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Abstract

We investigated key event-related brain potential markers (ERPs) derived from a flanked

continuous performance task (CPT) and whether these would show phenotypic associa-

tions with ADHD (attention-deficit/hyperactivity disorder) in a population-based sample. We

further explored whether there was preliminary evidence that such ERPs could also index

genetic risk for ADHD (depending on finding phenotypic associations). Sixty-seven male-

only twin pairs (N = 134; aged 12–15) from a subsample of the Twins’ Early Development

Study, concordant and discordant for ADHD symptoms, performed the flanked CPT (or

CPT-OX) while electroencephalography (EEG) was recorded. ERPs were obtained for cue

(P3, CNV or contingency negative variation), go (P3, N2) and nogo trials (P3, N2). We found

no phenotypic associations between CPT-derived ERPs and ADHD—the sizes of the esti-

mated phenotypic correlations were nonsignificant and very small (r’s = -.11 to .04). Twin-

model fitting analyses using structural equation modelling provided preliminary evidence

that some of the ERPs were heritable (with the most robust effect for go-P3 latency), but

there was limited evidence of any genetic associations between ERPs and ADHD, although

with the caveat that our sample was small and hence had limited power. Overall, unlike in

previous research, there was no evidence of phenotypic (nor preliminary evidence for

genetic) associations between ADHD and CPT-derived ERPs in this study. Hence, it may

be currently premature for genetic analyses of ADHD to be guided by CPT-derived ERP

parameters (unlike alternative cognitive-neurophysiological approaches which may be more

promising). Further research with better-powered, population-based, genetically-informative

and cross-disorder samples are required, which could be facilitated by emerging mobile

EEG technologies.
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Introduction

Attention deficit/hyperactivity disorder (ADHD) is characterised by persistent difficulties with

attention, impulsivity and hyperactivity [1], with broad functional impact in domains such as

education, relationships and employment [2,3]. Research in quantitative genetic (e.g., twin

studies) has estimated up to 76% heritability for ADHD, with current consensus that multiple

genes of small effects are likely to be implicated [4]. Critically, the mechanisms linking genes

with behavioural manifestations of ADHD are yet fully understood, including potential path-

ways via neurocognitive systems [5–8]. Because the diagnosis of ADHD is currently conceptu-

alised as the extreme end of a continuum of symptoms that are normally distributed in the

population [9], studying ADHD dimensional traits can be complementary routes towards an

improved understanding of the disorder.

A neurocognitive domain frequently studied in ADHD relates to attention and inhibition

processes [5,8,10,11], which can be examined within a continuous performance task or test

(CPT) [12,13]. In a typical CPT, participants monitor the appearance of an infrequent stimulus

known as target, which could appear in the visual and/or auditory domain, in a sequence of

distractor stimuli. CPT performance tends to be impaired in ADHD compared to control par-

ticipants, indexed by increased omission errors (i.e., not responding to a target) and increased

commission errors (i.e., responding to a distractor), as well as increased reaction time variabil-

ity [12,14], though there are exceptions (e.g., [15]). Variants of CPT where the target is accom-

panied with flankers rather than alone have shown to be more sensitive to ADHD-control

differences [16,17].

Recently, the clinical utility of CPTs for ADHD has been challenged despite their wide-

spread use in clinical settings. A recent review found that, in children, the evidence for the use

of CPTs for diagnosis of ADHD is inconsistent, and for medication management is limited,

although some encouraging results suggest that CPTs may be more useful clinically when com-

bined with measures of activity [18]. One study in adults with ADHD found that a CPT pro-

duced high false negative rates—only 51.7% of the adults were correctly classified as having

ADHD [19]. In general, CPTs have been questioned for their lack of ecological validity, con-

found with IQ, as well as lack of discriminant validity to other disorders [20]. Even RT variabil-

ity, once thought to be unique to ADHD, appears not be specific to it [21]. Nevertheless, CPTs

remain a popular tool in research for studying attentional processes in ADHD (e.g., mainly

though approaches that consider average group differences rather than individual

classifications).

CPTs have been combined with neurophysiological techniques [8,13], including electrical

event-related brain potentials (ERPs), derived from electroencephalography or EEG, which is

an established neuroscience method in neurodevelopmental research [22,23]. ERPs index vari-

ety of sensory and cognitive processes as these occur in the order of milliseconds [24]. The

most commonly assessed ERPs in CPTs are the P3 after the onset of cue, go and nogo trials;

the N2 after the onset of go and nogo trials; and the contingency negative variation (CNV)

which is a negative deflection after the onset of a cue trial and before the onset of the go trial

[14,16,17,25–32].

ADHD has been phenotypically associated with reduced amplitudes of the cue-P3, nogo-

P3, go-P3 and CN across children and adult samples. This pattern of results has been inter-

preted as reflecting impaired attentional orienting, response inhibition, response execution

and response preparation, respectively [14,16,17,25,27,28,30–35]. ADHD tends not to be asso-

ciated with reduced amplitude of the nogo-N2 (or go-N2) in the CPT—this paradigm is not
thought to be sufficiently demanding to reliably elicit ADHD-control group differences in

conflict monitoring [14,17,30]. It must be noted that several studies have failed to find the
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above positive associations [14,16,28–30,32,36,37] and such null findings are likely to be

underestimated given the ‘file-drawer problem’ [38], even though it is strongly encouraged

now to report null results [39]. One potential reason for the null is the heterogeneity of ADHD

[40] and the nature of the samples, particularly as clinical samples can leave key variables

uncounted for, such as disorder chronicity, medications and comorbid conditions. Some

ADHD-related effects on ERPs indeed appear to be better explained by co-occurring external-

izing behaviours [41,42], callous-unemotional traits [33] or autism spectrum conditions [14],

rather than ADHD. These findings underscore the importance of population-based research

to establish the reliability/generalisability of any potential ADHD-ERP associations.

Putative links between CPT-derived ERPs and ADHD point to candidate brain-based

markers which could reflect pathways from genes to disorder, and if so CPT-derived ERPs

may have the potential to guide genetic analysis of ADHD. Some recent studies suggest shared

familial effects between ADHD and reduced nogo-P3 amplitude using a sibling design [43], or

between ADHD and reduced nogo-P3/cue-P3 amplitudes using a family design [17]. Familial/

sibling effects, however, cannot distinguish genetic from shared-environmental effects, unlike

the classical twin design [44]. More fundamentally, a trait measure that is a candidate genetic-

risk index must also be heritable in itself [45,46]. Data in adults (ages 18–28) point towards

heritabilities of ~.50–60 for P3 and N2 amplitudes [47], with such magnitudes staying rela-

tively stable across adulthood (ages 17–23) [48] and across early adolescence (ages 12–16) [49].

There is also evidence for the heritability of CNV in delayed response tasks (with estimates

between ~.21 to ~.43, varying depending on task-load conditions and the channels considered;

[50]). Nevertheless, these heritability estimates have been derived from heterogeneous para-

digms, and heritability estimates on ERPs directly derived from CPTs are lacking. We should

note that the search for consistent familial/genetic associations between ADHD and neurocog-

nitive measures has so far only yielded inconsistent results (18).

In this study we investigated key event-related brain potential markers (ERPs) derived

from a flanked continuous performance task (CPT), and whether these would show pheno-

typic associations with ADHD (attention-deficit/hyperactivity disorder) in a population-based

sample of early adolescent twins. We further explored whether there was preliminary evidence

that such ERPs could also index genetic risk for ADHD (depending on finding phenotypic

associations). If so, we predicted the following conditions to be met [45,51]. First, ERPs (cue-

P3, nogo-P3 and CNV amplitudes) derived from a flanked CPT (see Methods) would show

phenotypic correlations with ADHD. Second, there would be some indication that such ERPs

would be at least partly heritable. Third, if the above two conditions are met, then such ERPs

would show preliminary evidence for genetic correlations with ADHD. With the current sam-

ple, we have previously found evidence of phenotypic and genetic associations between

ADHD and other EEG-based oscillatory measures, including very low-frequency power

(VLF; < .05 Hz) within the same flanked CPT as reported in the current paper [15], as well as

between ADHD and theta-related activity during other rest/task conditions [52,53]. Here we

present findings analysing key ERPs for the first time in this sample and using the flanked

CPT.

Method

Sample

Participants were from the Neurophysiological Study of Activity and Attention in Twins

(NEAAT), which has also been described elsewhere [15,52–54]. The NEAAT sample consisted

of a subset of adolescent twin pairs from the Twins’ Early Development Study (TEDS), which

is a longitudinal population-based study of all twins born in England and Wales in 1994 to

ADHD, CPT and ERPs
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1996 [55]. The TEDS sample is highly representative of the general population in the United

Kingdom, such as in terms of socioeconomic status, educational levels and ethnicity [55].

NEAAT participants were selected on a latent class trajectory analysis of ADHD symptom

development over three timepoints (ages 8, 12 and 14), using a DSM-IV measure of ADHD

symptoms [56]. The analysis was run using the COMPLEX option in the program MPLUS

[57], with only male participants without medical conditions. This approach involved fitting a

series of models including one to several more classes. We opted for three-class models which

identified subgroups of individuals who have had stably high, middle or low symptoms of inat-

tention and impulsivity/hyperactivity. Class membership proportions for low/middle/high

inattention and impulsivity/hyperactivity scores were 18%/38%/44 and 20%/46%/33%,

respectively.

The final NEAAT sample included participants with stably high (i.e., referred as ADHD in

this paper) or stably low ADHD symptoms (i.e., non-ADHD control participants) of inatten-

tion and of impulsivity/hyperactivity across timepoints (ages 8, 12 and 14). Participants were

as follow: 67 twin pairs in total, of which 22 pairs were concordant for high ADHD symptoms

(monozygotic/MZ:11; dizygotic/DZ: 11); 8 pairs were discordant for ADHD symptoms (MZ:2;

DZ: 6); 37 pairs were concordant for low ADHD symptoms (MZ: 21; DZ: 16). All participants

were free of medication at the time of the study. The study was approved by King’s College

London Psychiatry, Nursing and Midwifery Research Ethics Subcommittee (PNM/08/0-089).

All participating parents gave written informed consent.

Cued continuous performance task with flankers (flanked CPT)

The CPT-OX with flankers or flanked CPT [14,16,17,27,30,36] is a variant of the go/no-go task

that probes for attentional orienting, response preparation, response execution and inhibition.

There were four identical blocks of 100 trials each. Trials were presented in a pseudo-random

sequence. On each trial, a black letter array was centrally presented, consisting of a centre letter

flanked on each side by distractor letters. Each array was presented for 150 ms every 1650 ms.

The centre letter was one of 11 letters subtending at 0.5 degrees (O, X, H, B, C, D, E, F, G, J,

and L). On each trial, a centre letter was flanked by either ‘X’ or ‘O’ (except the centre letters

‘X’ and ‘O’ were always flanked by ‘O’ and ‘X’, respectively). Participants were instructed to

respond to the central target letter ‘X’ (i.e., OXO) only when it was preceded by the central cue

letter ‘O’ (i.e., XOX). There was a total of 40 cue-target sequences (i.e., XOX-OXO) and 40

cue-nontarget sequences (e.g., XOX-OHO). Viewing distance was kept consistent at 120 cm

and the task duration was 11 min. Prior to the main task, participants underwent a short prac-

tice where task comprehension was ascertained verbally. The flanked CPT was preceded by a

6-min recording of EEG resting state [15] and followed by two other tasks not reported here

[53]. Measures of CPT performance included omission errors (i.e., the number of targets

missed), total commission errors (i.e., the number of responses to all nontargets), O-not-X

commission errors (i.e., the number of responses to cue-nontarget arrays), mean reaction time

(MRT; for correct target detection within 200 to 1500 ms post-target) and intra-subject vari-

ability in this RT (SDRT).

Measures

Current ADHD symptoms. ADHD symptoms were assessed using the long version of

the Parents Conner’s Rating Scale [56] on the day of testing, and the long version of the

Teacher Conner’s Rating Scale [58] where available with phone-call follow-ups after comple-

tion of testing.

ADHD, CPT and ERPs
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Cognitive ability (IQ). Two web-based measures were collected as part of the ongoing

TEDS study at age 14: the Wechsler Intelligence Scale for Children as a Process Instrument

vocabulary multiple choice subtest as an index of verbal IQ [59] and Raven’s standard and

advances progressive matrices as an index of non-verbal IQ [60]. Missing scores at age 14 were

imputed from other available IQ scores at ages 7, 12 and 14. A g score was obtained by apply-

ing equal weights to both verbal and non-verbal IQ and adding up their standardised scores

within the NEAAT sample. Measures of IQ and g are highly correlated and index general intel-

ligence [61].

ERP recording and processing

Recording. EEG was recorded using a 62-channel extended 10–20 system montage (Brai-

nAmp DC; Brain Products, GmbH, Munich, Germany), with impedance kept below 5 kohm,

and FCz as the recording reference electrode. Vertical and horizontal electrooculograms

(EOGs) were recorded from electrodes placed above and below the left eye and at the outer

canthi. The data were sampled at 500 Hz, stored and analysed offline.

Preprocessing. ERP analyses were performed using the ERPLAB package [62] within

EEGLAB toolbox [63] for MATLAB (R2016a; [64]). The signal was digitally filtered at 0.1–30

Hz (−6 dB cut-off) and re-referenced to average reference. Channels with excessive noisy/tech-

nical problems were removed (based on extended periods of low correlation with neighbour-

ing channels). Ocular artefacts were extracted using adaptive mixture independent component

analysis (AMICA) [65,66]. Visual inspection was used to identify stereotyped components cap-

turing ocular artefacts, which were then removed from the data by back-projecting only the

remaining components to the channel data [67,68]. Segments with artefacts exceeding 200 μV

in peak-to-peak in any channel were further rejected (based on [14]). Residual muscular arte-

facts were manually removed by visual inspection of the EEG (e.g., high-frequency and high-

amplitude spikes) [24]. Missing channels were replaced with topographic spline interpolation

so that the critical channels for the current scalp-based analyses (i.e., Cz, Pz and Fz) were avail-

able for all participants (in case these were removed as bad channels).

Processing. Stimulus-locked epochs were extracted (-200 to 1650 ms) and baseline-cor-

rected (-200 to 0 ms). Epochs were averaged for cue trials (i.e., ‘XOX’), go trials which were

correctly responded to (‘OXO’ preceded by ‘XOX’), and no-go trials which were correctly not

responded to: any array but ‘OXO’ (i.e., a non-target) that was preceded by ‘XOX’ (i.e., a

cue). Averages contained at least 19 trials (as in [14]; also see S1 Table). The selection of chan-

nels and latency windows for ERP analyses were based on previous studies using similar par-

adigms in ADHD research [14,16,17,27,30], based on where effects were expected to be

maximal as well as visual inspection of the averaged ERPs and topographic maps for the cur-

rent sample. For each ERP, we considered peak amplitude and peak latency measures; except

for the CNV where we used area amplitude as in previous studies [14,16,17,27,30]: cue-P3

was measured at Pz (400–700 ms), go-P3 at Pz (200–500 ms), nogo-P3 at CZ (200–500 ms),

go-N2 and nogo-N2 at Fz (200–400 ms), and CNV at Cz (1300–1650 ms). Note that when a

single clear peak amplitude was not identified (e.g., go-P3), we used mean amplitude and

50% fractional-area latency initially (e.g., [14]). Such two alternatives to peak measures have

shown to be less biased by noise [24]. But the pattern of results remained the same (i.e., no

significant case-control differences), suggesting that noise is unlikely to account for our cur-

rent null findings (see Results). Peak-based measures were reported for simplicity and consis-

tency with previous studies, which reported ADHD-control differences with peak measures

[14,16,17,27,30].

ADHD, CPT and ERPs
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Statistical analyses for baseline and performance data

Three participants were excluded for all analyses due to excessive artefact (n = 2; fewer than 19

artefact-free segments; as in our previous study [14]); or extreme commission errors that indi-

cate low task engagement (n = 1). Group comparisons were performed using Stata [69]. To

account for non-independent observations (i.e., twin pairs), baseline measures (age, IQ and

current ADHD symptoms) were analysed using the regression command with robust cluster-

ing to estimate standard errors. As groups differed in age and IQ (Table 1), these effects were

regressed out of performance scores and ERP measures, in line with our previous analyses

using the same sample [15,52,53]. We also rerun the analyses without regressing out IQ, and

the pattern of results remained broadly the same (S1 and S2 Tables). ADHD measures and per-

formance scores were highly skewed and thus log-transformed using the lnskew0 command in

Stata, before conducting group comparisons. Pearson-correlations were used to explore the

association between age/IQ and each ERP measure. When relevant, Bayesian analyses with the

Gönen’s method [70] were run in SPSS version 25 [71] to determine the relative likelihood

under the null versus the alternative hypothesis for key ERPs most consistently shown to be

linked to ADHD.

Twin model-fitting on ERP data

Data preparation. The effects of age and IQ were also regressed out of the all ERP data

due to associations with ADHD grouping (Table 1), before proceeding to twin model-fitting.

This data preparation allowed for subsequent interpretation of the results specifically in terms

of ADHD status (the aim of this study), above and beyond general cognitive ability or age-

related typical neurodevelopmental changes. We also rerun the analyses without regressing

out IQ, and the general pattern of results remained the same (S2–S5 Tables). Model-fitting

were conducted using OpenMx package in R [72] with maximum likelihood statistics.

Twin correlations. A constrained correlational model was first fitted to the observed MZ

and DZ data to estimate correlations between ADHD and key ERP measures (amplitude/

latency of cue-P3, go-P3, nogo-P3, go-N2, nogo-N2, and CNV). The constrained model con-

sidered the same phenotypic correlation between each ERP measure and ADHD; 1 MZ and 1

DZ correlation for each ERP measure; and 1 MZ and DZ cross-trait cross-twin correlation

Table 1. Summary statistics and mean comparisons for age, IQ and ADHD measures adjusted for genetic-relatedness.

ADHD

(n = 52)

Control

(n = 82)

t p

Age 13.48 (0.78) 14.01 (0.92) 2.67 .01

IQ a 97.33 (8.40) 103.82 (12.65) 2.92 .005

Parents Conners Inattention subscale b,d 55.54 (8.83) 42.63 (3.06) 12.25 <.001

Parents Conners Hyperactivity-Impulsivity subscale b,d 60.75 (12.24) 44.33 (2.25) 11.23 <.001

Teachers Conners Inattention subscale c,d 56.50 (13.14) 49.16 (7.28) 2.08 .044

Teachers Conners Hyperactivity-Impulsivity subscale c,d 57.54 (14.46) 51.31 (14.33) 1.49 .145

ADHD = Attention deficit/hyperactivity disorder.
a IQ was estimated based on data at age 14 as part of web-based data collection for the Twins Early Development Study [55], primarily based on the Raven’s standard

and advanced progressive matrices [60] and the WISC-III-PI multiple choice subtest [59], and with missing data imputed from multiple IQ subtests scores across ages 7,

12 and 14.
b Long version of the Parent Conners’ Rating Scale T-scores [56] collected on the day of testing.
c Long version of the Teacher Conners’ Rating Scale T-Scores [58] collected by contacting teachers after completion of the testing session.
d Adjusted for age and IQ (see S1 Table for analyses without adjusting for IQ).

https://doi.org/10.1371/journal.pone.0223460.t001
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between each ERP measure and ADHD. For each ERP, estimates were produced for i) the

within-twin cross-trait correlation (correlation between ADHD and each ERP measure across

zygosity), ii) the MZ and DZ cross-twin within-trait correlation (correlation between the same

ERP measure between twins in the same pair), and iii) the MZ and DZ cross-twin cross-trait
correlation (correlation between ADHD status in one twin and an ERP measure in the other

twin in the same pair).

Genetic model-fitting. Twin model-fitting was performed using structural equation

modelling (SEM) to model the differences in correlations between MZ and DZ twin pairs. A

biometrical genetic model assumes that MZ twins and DZ twins share 100% and 50% of their

genetic influences, respectively (but both pair types share 100% of their environmental influ-

ences). In a genetic bivariate liability-threshold model, the MZ:DZ ratio of the cross-twin

within-trait correlations is used to decompose the variance of an ERP measure into additive

genetic, common environmental and individual-specific environmental influences including

measurement errors, referred to as A, C and E, respectively.

The MZ:DZ ratio of the cross-twin cross-trait correlations can be used to further decom-

pose the potential covariation between ADHD and an ERP measure into genetic (rG), com-

mon environmental (rC) and individual-specific environmental (rE) correlations [73].

However, we did not proceed with the latter analyses, given the lack of any evidence that there

was a genetic relationship between ERP measures and ADHD in this study (see Results for

details), and thus we instead focused on exploring univariate analyses of the ERP measures.

Ascertainment correction. The heritability of ADHD cannot be estimated due to the

selected nature of our sample. Because selection is through ADHD traits but blind to ERP val-

ues, the necessary correction would depend only on the model for ADHD. Hence to obviate

this correction one could alternatively fix the model parameters for ADHD (prevalence and

variance components) to constant values. Thus, ADHD status (yes = high ADHD symptoms;

no = low ADHD symptoms) was modelled using liability threshold, fixed to a population prev-

alence for ADHD at around 5% [74]. This model assumes that ADHD risk is normally distrib-

uted on a continuum and ADHD occurs when the threshold is exceeded [75]. MZ and DZ

cross-twin correlations on ADHD status were fixed based on heritability estimates from a

meta-analysis [4], with the following parameters: h2 = .76, c2 = .00, e2 = .24, consistent with

rMZ = .76 (h2+c2) and rDZ = .38 (.5h2+c2). We have established, validated and successfully

applied this model to investigate the link between EEG [15,52,53] and cortisol outcomes [54]

with ADHD, as well as the link between brain-based measures and other low-prevalence con-

ditions, such as schizophrenia [76–79], bipolar disorder [80,81], and psychopathy [82].

Results

Group comparisons

First, analyses on group comparisons are presented between ADHD and control participants

(i.e., high versus low ADHD symptoms), who differed in both age and IQ (Table 1). As already

reported previously on this sample [15], there were no significant group differences in any

CPT performance measure when controlling for age and IQ (Table 2; see S3 Table for analyses

without controlling for IQ).

ERPs from the flanked CPT were identified, namely cue-P3, go-P3, nogo-P3, CNV, go-N2

and nogo-N2 (Fig 1). In line with previous studies, nogo trials elicited higher N2 amplitudes

(negative deflection) than go trials, t(130) = 5.74, p< .001 (Fig 1), but there were no significant

group differences in any ERP measure, for either amplitude or latency (Table 2), even when

not controlling for IQ (S3 Table). We run Bayesian analyses using a conservative medium

effect size as the prior (d = .50) based on reported medium-to-large effect sizes from previous

ADHD, CPT and ERPs
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literature [14,17,35]. The associated Bayes factors for cue-P3, nogo-P3 and CNV amplitudes

were 5.67, 4.75 and 5.17, all of which were above 3 and hence can be interpreted as evidence

for the null [83,84].

In additional exploratory analyses, we found that across the whole sample regardless of

ADHD grouping, IQ was positively correlated with nogo-P3 amplitude (r = .20, p = .027) and

negatively correlated with nogo-P3 latency (r = -.22, p = .014), whereas age was negatively cor-

related with cue-P3 amplitude, cue-P3 latency and nogo-P3 latency (r’s = -.23 to -.18, p’s<

.036).

Twin model-fitting on ERP data

The maximum likelihood correlations of each ERP measure and ADHD were derived from

the full constrained correlational model (Table 3). The same pattern of results was found even

if IQ scores were not regressed out prior to twin model-fitting (S4 and S5 Tables).

Phenotypic correlations. We also found no reliable phenotypic associations between any

ERP measures and ADHD in this analysis—all effects were very small and nonsignificant

(Table 3)—in line with the analyses using group comparisons reported above (Table 2). Note

that unlike the linear regression approach, this twin-model fitting approach considered an

ascertainment correction (due to the selected nature of our sample) and hence provided a

more precise estimate of the phenotypic associations between ADHD and ERP parameters.

Cross-twin within-trait correlations (of ERPs). We found, first, a significant MZ corre-

lation, alongside a lower DZ correlation, was present for cue-P3 amplitude, go-P3 latency,

nogo-N2 amplitude and CNV, which is evidence for genetic influences. Second, all MZ corre-

lations deviated from one, suggesting the presence of non-shared environmental effects.

Table 2. Summary statistics and mean comparisons for performance scores and ERPs on the flanked CPT controlling for age, IQ and genetic-relatedness.

ADHD Control t p
Performance (n = 52) (n = 82)

Omissions 1.94 (2.35) 0.91 (1.60) 1.51 .135

Commissions 2.56 (3.14) 2.10 (2.43) 0.38 .707

MRT (ms) 422.48 (66.24) 396.45 (56.42) 1.46 .149

SDRT (ms) 112.75 (53.03) 86.84 (38.14) 1.90 .062

CV 0.26 (0.11) 0.21 (0.08) 1.81 .075

ERPsa (n = 50) (n = 81)

Cue-P3 Peak amplitude (μV) 11.93 (4.78) 11.58 (4.96) 0.14 .886

Peak latency (ms) 545.49 (79.35) 524.47 (72.90) 0.79 .430

Go-P3 Peak amplitude (μV) 16.48 (4.38) 17.09 (6.24) 1.05 .298

Peak latency (ms) 422.85 (105.30) 411.65 (97.89) 0.17 .869

NoGo-P3 Peak amplitude (μV) 13.40 (5.83) 14.30 (5.74) 0.39 .697

Peak latency (ms) 432.43 (63.76) 416.22 (67.07) 0.11 .915

Go-N2 Peak amplitude (μV) -5.39 (3.27) -4.87 (4.25) 0.22 .824

Peak latency (ms) 312.45 (41.04) 304.29 (41.92) 0.66 .509

NoGo-N2 Peak amplitude (μV) -7.14 (3.97) -6.94 (4.49) 0.08 .936

Peak latency (ms) 297.67 (35.94) 294.80 (31.61) 0.12 .908

CNV Area amplitude (μV) 1.81 (1.06) 1.71 (0.89) 0.62 .537

CPT = continuous performance task; ADHD = attention deficit/hyperactivity disorder; MRT = mean reaction time; SDRT = standard deviation of reaction time;

CV = coefficient of variation (SDRT/MRT); ERP = event-related potential
a ERPs were obtained from fewer participants than performance scores due to data loss in EEG pre-processing.

https://doi.org/10.1371/journal.pone.0223460.t002

ADHD, CPT and ERPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0223460 October 4, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0223460.t002
https://doi.org/10.1371/journal.pone.0223460


Third, none of the DZ correlations were significant, suggesting that there was no evidence for

shared environmental influences of any of the ERP measures. Fourth, the MZ correlation was

more than half of the DZ correlation for the above ERP measures, which suggest nonadditive

genetic dominance effects. However, only broad-sense heritable effects (additive and non-

additive) were considered here due to the lack of power in our relatively small sample [85],

given the constraints of combining twin design with lab-based brain measures.

Cross-twin cross-trait correlations. We found none of the relevant MZ correlations were

significant (Table 3), which suggest that none of the ERP measures and ADHD share genetic

Fig 1. Grand mean event-related potentials (ERPs) to cue stimuli at Pz (for P3) and Cz (for CNV), to go stimuli at Pz (for P3) and Fz (for N2), and to nogo

stimuli at Cz (for P3) and Fz (for N2), and the corresponding topographic maps by group.

https://doi.org/10.1371/journal.pone.0223460.g001
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influences. Given the lack of phenotypic correlations between ERP measures and ADHD (as

shown by both analyses using group comparisons with linear regressions as well as constrained

correlational model), and the absence of any significant MZ cross-twin cross-trait correlations,

further analyses to estimate genetic correlations were not pursued.

Heritability estimates of ERPs. Exploratory analyses from now are focused on estimating

the heritability of those ERP measures with significant MZ cross-twin within-trait correlations

(cue-P3 amplitude, go-P3 latency, nogo-N2 amplitude and CNV), using univariate models for

each ERP measure (Table 4). Note that the cross-twin within-trait correlation for the nogo-P3

amplitude failed to reach significance. However, its heritability was still estimated for the fol-

lowing reasons: a significant estimate for familiality has been previously reported [43]; its MZ

within-trait correlation in the current study had a small-to-moderate size (r> .20) and was sig-

nificant when IQ was not regressed-out (S5 Table).

Results from SEM suggested that genetic factors may have small to moderate effects on

individual differences in key ERPs derived from the flanked CPT. However, potentially due to

the lack of power in our small twin sample, only the heritability estimate of go-P3 latency did

not overlap with zero, suggesting that this estimate is the only robust one given our sample

size. Shared environment did not appear to contribute to such individual differences, and non-

shared environment (alongside measurement error) appeared to have at least moderate effects.

Discussion

This study used a population-based twin sample in early adolescence to test for phenotypic

(and potentially genetic) associations between ERP parameters (derived from a flanked CPT)

and ADHD. Critically, we found that these ERPs were not phenotypically associated with

ADHD—the size of the estimated phenotypic correlations between ADHD and ERPs were

nonsignificant and also very small (r’s = -.11 to .04). We also found preliminary evidence that

Table 3. MZ and DZ cross-twin within-trait correlations for all ERP measures and cross-twin cross-trait correlations between ADHD and all ERP measures from

the flanked CPT.

Estimate (95% CI)a

Phenotypic Correlation with ADHD Cross-Twin Within-Trait Correlation Cross-Twin Cross-Trait Correlation with

ADHD

MZ DZ MZ DZ

Cue-P3 Amplitude -.05 [-.26 to .16] .45 [.17 to .65]� -.05 [-.42 to .34] -.04 [-.33 to .25] .09 [-.16 to 33]

Latency .03 [-.15 to .22] .12 [-.20 to .41] .33 [-.10 to .61] .29 [-.02 to .50] -.03 [-.27 to .21]

Go-P3 Amplitude -.01 [-.34 to .20] .11 [-.21 to .40] .20 [-.17 to .51] -.31 [-.53 to .30] .05 [-.21 to .31]

Latency .-02 [-.21 to .17] .48 [.17 to .69]� -.11 [-.46 to .28] .16 [-.09 to .39] .16 [-.08 to .38]

NoGo-P3 Amplitude -.11 [-.30 to .10] .35 [-.06 to .61] -.02 [-.33 to .28] .14 [.-.21 to .42] .10 [-.14 to .33]

Latency .03 [-.18 to .23] .21 [-.13 to .49] -.16 [-.48 to .22] -.03 [-.31 to .27] -.06 [-.29 to .17]

Go-N2 Amplitude -.00 [-.20 to .21] .34 [.00 to .59] -.21 [-.52 to .16] .12 [-.15 to .35] .02 [-.24 to .27]

Latency .04 [-.16 to .23] .08 [-.24 to .37] .06 [-.42 to .49] -.22 [-.43 to .05] .07 [-.19 to .33]

NoGo-N2 Amplitude .02 [-.18 to .22] .44 [.17 to .64]� .22 [-.22 to .55] -.07 [-.32 to .17] .04 [-.22 to .29]

Latency .04 [-.18 to .26] .05 [-.45 to .49] -.17 [-.42 to .10] .06 [-.29 to .38] -.17 [-.38 to .07]

CNV Amplitude .01 [-.19 to .20] .37 [.04 to .61]� .09 [-.25 to .41] .01 [-.24 to .27] .12 [-.12 to .34]

MZ = monozygotic; DZ = dizygotic; ERP = event-related potential; ADHD = attention deficit/hyperactivity disorder; CPT = continuous performance task;

CI = confidence intervals; CNV = continency negative variation
a The MZ and DZ correlations for ADHD were fixed to population values to account for the selected sample with rMZ = .76, rDZ = .38 and a threshold for population

prevalence of 5%; all ERP outcomes were peak measures, except for CNV which was area amplitude.

�p< .05

https://doi.org/10.1371/journal.pone.0223460.t003

ADHD, CPT and ERPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0223460 October 4, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0223460.t003
https://doi.org/10.1371/journal.pone.0223460


these ERPs may be heritable (with the strongest evidence for go-P3 latency), although caution

is required as most confidence intervals overlapped with zero due to our small sample. There

appear to be no sufficient evidence for genetic correlations between ADHD and ERPs—this

may again be due to low power (but the lack of power to detect cross-twin cross-trait correla-

tions is not of particular theoretical interest here given the non-significant and very small esti-

mates for the phenotypic associations). With phenotypic correlations of around .02 (estimated

in this sample) we would need thousands of twin pairs to detect a significant effect—such a

small association, even if significant, would not be of theoretical interest or useful for genetic

analyses [40,86].

The absence of ADHD-related effects on cue-P3, nogo-P3 and CNV amplitudes may seem

surprising, given previous positive findings in other samples [14,17,25,28,31,32]. However, a

closer look into the literature revealed that similar null findings have also been reported albeit

to a lesser extent, including for cue-P3 [29,30], nogo-P3 [32], go-P3 [16,28,37], and CNV

[14,36]. Some of these null findings have been reported in dissertations and not yet formally

published in peer-reviewed journals [e.g., 36]. The lack of phenotypic associations between

the N2 ERPs and ADHD is consistent with previous studies, as these effects are thought to be

less salient unless the tasks used are more attentionally-demanding, unlike the flanked CPT

[14,16,17,30]. We note that others have also recently questioned the utility of CPTs for identi-

fying individuals with ADHD [18,19], and our data appear to be consistent with research fail-

ing to find phenotypic associations between CPT-based outcomes and ADHD symptoms

[18–20].

Some may argue that our null phenotypic findings were due to the use of peak-based ERPs

which could be susceptible to noise. We argue against such a possibility: previous positive

findings were also mostly based on peak-based measures; the null in the present study found

evidence with a Bayesian approach; the null remained after considering nonpeak-based alter-

natives (e.g., mean amplitudes) known to be less susceptible to noise (see Methods); our ana-

lytical approach, including the pre-selection of channels, followed closely previous research

using the same flanked CPT paradigm, thus avoided analytical flexibility that has long ham-

pered the ERP literature (see Methods); and finally—despite the lack of significant ADHD-

control differences—we were able to find across the whole sample significant ERP differences

Table 4. Standardized estimates of genetic, shared and nonshared environmental contributions to the variance of

ERPs (from the flanked CPT) in univariate twin analyses.

Estimate (95% CI)a

h2 c2 e2

Cue-P3 amplitude .40 [.00 to .62] 0 [.00 to .38] .60 [.38 to .89]�

Go-P3 latency .45 [.004 to .67]� 0 [.00 to .30] .55 [.33 to .86]�

NoGo-P3 amplitude .28 [.00 to .57] 0 [.00 to .32] .72 [.43 to 1]�

NoGo-N2 amplitude .44 [.00 to .63] 0 [.00 to .53] .56 [.36 to .83]�

CNV amplitude .35 [.00 to .59] 0 [.00 to .42] .65 [.41 to .96]�

ERP = event-related potential; CPT = continuous performance task; CI = confidence intervals; h2 = addictive genetic

influences; c2 = shared environmental influences; e2 = nonshared environmental influences and measurement error
a For parsimony and simplicity, we focused on univariate models for selected ERP measures because 1) these showed

significant MZ cross-twin within-trait correlation, 2) there were no significant phenotypic associations ADHD

grouping and any of the ERP measures, and 3) there were no significant cross-twin cross-trait correlations between

any ERP measures and ADHD grouping.

�p< .05.

https://doi.org/10.1371/journal.pone.0223460.t004
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between go and no-go trials as well as correlations between ERPs and age/IQ, indicating our

EEG data was successfully preprocessed to allow for such signal to emerge from any ‘noise’.

As positive findings predominate the literature, we have yet to learn the true extent of simi-

lar null results. We believe that it is important to publish our null results even if somehow

‘unexpected’. This evidence base (e.g., to inform formal meta-analyses) is critical for establish-

ing any reliable finding in science, including reliable biomarkers in psychiatry [39]. Given the

heterogeneity of ADHD [40], moderators of these effects may remain unexplored if only posi-

tive findings were reported. Some studies have suggested that ADHD-related effects on ERPs

may be better explained by co-occurring conditions co-occurring externalizing behaviours

[41,42], callous-unemotional traits [33] or autism spectrum conditions [8,14]. One could

argue that many of these confounds are likely to exist in research designs with clinical samples

(which most of the positive findings rely on), including disorder chronicity, medication use

and comorbidities, and therefore with more severe impairments than our sample. A strength

of our study is the use of a population-based (non-clinical) cohort, with ADHD grouping

derived from longitudinal trajectories of symptom development. However, as we did not con-

sider diagnoses here, we were unable to directly compare those individuals with ADHD and a

formal clinical diagnosis for the disorder versus those with ADHD but without such a diagno-

sis. Nevertheless, it is conceivable that findings derived from clinical samples may not always

generalize to non-clinical samples. Future research could combine population-based ascertain-

ment with diagnostic procedures, and include more comprehensive assessments of co-occur-

ring features (e.g., callous-unemotional traits, autism, and mental health problems). The need

for large-scale EEG-based studies is increasingly recognised in neurodevelopmental research

[8,22] and we note some are underway (https://gtr.ukri.org/projects?ref=MR%2FN013182%

2F1).

An important limitation of our study is low power due to the small sample size for a twin

study. Based on our simulations, we have estimated that the sample size needed to detect a h2

of an ERP measure of .40 (with 80% power, and the h2 of ADHD fixed to .80 and the preva-

lence to 5%) is between 48–72 twin pairs, and to detect a rg of .40 is between 102–206 twin

pairs (the specific numbers depend on the configuration of available twin pairs based on differ-

ent combinations of concordance, zygosity and affected status). The phenotypic correlations

associated with a rg of .40, and h2 ERP = .40 would be .26, which is way above what we observe

in this sample. With this caveat in mind, we first estimated the heritability of key ERPs derived

from the flanked CPT in an early adolescence, as previous studies focused mainly on late

adolescence [49] and adulthood [47,48]. We found significant MZ cross-twin within-trait cor-

relations for all ERPs (Table 3) which support the presence of genetic influences. The corre-

sponding heritability estimates of these ERPs appeared to be mostly moderate, between .28

and .45 (Table 4). However, the confidence intervals overlapped with zero (except for go-P3

latency) hence larger samples are needed to confirm these estimates. We also intended to esti-

mate the genetic correlations between ERPs and ADHD but found no significant MZ cross-

twin cross-trait correlations (Table 3), which could indicate lack of genetic associations but

also had lack of power. Nevertheless, the lack of power to detect potential cross-twin cross-

trait correlations between ADHD and ERPs is not of particular interest given the lack of phe-

notypic associations.

Previous findings using this same subsample of TEDS (i.e., NEAAT) could help provide a

wider context in which to interpret our current null results. Using the same twin sample and

the same flanked CPT, we previously found significant phenotypic and genetic correlations

between ADHD and very-low frequency power (< .05 Hz) [15]. We also found significant

phenotypic and genetic correlations between ADHD and theta power during rest [52] and to

trial-by-trial theta phase-variability within another attentionally-demanding flankers task [53].

ADHD, CPT and ERPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0223460 October 4, 2019 12 / 19

https://gtr.ukri.org/projects?ref=MR%2FN013182%2F1
https://gtr.ukri.org/projects?ref=MR%2FN013182%2F1
https://doi.org/10.1371/journal.pone.0223460


A possibility is that oscillatory approaches (which the positive findings in the NEAAT sample

rely on) represent more sensitive tools of genetic analyses. Traditional ERP analyses—as in our

current study but also others [79,81,87,88]–include only time-locked and phase-locked EEG

activity in relation to an event but with the majority of ‘background’ EEG filtered out. Such an

approach may ignore the full extent of the brain dynamics [89] because ongoing oscillatory

activities (even those not time- or phase-locked) are theorised to play critical roles in cogni-

tion, by coding information within and across neural circuitry and modulating neural excit-

ability [90–93], hence possibly impacting mental health [94,95]. Future research could also

capitalise on advanced computational approaches, such as the use of ICA, to ‘unmix’ channel-

based signals into their constituent sources [66,89,96]–an approach which is potentially more

informative for genetic and psychopathology research [23,53,97–99].

Conclusions

In a population-based sample of adolescent twins (a small subsample of TEDS; N = 67), key

CPT-derived ERPs were unexpectedly not associated with ADHD, despite previous findings

indicating that such associations would have been found. Hence it may be currently premature

for genetic analyses of ADHD to be guided by CPT-derived ERP measures (unlike alternative

neurophysiological indices such as those using oscillatory-based approaches). Taken together,

our data highlight the importance of large-scale, population-based, genetically-informative

and cross-disorder designs [8] to investigate reliable genetic risk markers/pathways in neuro-

developmental disorders using functional brain measures. Such an endeavour could be pro-

pelled by rapid advances in portable, light-weight, and mobile EEG-imaging tools that could

facilitate EEG/ERP applications within powerful developmentally-informative research

designs [22,100].
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