontal
regions. This reduction was also frequency specific; when
the delta/theta band was considered, the patients with TLE
only showed minimal differences of dPTE within the delta/
theta band compared with HC (Fig. 4C, D). To show intra-
group variability, group comparison of several components
in the alpha band dPTE matrix (Supplementary Fig. S3B, E)
and the alpha band regional dPTE (Fig. 4E, F) is shown in
Supplementary Figure S10. The values of the matrix compo-
nents and regions in TLE are significantly less than those in
HC, reflecting significant reductions in directionality for the
TLE group, as shown in Figure 4G and H.

In Supplementary Figure S6, group comparisons of mean
global strength of dPTE in the delta/theta, alpha, and beta
bands are shown. This scalar measure was derived by taking
an average of absolute values of dPTE-matrix (i.e., jdPTEj)
across all the matrix components since dPTE has both posi-
tive and negative values. For the alpha and beta bands, this
measure was significantly different between the groups (Sup-
plementary Fig. S6B, C), but not so for the delta band (Sup-

plementary Fig. S6A). The significant differences for the
alpha and beta bands may reflect significant reductions in
edge- and region-level directionality in the TLE group for
the alpha and beta bands (Fig. 4G, H, and Supplementary
Fig. S4C, D). An estimation of area under the curve for an
receiver operating characteristic analysis examining the om-
nibus alpha and beta band measure ability to distinguish
between TLE and HC resulted in values larger than 0.80
(Supplementary Fig. S6D. See also Supplementary Fig. S13
for comparison of dPTE with relative power and Imcoh).
This indicates that such omnibus measures have a potential
to serve as biomarkers for TLE/HC discrimination.

Correlations with spike frequency and epilepsy duration

Next, we investigated the associations between indices of
information flow in patients with TLE and clinical variables
reflecting their disease burden. Specifically, we examined the
correlations between NPTE and dPTE within specific fre-
quency bands with the duration of epilepsy and with the fre-
quency of spikes recorded during the clinical MEG scan in
our TLE patient cohort. We found several associations:
first, reduced information outflow at the right rostral lingual
gyrus within the alpha band was significantly associated with
a longer duration of epilepsy (Fig. 5A, r = 0.7085, p = 0.003).
Second, increased spike frequency showed significant asso-
ciations with several changes in regional information flow,

FIG. 1. (A) Normalized PSDs of source timecourses averaged over the whole brain in each subject group: red for TLE
(n = 19) and blue for HCs (n = 20). Frequency ranges, d–h (1.5–7.5 Hz), a (8–12 Hz), and b (12–30 Hz), are highlighted in
different colors. Shaded zone around each PSD line depicts standard error. (B) Alpha peak amplitude distributions (8–
12 Hz) in the normalized PSD for HC and TLE. Alpha peak in TLE shifts leftward in comparison with HC (t-test,
**p = 0.0065 [<0.01]). (C, D, E) Alpha peak frequency distributions averaged over HC and TLE groups, and their comparison
(computation procedure has been shown in Supplementary Materials). The color in (E) depicts the mean Z maps based on the
ROI-wise comparison: blue indicates reduction of peak frequency. The color maps are thresholded at 5% FDR after permu-
tation test. FDR, false discovery rate; HC, healthy control; PSDs, power spectral densities; ROI, region-of-interest; TLE, tem-
poral lobe epilepsy. Color images are available online.
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reduced information outflow at the left inferior temporal
gyrus within the alpha band (Fig. 5B), increased information
inflow at right rostral cuneus gyrus within the delta/theta
band, and reduced directionality of information flow at the
left caudal lingual gyrus within the alpha band (Fig. 5C, D).

Discussion

In this study, we used MEGI to record spontaneous elec-
tromagnetic brain activity during rest in patients with medi-
cally refractory TLE and with age-matched HCs. Following

FIG. 2. Information flow patterns in the alpha band based on NPTE. Regional information outflow and inflow patterns for
HC (A, B) and TLE (D, E), and average NPTE matrices for HC (C) and TLE (F). For visualization, 1000 · values of regional
NPTE are displayed. The color bar ranges are aligned between (A and D), (B and E), and (C and F), respectively. The atlas
module labels in the matrices are sorted left to right. (Bottom row) Alpha band disrupted information flow. Regional infor-
mation outflow and inflow patterns (G, H) in TLE compared with HC. The color depicts the mean Z scores that survived in
the ROI-wise comparison of regional NPTEs between groups using permutation tests, and colors in orange indicate increased
information flow. The color maps are thresholded at 5% FDR. (I) Information flow connectogram in TLE compared with HC.
The color depicts the average Z scores that are thresholded by t-tests with 0.1%-FDR correction. Only links with maximum
absolute value of average Z scores between ROIs within each module were displayed. NPTE, normalized phase-transfer en-
tropy. Color images are available online.

368 KUDO ET AL.



source localization of this resting-state MEG data, we com-
puted PTE to examine information flow (NPTE) and relative
directional information flow (dPTE) between brain regions.
Both NPTE and dPTE are pairwise measures between
brain regions, for example, R1 and R2; while NPTE measures

the strength of information flow from R1 to R2 and from R2 to
R1, dPTE measures the relative directionality between these
paired measures. We discovered frequency-specific features
of abnormal information flow in TLE patients, some of
which were associated with clinical features of their disease.

FIG. 3. Information flow patterns in the delta/theta band based on NPTE. Regional information outflow and inflow pat-
terns for HC (A, B) and TLE (D, E), and average NPTE matrices for HC (C) and TLE (F). For visualization, 1000 ·
values of regional NPTE are displayed. (Bottom row) Delta/theta band disrupted information flow. Regional information
outflow and inflow patterns (G, H) in TLE compared with HC. The color depicts the mean Z scores that survived in the
ROI-wise comparison of regional NPTEs between groups using permutation tests, and colors in orange indicate in-
creased information flow. The color maps are thresholded at 5% FDR. (I) Information flow connectogram in TLE com-
pared with HC. The color depicts the average Z scores that are thresholded by t-tests with 0.1%-FDR correction. Only
links with a maximum absolute value of average Z scores between ROIs within each module were displayed. Color
images are available online.
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Disruption of information flow

Collectively, we saw that both indices—NPTE and
dPTE—were altered in patients with TLE compared with
HC. This indicates that both dimensions of information
flow, the strength and direction, are altered in TLE. More-
over, this alteration appears to be frequency specific as
well as regionally dependent. Directionality of information
flow was significantly reduced in patients with TLE, and pri-
marily in the alpha and to a lesser extent in the beta band.
This observation contrasts with a similar study of informa-
tion flow in patients with Alzheimer’s disease (AD) (Engels
et al., 2017), where the reduction of the directionality of in-
formation flow was most prominent in the beta band in com-
parison with other bands. This may be accounted for by the
differences in spectral content of the resting-state back-
ground neuronal activities in AD and TLE cohorts.

In this study, we also examined the local outflow and in-
flow of information as well as directionality by considering
regional NPTE. Regional NPTE patterns indicate that the re-
duction of information directionality observed in regional
dPTE results from an increase in both information outflow
and inflow in patients with TLE versus in HC. Especially
in the frontal and occipital regions, these local increases in
outflow and inflow cancel each other out, and the result is
a net reduction in directionality of information flow in TLE.

Theoretically, PTE and signal power can be independent
measures computed on a time series since the PTE measure
is based on phase timecourse, in which signal amplitude is
omitted, that is, the PTE should be independent of signal

power. Nevertheless, we empirically investigated if regional
spectral power was associated with regional dPTE (the re-
sults are described in section 6.4 of the Supplementary Mate-
rials). To our surprise, in the alpha and beta bands, but not
delta, we found that the correlation between regional relative
power and regional dPTE also showed a clear posterior-to-
anterior pattern (Fig. 4), a pattern also observed in the regi-
onal spectral power (Supplementary Figs. S11 and S12).
These results suggest a complex relationship between spec-
tral power and PTE measures.

Associations of information transfer with clinical measures

We examined the correlation of regional NPTE and dPTE
in patients with TLE with several clinical measures of dis-
ease severity: spike frequency and duration of epilepsy.
Information transfer in several brain regions was correlated
with these clinical measures; these correlations were ob-
served mainly in the alpha band and to a lesser extent in
the delta/theta band, but not in the beta band. Specifically, al-
terations in information flow in the right posteromedial tem-
poral cortex show a relationship with duration of epilepsy;
and alterations in information flow in the left inferior-lateral
temporal cortex and in medial occipital cortex show a rela-
tionship with spike frequency.

We performed the same analysis using regional ImCoh
(Supplementary Fig. S5A–C) and also examined the asso-
ciations of ImCoh with clinical characteristics. We, however,
did not find significant correlations for regional ImCoh
in any frequency bands. In addition, there was not any

FIG. 4. Regional directionality of information flow. Average regional dPTEs for HC and TLE for the delta/theta (A, B) and
alpha (E, F) bands. Red indicates outflow directionality and blue indicates inflow directionality. Disrupted directionality pat-
terns in TLE are represented as the Z-score maps for the delta/theta (C) and alpha (G) bands. The color depicts the mean Z
scores that survived in the ROI-wise comparison of regional dPTEs between groups using permutation tests with 5%-FDR
correction. Blue (orange) denotes decreased (with respect to increased) directionality. (D, H): Disrupted information direc-
tionality in TLE versus HC for the delta/theta (D) and alpha (H) bands, depicted as connectograms. The color depicts the
average Z scores thresholded by t-tests with 5%-FDR correction for the delta/theta (D) band and 1%-FDR correction for
the alpha (H) band, respectively. For visualization, only a link with maximum absolute value of average Z scores between
ROIs within each module is displayed. dPTE, directional phase-transfer entropy. Color images are available online.
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significant correlation between global mean ImCoh and clin-
ical measures. This is partly consistent with the result de-
scribed in an earlier published work from our laboratory
(Englot et al., 2015) on the correlation between global
mean ImCoh and duration of epilepsy in patients with
TLE. This suggests that PTE metrics may outperform
ImCoh in detecting the features of neuronal activity more rel-
evant to clinical measures in patients with TLE. This im-
proved performance may come from the fact that, unlike
ImCoh, the TE metric can capture both directionality and
strength of network connections.

Interictal spike frequency has proven to be of limited value
in isolation as a predictor of seizure onset zone (Ngo et al.,
2017), and for severity of epilepsy (Selvitelli et al., 2010).
However, the association of frequent spikes with the marker
that we here identify—disruption in information flow—
offers us a potential mechanistic explanation that links inter-
ictal spikes to end effects. For example, spikes interrupt
neuronal activity, as reflected in changes in PTE; changes
in PTE may allow us to understand patterns of cognitive
change in focal epilepsy. This may lead to an improved un-
derstanding of the mechanism underlying the association be-
tween interictal spikes and cognitive deficits (Faught et al.,
2018). Likewise, changes in regional connectivity may pro-
vide an intermediary by which to better quantify epilepsy se-
verity (beyond duration/years since diagnosis) for the
purpose of understanding specific deficits.

Limitations of this study

We observed overall slowing of the background frequen-
cies and a decrease in peak frequency within the alpha
band. This was unlikely to be an effect solely of state, as
all epochs were selected from waking record. However, peo-
ple with epilepsy were more likely to have been sleep de-
prived before their clinical study and thus may have been
drowsier as a group. In addition, they were on antiseizure
medications, which may have had sedating effects and led
them to have been drowsier, accounting for a leftward shift
in alpha peak and a change in topology.

Our analysis of PTE is, as a method, also applicable to
resting-state signals with higher frequency bands such as
the low gamma band (30–55 Hz). In an exploratory analysis,
we computed low gamma band PTE for our data. However,
we found that computed PTE values for several pairs of brain
regions were negative, which is theoretically impermissible
given bias correction. This is probably due to the low signal-
to-noise ratio of low gamma band signals. One way to correct
this calculation error may be to consider using a longer time-
course so that the joint probability density for evaluation of
PTE can be determined more precisely.

In the current study, we examined the data in specific fre-
quency bands and prespecified brain regions of interest to in-
vestigate frequency-specific abnormality of information flow
in TLE. An alternative approach would have been to use a

FIG. 5. Correlations between regional information flow and spike frequency and with epilepsy duration in TLE patients.
(A, B) Regional information outflow at right rostral lingual gyrus (‘‘rMVOcC rLinG’’) and left inferior temporal gyrus [cau-
dolateral of area 20] (‘‘lITG A20cl’’) was negatively correlated with the spike frequency in the alpha band. (C) Regional
information inflow at right rostral cuneus gyrus (‘‘rMVOcC rCunG’’) is positively correlated with the spike frequency in
the delta/theta band. (D) Regional information directionality at left caudal lingual gyrus (‘‘lMVOcC cLinG’’) is negatively
correlated with the duration of epilepsy in the alpha band. The definition of brain regions and their abbreviations are shown in
Supplementary Tables S1 and S2. Color images are available online.
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data-driven technique for extracting relevant frequency
bands and ROIs for such investigations, such as multiband
independent component analysis (Nugent et al., 2017) and
dynamic mode decomposition (Brunton et al., 2016). Future
studies are needed to compare these different approaches in
terms of reliability and sensitivity in revealing altered net-
work dynamics in TLE.

Conclusions

This study investigates changes in information flow in peo-
ple with TLE by applying phase-transfer entropy measures,
NPTE and dPTE, to resting-state magnetoencephalographic
data. Deficits of information flow are seen in TLE most prom-
inently in the alpha band. While HCs exhibit a clear posterior-
to-anterior directionality of information flow, as measured
using dPTE in patients with TLE, this pattern is significantly
altered in the frontal and occipital regions. This change in pat-
tern of directionality is mainly due to an alteration of counter-
balance between activated regional information outflow and
inflow, as measured using NPTE. The changes in information
flow in the alpha band in selected brain regions are correlated
with several clinical measures related to epilepsy, including
interictal spike frequency and disease duration. Analyzing
MEGI using both dimensions of information flow strength
and direction provides a powerful approach to investigate net-
work disruption in TLE.
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