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Abstract Protein-protein interactions are key events controlling several biological processes. We have developed and 
employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to 
fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify 
the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed 
by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. 
Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic 
light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both 
in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This proto-
col offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various 
biological processes.
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BACKGROUND

Molecular recognition lies at the heart of all biological processes. 
Interactions between two proteins can be characterized in terms of 
binding affinity, which describes how tightly two binding partners 
interact. The binding process is regarded as an equilibrium, resulting 
from a balance between association and dissociation events [1]. Pro-
tein-protein binding affinity can be influenced by various non-covalent 
intermolecular interactions, such as hydrogen bonds, electrostatic, hy-
drophobic and Van der Waals forces, as well as by macromolecular 
crowding caused by high concentrations of macromolecules other than 
the binding partner(s) [2]. Protein complexes with a low dissociation 
constant (~ nM) are regarded as high affinity protein complexes, such as 
interactions between antigen and antibody complexes, whereas protein 
complexes with a high dissociation constant have a low affinity, such 
as protein complexes involved in intracellular signaling. In biological 
systems, these associations are usually reversible, but irreversible co-
valent bonding can also be observed [3-5].

Since the realization that many diseases stem from abnormalities in 
protein-protein interactions, it has become imperative to elucidate how 
changes in binding influence disease progression in order to develop 
appropriate therapeutics. While stable, high affinity protein-protein 
complexes can be generated following well-established procedures 
[6,7], most intracellular signaling events are transient, adopting a 
‘hit-and-run’ strategy that makes it difficult to trap the interaction for 
structure determination. These transient interactions can be classified 
into two types: (1) interactions where binding partners have an ordered 
structure or (2) interactions where one or more of the binding partners 
only gains secondary structure upon binding.

In recent years, a large number of proteins in the eukaryotic proteome 
have been determined to be intrinsically unstructured proteins (IUPs) 
[8-11]; i.e., they contain no or very little well-defined structure and lack 
a compact globular fold. IUPs are involved in transcriptional regula-
tion, cellular signaling, cell cycle control, endocytosis, replication, and 
biogenesis of the cytoskeleton [12,13], and they can bind to different 
proteins using consistent or different interfaces [14]. Unfolded proteins 
have been reported to fold or attain secondary structure upon binding 
with their interacting partner(s) [15,16], and studies note that these dis-
ordered regions that undergo a transition into order are generally shorter 
regions [17], in some cases, less than 30 residues [17]. Nevertheless, this 
highly flexible state of an IUP is fundamental to their biological role, 
and allows them to bind multiple partners and adopt different confor-
mations. The intrinsic flexibility of these proteins also confers several 
functional advantages, such as specificity without excessive binding 
strength, increased speed of interaction, and binding promiscuity, all 
highly desirable for signaling and regulatory processes [17].

Methods such as X-ray crystallography, NMR spectroscopy, and 
electron microscopy require stable protein complexes. Thus, in order 
to understand the nature of transient and unstructured protein-protein 
interactions, a method is required to trap them into a stable conforma-
tion. Here, we present a protocol to trap transiently interacting protein 
complexes, for which one of the binding partners is unstructured (Fig. 1). 
We employed a flexible glycine (Gly) linker to fuse the two interacting 
partners. Being highly flexible, the poly-Gly linker will not impose any 
spatial restriction on the mobility of the linked proteins. The presence 
of the linker increases the proximity of the two proteins of interest and 
retains the interaction. Following a review of the available literature 
[18], we devised a method to design and produce a chimeric protein 
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construct using a suitable Gly or Gly-rich linker, and proceeded to test 
this method using an interaction that was previously unable to be solved 
by co-crystallization [19]: Calmodulin (CaM) binding with two of its 
intrinsically disordered, neuron-specific substrate proteins, Neuromod-
ulin (Nm) and Neurogranin (Ng). Initial attempts to co-crystallize CaM 
with the IQ motifs of Nm and Ng did not yield complex crystals despite 
having strong evidences for the complex formation. Employing this 
method we generated stable complexes of CaM with the IQ motifs of 
Nm and Ng IQ using a flexible Gly linker, crystallized and solved the 
structures, and validated the results with unlinked full-length proteins 
and alanine substitution mutagenesis.

Figure 1. Flowchart for trapping transiently interacting protein com-
plexes using linker technique for structural studies.

For the first time, here we present a detailed protocol for the design 
and validation of Gly-linkers to trap the transiently interacting protein 
complexes, where one of the binding partners is intrinsically disor-
dered. When a protein complex is first targeted for structural study, 
initial attempts are made to determine the affinity and stability of the 
complex using various biophysical techniques such as isothermal ti-
tration calorimetry (ITC), surface plasmon resonance (SPR) and other 
fluorescence methods. Often, working with the full-length unstructured 
protein is troublesome and can be replaced with a peptide comprising the 
minimum binding region (MBR) to mimic the binding of the full-length 
proteins. The MBR can be determined using co-immunoprecipitation, 
gel-shift assays and biophysical binding studies. In the present case, 
the MBRs of Nm and Ng were previously determined to be the IQ 
motif [20,21]. We thus designed two different length peptides (19 and 
24 amino acids) from Nm and Ng and assessed their binding affinities 
towards CaM using ITC.

If the specific site of the interaction is known, a Gly or Gly-rich 
linker of an appropriate length can be designed to facilitate position-
ing of the MBR peptide within proximity of the binding region of 
the stable protein; this can be achieved with the knowledge that each 
glycine residue corresponds to a length of ~3.8 Å [22]. If the site of the 
interaction is unknown, various studies such as mutagenesis, docking 
experiments, limited proteolysis and Hydrogen/Deuterium (H/D) ex-
change experiments can be employed and various linker lengths can be 
tested to identify the appropriate length that facilitates an interaction. 
In the present case, we used DeepView analysis of a known CaM-pep-
tide complex, CaM-myosin V IQ motif peptide complex (PDB code: 
2IX7), to estimate the approximate site of the interaction for Nm and 
Ng with CaM. Thus, using literature and computational analyses, we 
identified a (Gly)5 linker as sufficient to link the Nm/Ng MBR to the 
C-terminus of CaM.

A three-step fusion PCR procedure was then employed to link the 
two proteins, where the sequence for the linker is incorporated into 
the reverse primer of the CaM gene and the forward primer of Nm/
Ng IQ motif gene, with fusion performed in the next round of PCR. 
The fused constructs are expressed in E. coli and the proteins are 
then purified using Ni-NTA affinity chromatography and the chimeric 
proteins characterized by size-exclusion chromatography (SEC) and 
dynamic light scattering (DLS). Further analytical ultra-centrifugation 
(AUC) and circular dichroism (CD) can also be performed to verify 
the presence of a well-folded intact complex. While we describe here 
the use of hanging drop vapor diffusion for crystallization of the linked 
complexes, sitting drop and under oil methods can also be used. Finally, 
the structural results of the complex obtained with the chimeric protein 
derived by linking the binding partners was validated by mutating 
various key interacting residues identified from the linked complex in 
full-length unlinked proteins/domains in vitro and in vivo. We validated 
our structural findings using ITC and relevant electrophysiological 
experiments in vivo.

MATERIALS

Reagents
 9 LB medium (Merck, cat. # 71753-6)
 9 LB agar (Sigma-Aldrich, cat. # L2897)
 9 CaCl2 (purity > 99.8%; Fluka, cat. # 21075)
 9 Agarose (Analytical grade; Promega, cat. # V3125)
 9 Seleno-L-methionine (purity > 98%; Sigma-Aldrich, cat. # S3132)
 9 Ampicillin (purity > 96%; Sigma-Aldrich, cat. # A9393)
 9 Isopropyl-β -D-thiogalactoside, IPTG (GoldBio; cat. # 12481C200)
 9 Tris base (purity > 99.8%; Fluka, cat. # 252859)
 9 Imidazole (purity > 99%; Sigma-Aldrich, cat. # I5513)
 9 HCl (purity 37%; Sigma-Aldrich, cat. # 320331)
 9 NaCl (purity > 98%; Sigma-Aldrich, cat. # S3014)
 9 EGTA (purity > 97%; Sigma-Aldrich, cat. # E3889)
 9 Glycerol (purity > 99%; Sigma-Aldrich, cat. # G5516)
 9 Triton X-100 (Sigma-Aldrich, cat. # T8787)
 9 Ni-NTA (Qiagen, cat. # 30230)
 9 Coomassie protein assay reagent (ThermoFisher Scientific, cat. 

# 1856209)
 9 Non-ionic detergent or methanol (for washing the ITC system)
 9 Distilled water
 9 Commercially available crystallization screens from Hampton 
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Research, Qiagen (JCSG and PACT suite), Jena Biosciences and 
Emerald Biosystems

 9 Kao and Michayluk vitamin solution (Sigma-Aldrich, cat. # 
K3129)

Recipes
Different lengths of Nm and Ng IQ motif peptides were commer-

cially synthesized and obtained from GL BiochemLtd (Shanghai, 
China). Stock solutions of 1 mM of Nm/Ng IQ peptides were prepared 
by dissolving the appropriate amount of peptide in 20 mM imidazole 
pH 8.0, 100 mM NaCl and 2 mM EGTA (Buffer A). After mixing, the 
peptide stock solutions were stored at 4°C to ensure complete peptide 
solubility. The choice of buffer is based on obtaining maximum solu-
bility of the peptides. NOTE: Synthetically derived peptides should be 
verified for solubility when dissolved in a buffer of interest. Sometimes 
preparing high concentrations of peptide stock solution may result in 
precipitation. Lower concentrations of stock solutions can be prepared 
to avoid this problem.

 9 TAE buffer: Tris-acetate-EDTA buffer is used for preparing 
agarose gels and for electrophoresis.

 9 Double digestion: NdeI and XhoI restriction enzymes were from 
New England Biolabs, UK. Double digestion was performed 
using these enzymes according to manufacturer’s instructions.

 9 T4 DNA ligase: Double digested vector and insert were ligated us-
ing T4 DNA ligase (Fermentas) using manufacturer’s instructions.

 9 Gel extraction kit: PCR products were purified using the GeneAll 
kit (GeneAll Biotechnology, Korea). Other commercially available 
kits can also be used.

 9 Plasmid preparation kit: Plasmids purified using the Qiagen Plas-
mid Prep Kit. Other commercially available kits can also be used.

 9 0.1 M CaCl2: For 50 ml of solution, weigh 0.55 g of CaCl2, add 
45 ml of water, dissolve it completely and bring the total volume 
to 50 ml. Sterilize using 0.22 µm filters.

 9 BL21 (DE3)/DH5α/DL41 competent cells preparation: Take 2 ml 
of overnight-grown BL21 (DE3) or DH5α cultures and inoculate 
50 ml of LB medium. Allow the cells to grow at 37°C until the 
OD600 reaches 0.4–0.5. Place the cells on ice for 5 min, and then 
spin at 1200 g for 10 min. Remove the supernatant, and resuspend 
the pellet in 40 ml of 0.1 M CaCl2. Incubate the resuspended 
pellet on ice for 45 min and then spin again at 1200 g for 10 min. 
Remove the supernatant and resuspend the pellet in 2.5 ml of 2 ml 
of 0.1 M CaCl2 mixed with 0.5 ml of autoclaved 100% glycerol 
(Final solution). Dispense 50 µl of the resuspended pellet in 1.7 
ml microfuge tubes and snap freeze using liquid nitrogen for long 
term storage. CAUTION: Liquid nitrogen is -196°C. Wear cryo-
protective gloves and a face mask while handing liquid nitrogen.

 9 Transformation: Use BL21 (DE3)/DH5α/DL41 competent cells 
for transformation. Thaw one microfuge tube of cells on ice for 
10 min. Add 1 µl of the required plasmid for BL21 (DE3) trans-
formation and 10 µl of reaction mixture for DH5α transformation. 
Incubate the cells on ice for 30 min. Heat shock the cells for 90 
s at 42°C and then return the cells to ice for 2 min. Add 150 µl 
of LB medium and transfer the cells to a shaker for 1 h at 37°C 
at 180 rpm. Plate the entire cell suspension onto LB-Agar plates 
supplemented with 100 µg/ml of ampicillin.

 9 LB medium: Measure 25 g of LB broth and mix with 1 L of 
deionized water in 2.8 L flasks. Autoclave this medium at 121°C 
for 20 min.

 9 LB-Agar plates: Measure 20 g of LB-agar and mix with 500 ml 

of deionized water. Autoclave the mixture at 121°C for 20 min 
and then allow the solution cool to less than 50°C. Add 500 µl 
of 100 mg/ml of ampicillin and mix well. Pour approximately 
20 ml of this mixture in each petri plate and stored at 4°C for 
long-term storage.

 9 Tris-HCl buffer (1.0 M pH 7.5): For a 500 ml solution, add 61 g 
of Tris base to 400 ml of water, and adjust the pH to 7.4 with 1 
M HCl. Bring the total volume to 500 ml.

 9 Imidazole buffer (1.0 M pH 8.0): For a 500 ml solution, add 34.3 
g of imidazole to 400 ml of water, and adjust the pH to 8.0 with 
1 M HCl. Bring the total volume to 500 ml.

 9 NaCl solution (4 M): For a 500 ml solution, add 117 g of NaCl 
to 450 ml of water, dissolve it completely, and then bring the 
total volume to 500 ml.

 9 EGTA solution (0.5 M pH 8.0): For a 100 ml solution, add 38 g 
of EGTA to 80 ml of water, and adjust the pH to 8.0 with 1 M 
HCl. Bring the total volume to 100 ml.

 9 Lysis buffer solution (50 mM Tris pH 7.4, 200 mM NaCl, 5% 
glycerol, 0.1%TritonX, 5 mM imidazole): For 100 ml of lysis 
buffer, add 5 ml of 1 M Tris-HCl pH 7.4; 5 ml of 4 M NaCl; 5 
ml of glycerol; 100 µl of TritonX-100; 500 µl of 1 M imidazole; 
and 84.4 ml of water. NOTE: Prepare fresh before use.

 9 Superdex 75 running buffer or Buffer A (20 mM imidazole pH 
8.0, 100 mM NaCl and 2 mM EGTA): For 500 ml of Buffer A, 
add 10 ml of 1 M imidazole pH 8.0; 12.5 ml of 4 M NaCl; 2 ml 
of 0.5 M EGTA pH 8.0; and 475.5 ml of water. NOTE: Prepare 
fresh before use.

 9 LeMaster medium [23]: First, prepare a homogenous mixture 
of the following reagents and store at -20°C: 5 g of alanine, 5.8 
g of arginine HCl, 8 g of aspartic acid, 0.3 g of cysteine, 6.7 g 
of glutamic acid, 3.3 g of glutamine, 5.4 g of glycine, 0.6 g of 
histidine, 2.3 g of leucine, 4.2 g of lysine HCl, 1.3 g phenylala-
nine, 1.0 g of proline, 20.8 g of serine, 2.3 g of threonine, 1.7 g 
of tyrosine, 2.3 g of valine, 5.0 g of adenine, 6.7 g of guanosine, 
1.7 g of thymine, 5.0 g of uracil, 15.0 g of sodium acetate, 15.0 g 
of succininc acid, 7.5 g of ammonium chloride, 10.8 g of sodium 
hydroxide, 105.0 g of K2HPO4 dibasic. Second, to prepare the 
medium, combine 24.1 g of the homogenous mixture with 1 L 
of deionized water and autoclave at 121°C for 20 min. Third, 
dissolve 10 g of D-glucose, 0.25 g of MgSO4.7H20 and 4.18 
mg of FeSO4.7H20 in 90 ml of deionized water, add 8.3 µl of 
concentrated H2SO4 and 10 ml of Kao and Michayluk vitamin 
solution and sterilize by filtration. Add this third mixture to the 
autoclaved medium. Add 25 mg of seleno-L-methionine and 1 ml 
of 100 mg/ml of ampicillin prior to inoculation. This corresponds 
to 1.1 L of LeMaster medium. NOTE: Prepare fresh before use. 
CAUTION: Seleno-L-Methionine is highly toxic. Handle with 
great precaution and wear gloves and a mask. Prior to inoc-
ulation, plasmids containing the gene of interest should be 
transformed into methionine auxotrophic strain (DL41) for 
seleno-L-methionine incorporated protein production.

 9 Coomassie protein assay reagent: Coomassie protein assay was 
used to measure protein concentration. Homogenously mix 0.5 
ml of water and 0.5 ml of reagent and use it as blank. For each 
sample, add 1 µl of protein solution to this blank solution and mix 
well. Measure the absorbance of the sample at 595 nm using the 
blank as a reference. NOTE: If the concentration of the protein 
is above 5 mg/ml, it is advisable to dilute the protein for accurate 
measurement of protein concentration.
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 9 Optimization of crystallization conditions: Once the initial crys-
tallization conditions are identified from commercial screens, 
further optimize this condition to obtain the best diffraction-quality 
crystals. In the present case, we obtained crystals in magnesium 
acetate, PEG3350 and sodium citrate tribasic conditions. Hence, 
the following stock solutions are prepared: 1.0 M magnesium 
acetate tetrahydrate (Dissolve 10.7 g of MgAcO in 45 ml of 
water, and top up to 50 ml), 50% w/v PEG3350 (Dissolve 25 g 
of PEG3350 in 30 ml of water, using a hot plate if necessary to 
dissolve completely, and make up to a final volume of 50 ml) and 
1.6 M sodium citrate tribasic (Dissolve 23.5 g of sodium citrate 
tribasic in 40 ml of water and top up to 50 ml). NOTE: Prepare 
fresh before use.

Equipment
 9 Isothermal titration calorimeter (VP-ITC, MicroCal LLC) or 

equivalent
 9 Origin 7.0 or equivalent data analysis software
 9 Vacuum pump
 9 Long-needle syringe (2.5 ml; Hamilton 1002LLSN, Hamilton)
 9 Stirring injection syringe part (VP-ITC, MicroCal LLC, part no. 

SYA13022; stirring speed, 300 rpm.)
 9 Water filtration system (Millipore)
 9 Kimwipes or equivalent laboratory wipes
 9 pH meter (Sartorius) or equivalent
 9 PCR thermocycler (Applied Biosystems) or equivalent
 9 Autoclave machine

 9 Petri plates or equivalent
 9 Weighing Balance (Sartorius) or equivalent
 9 Pipettes (0.2–2 µl, 1–10 µl, 10–100 µl and 100–1000 µl)
 9 Sonicator (Sonics) or equivalent
 9 Avanti J-26 XP centrifuge (Beckman coulter) or equivalent
 9 Eppendorf centrifuge 5804R or equivalent
 9 Eppendorf Tabletop centrifuge or equivalent
 9 AKTA purifier Low-pressure chromatography system (GE Health-

care, cat. # 28-4062-66) or equivalent
 9 Spectrophotometer (Thermo Scientific) or equivalent
 9 HiLoad 16/60 Superdex 75 pg column (GE Healthcare, cat. # 

28-9893-33)
 9 Centrifugal filter units (Millipore, cat. # UFC901024) or equivalent
 9 1.7 ml microfuge tube (Axygen) or equivalent
 9 DynaPro for DLS experiments (Protein Solutions) or equivalent
 9 Dynamics V5 software or equivalent
 9 24-well hanging drop crystallization plates (Hampton Research, 

cat. # HR3-140) or equivalent
 9 Light microscope with 4× magnification (Olympus) or equivalent
 9 Mounted cryo loops of appropriate size (Hampton Research) 

or equivalent
 9 CrystalCap copper to stalk mounted cryo loops (Hampton Re-

search) or equivalent
 9 X-ray equipment (Rigaku Raxis V+) or equivalent
 9 Computers
 9 DeepView, HKL2000, CCP4, COOT and Pymol software or 

equivalent

PROCEDURE

1. ITC assay: Identification of MBR (minimum binding region) from Nm and Ng.

1.1. Wildtype (WT) CaM, Nm and Ng are purified, as described previously [19].

1.2. Prepare 10 µM of full length Nm/Ng and 150 µM of CaM in Buffer A (Recipes). The Schematic represen-
tation of the ITC experimental setup is depicted in Figure 2A.

1.3. Degas all solutions for 10–20 min using a vacuum pump and centrifuge in order to avoid bubble formation 
in the sample cell during the experiment.

1.4. Thoroughly wash the sample cell and the syringe using Buffer A. NOTE: Extensive washing of the cell 
and syringe is necessary to avoid any contaminants carried over from previous runs.

1.5. Fill the reference cell with degassed buffer solution using a long-needle syringe.

1.6. Fill the sample cell with 10 µM of Nm/Ng full-length protein, taking care to avoid the appearance of air 
bubbles in the cell. For the VP-ITC instrument, the net volume is ~1.5 ml.

1.7. Fill the syringe with 150 µM of CaM solution according to the manufacturer’s recommendations. For the 
VP-ITC, the net volume is ~300 μl.

1.8. Rinse off the excess ligand solution from the surface of the needle with water and carefully wipe the surface 
of the needle with a Kimwipe.

1.9. Choose the instrument settings appropriate to your experiment. The conditions used in this case are: total 
number of injections (30 times), measurement temperature (25°C), reference power (15 μcal s–1), initial 
injection delay (120 s), stirring speed (300 rpm), feedback mode gain (high feedback), injection volume 
(10 μl), duration of each injection (10 s), spacing between injections (240 s) and filter period (2 s).

CRITICAL STEP: The running parameters should be adjusted according to the recommendations of the ITC instrument 
manual. As the equilibration at low temperature is quite slow, we recommend 25°C as a starting point. Injection volume 
should be adjusted according to the ITC model. For the VP-ITC model, we suggest 5–10 μl. For more details, please see 
references [24,25].
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1.10. Start the experiment after gently setting the syringe in place. In the experiment discussed here, each run 
will take approximately 4 h. TROUBLESHOOTING

1.11. For ITC experiments with CaM and IQ motif peptides, use 10 µM of CaM in the cell and 150 µM of Nm/
Ng IQ peptides in the syringe.

1.12. Dilute 1 mM peptide stock solutions with Buffer A (Recipes) to obtain a 150 µM final concentration for 
each peptide.

1.13. Follow the steps 1.3-1.10. Rerun the ITC assay, filling the sample cell with CaM and syringe with different 
IQ peptide solutions. Maintain the same ITC running parameters as in the control titration.

1.14. After the experiment, wash and maintain the ITC system according to the manufacturer’s recommendations.

2. DeepView analysis: Computational Analysis using known CaM-IQ motif complex.

2.1. A step-by step tutorial for DeepView analysis is available at http://spdbv.vital-it.ch/TheMolecularLevel/
SPVTut/ (Fig. 2B).

2.2. At the pdb website (www.rcsb.org), search for the template model and download the pdb file. In the present 
case, we identified pdb 2IX7 as a template model to design the linked construct.

NOTE: In some cases, a search for the PDB may need to be performed using the sequence of the protein of interest to 
identify the closest homolog complex, if available.

2.3. Use the identified template pdb and modify the template (in this case, 2IX7) to generate the models for the 
selected interaction (in this case, apo-CaM-NmIQ and apo-CaM-NgIQ complexes). TROUBLESHOOTING

2.4. Mutate the existing motif residues (in this case, myosin V IQ motif residues in the pdb 2IX7) with the se-
quence from MBR of the peptide of interest (in this case, Nm/Ng IQ motif) using the “MUTATE” operation.

2.5. Use “ENERGY MINIMIZATION” to repair distorted geometries obtained due to mutating residues and for 
releasing internal constraints. Positions of the side-chains from the mutated residues can then be refined 
using this option.

2.6. Once all residues are mutated based on the MBR of the peptide of interest (in this case, Nm/Ng IQ motif 
sequence), use the “SAVE” option to save the current model with an appropriate name, (in this case, “Mod-
el_Nm.pdb” or “Model_Ng.pdb”).

2.7. Run Pymol and open the model (Model_Nm.pdb) and use the “Measurement” option to measure the distance 
between the selected terminus of the protein (C-terminal, CaM) and the terminus of the peptide (N-terminus, 
Nm). Repeat the same for other peptides (Ng).

NOTE: This is an approximate way to determine the distance between the protein and peptides (CaM and Nm/Ng IQ 
motifs). Measurements obtained using this option provide only a linear distance. However, the model needs to be verified 
closely to determine the possible length of the linker required.

3. Fusion PCR and cloning: Linking MBR to structurally stable protein.

3.1. Four different primers are then designed. In this case, P1- Forward primers for CaM. P2- Reverse primers 
for CaM, which incorporates DNA corresponding to (Gly)5 linker at the end of CaM. P3- Forward primers 
for Nm/Ng IQ motifs, incorporating base pairs that correspond to the (Gly)5 linker at the beginning of the 
Nm/Ng IQ motifs. P4- Reverse primers for Nm/Ng IQ motifs.

3.2. Set up two types of PCR reactions. In this case, one to amplify CaM (with P1 and P2 primers) and another 
for each of the Nm/Ng IQ motifs (with P3 and P4 primers). Components are mixed on ice in 200 µl thin-
wall PCR tubes.

PCR reaction mix: 25 µl

Reagent Amount per reaction

Template DNA 10 ng

Primers (P1 and P2 or P3 and P4) 300 nM final concentration

dNTPs 300 µM final concentration

KAPA HiFi DNA Polymerase 1 U

Buffer As provided by the manufacturer

Template DNA was the clone which has been used to express individual proteins of CaM and Nm/Ng. We have used 
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full-length Nm (accession no NP_032109) and Ng (accession no NP_071312) that were cloned into pQE30 (Qiagen, 
USA) plasmids and CaM (accession no NP_033920) that was cloned into MCS1 of pETDuet-1 vector (Novagen, USA).

P1: 5` ACA CAT ATG GCT GAC CAA CTG 3`
P2: 5` TCC TCC TCC TCC TCC CTT TGC TGT CAT 3`
P3: 5` GGA GGA GGA GGA GGA GCT GCG ACC AAA 3`
P4: 5` GAG AAG AAG GGT TGA CTC GAG ACA 3`

3.3. PCR program for amplifying gene fragments

Cycle number Denature Anneal Extend

1 95°C, 2 min

2 (30 times) 98°C, 20 s 52°C, 15 s 72°C, 1 minb

3 72°C, 2 min

bChange the time according to size, with extension time calculated based on 30 s kb-1 for the fragment being amplified.

3.4. Set-up a PCR reaction (25 µl) to fuse the two genes using genes amplified in the above step as template. 
Use the same PCR program described in step 3.3.

Reagent Amount per reaction

Template DNA 1 µl each of CaM and IQ motif amplified

Primers (P1 and P4) 300 nM final concentration

dNTPs 300 µM final concentration

KAPA HiFi DNA Polymerase 1 U

Buffer as provided by the manufacturer

3.5. Gene fusion is then verified using 1.5% agarose gel electrophoresis. PCR products obtained from step 3.4 
should show a size corresponding to the sum of the two parts: in this case, CaM and IQ motif (Fig. 2C). 
TROUBLESHOOTING

3.6. Purify the PCR product from the gel using the GeneAll Gel extraction kit.

3.7. Double digest the purified PCR product (step 3.6) and the pGS21a vector (Genscript, USA) with NdeI and 
XhoI restriction enzymes and purify the double digests using the GeneAll PCR purification kit.

3.8. Ligate the double digested PCR product and pGS21a vector using T4 DNA ligase. TROUBLESHOOTING

3.9. Transform the ligated product into chemically competent E. coli DH5α cells using heat shock (Recipes).

3.10. Inoculate colonies in 3 ml of LB broth and grow the culture at 37°C for 12–16 h. Perform a plasmid ex-
traction using Qiagen mini prep kit.

3.11. Verify the plasmids with DNA sequencing.

3.12. Plasmids that contain the fused gene are then transformed into chemically competent E. coli BL21 cells 
using heat shock (Recipes).

4. Characterization of fused constructs: Purification and characterization of fused complexes (CaM-(Gly)5-NmIQ/NgIQ).

4.1. For initial protein expression, inoculate a single colony in 100 ml of LB medium overnight at 37°C. Trans-
fer the inoculum into 1 L of LB media (supplemented with 100 µg/mL ampicillin) and grow the culture at 
37°C until the OD600 reaches between 0.6–0.8. The culture should then be maintained at 16°C before protein 
expression is induced with 0.15 mM IPTG. Cells are then grown for 16 h at 16°C. NOTE: Culture condi-
tions, such as the IPTG concentration and temperature for IPTG induction may vary from protein to protein.

4.2. For Single wavelength Anomalous Dispersion (SAD) phasing, seleno-L-methionine (SeMet) labeled pro-
teins are produced using LeMaster media (Recipes). The same culture conditions as described in step 4.1 
are used, with the exception that the LeMaster medium is used and the plasmids are transformed into DL41 
cells (methionine auxotrophic strain).

4.3. Cells from the 1 L culture are then collected by centrifugation at 9,000 g for 30 min using Avanti J-26 XP 
centrifuge (or similar). Resuspend the cell pellet obtained in 40 ml of lysis buffer (Recipes) in a 50 ml falcon 
tube. HINT Cell pellets obtained after centrifugation can be stored at -20°C for future use.
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4.4. Sonicate the cell suspension using 1 s ON/OFF pulses for 5 min. Centrifuge the cell lysate at 39,000 g for 
30 min using Avanti J-26 XP centrifuge (or similar) to obtain a clear supernatant. NOTE: Make sure that 
the tip of the sonicator probe does not touch the sides and bottom of the falcon tube. Adjust the tube if an 
unusual loud noise is heard. NOTE: Make sure that the cell lysate is centrifuged to separate out the cell 
debris and the soluble protein fraction.

4.5. Mix the supernatant with 5 ml of Ni-NTA resin that has been pre-equilibrated with lysis buffer and incubate 
for 1 h to allow binding. Wash the resin three times with lysis buffer without TritonX-100 (wash buffer) 
and elute the bound proteins using 10 ml of wash buffer supplemented with 500 mM imidazole. NOTE: 
Make sure that the Ni-NTA resin is washed with water thoroughly and then equilibrated with lysis buffer. 
TROUBLESHOOTING

4.6. Equilibrate a HiLoad 16/60 SuperdexTM 75 prep grade (GE Healthcare, Life Sciences) column with Buffer 
A (Recipes) by connecting it to an AKTA purifier. Use the following parameters on UNICORN 4.11 soft-
ware: flow rate (1 ml/min), time (180 min) CV (column volume; 120 ml). The Schematic representation 
of size exclusion chromatography is depicted in Figure 2D. NOTE: Check all connections in the system 
to ensure that there are no leakages.

4.7. Use a 5 ml loop for injecting the protein. Prior to injection, wash the loop twice with 5 ml of Buffer A. 
Run the sample according to the following parameters: flow rate (1 ml/min), column pressure limit (0.5 
MPa), length of elution (1 CV), volume per fraction (1 ml). Start the program to elute the fusion protein 
in Buffer A. CRITICAL STEP: Carry out all the procedures of Ni-NTA chromatography, including this 
step, at 4°C in a cold room or inside a chromatography chamber. CRITICAL STEP: It is also important to 
perform SDS-PAGE on the peak fractions observed based on an absorbance at 280 nm from the size-exclu-
sion chromatography. Peak fractions should contain only the protein of interest. TROUBLESHOOTING

4.8. Use 3 kDa cut-off centricons to concentrate the eluted protein. Pool the fractions and spin it at 4,000 g at 4°C 
until the protein concentration is approximately 12 mg/ml as verified using Coomassie protein assay reagent 
(Recipes). NOTE: It is advisable to restrict centrifugation to 30 min and ensure that the concentration is 
checked. If necessary, Dynamic Light Scattering (DLS) can be performed to verify that concentrating the 
protein did not deteriorate its homogeneity. TROUBLESHOOTING

4.9. Transfer the protein from the centricon to a 1.7 ml microfuge tube. Spin the sample at 14,000 g for 10 min 
at 4°C.

4.10. Switch on the DLS machine and do not operate it until it reaches the set temperature (in this case 20°C). 
Prepare by washing the cuvette several times with water.

4.11. Dispense 20 µl of water in the cuvette and place the cuvette into the appropriate position in the DLS ma-
chine as a blank control.

4.12. Start the machine by clicking “start” (left panel). The counts for the blank should be less than 10 kilo 
counts/s (kCnt/s). Click “stop” (left panel) to stop the reading. NOTE: Extensive washing is required to 
avoid any interference from contaminants in previous runs.

4.13. Remove the water and dispense 20 µl of concentrated protein into the cuvette. Click “start” (right panel), 
collect 20 readings and then click on “stop” (right panel). The schematic representation of dynamic light 
scattering is depicted in Figure 2E. TROUBLESHOOTING

4.14. Once the readings are saved, remove the cuvette from the DLS machine, wash it with water and re-test the 
blank. Switch off the machine once the readings are taken for both the fused proteins.

5. Structure determination: Crystallization and structural studies of apo-CaM-(Gly)5-NmIQ and apo-CaM-(Gly)5-NgIQ.

5.1. Crystallization trials are performed with 12 mg/ml of apo-CaM-(Gly)5-NmIQ and apo-CaM-(Gly)5-NgIQ 
using hanging drop vapor diffusion, as described previously [26]. The schematic representation of crys-
tallization and structure determination is depicted in Figure 2F. NOTE: Do not disturb the crystallization 
trays frequently after setting up the drops.

5.2. Initial crystals are obtained in a buffer solution consisting 0.2 M magnesium acetate tetrahydrate and 20% 
w/v polyethylene glycol 3350 (Hampton Research, cat. # HR2-126, condition # 25) for CaM-(Gly)5-Nm 
and 0.1 M HEPES sodium solution pH 7.5 and 1.4 M sodium citrate tribasic dehydrate (Hampton Research, 
cat. # HR2-110, condition # 38) for CaM-(Gly)5-Ng. NOTE: Crystallization conditions vary from case to 
case. TROUBLESHOOTING

5.3. The quality of both crystals is improved by systematically varying the concentrations of the crystalliza-
tion buffer components. Other additives (Hampton Research cat. # HR2-428) are also used [26]. NOTE: 
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Concentrations should be varied gradually, as drastic variations in the concentrations of crystallization 
conditions may result in the loss of crystal formation.

5.4. In this case, good-quality crystals are obtained in a buffer consisting of 0.12 mM magnesium acetate, 8% 
PEG 3350 and 10% ethanol for apo-CaM-(Gly)5-NmIQ and a buffer consisting of 0.1 M imidazole pH 8.0 
and 1.2 M sodium citrate tribasic dehydrate for apo-CaM-(Gly)5-NgIQ.

5.5. In this case, crystals are then tested using the in-house Rigaku Raxis V+. To test the crystals, single crystals 
are transferred to crystallization buffer supplemented with 10% glycerol using an appropriate size loop and 
soaked in cryoprotectant for 1 min. Using an appropriate sized loop, the crystals are then flash-cooled in 
N2 cold stream at 100 K.

5.6. The following parameters are then used to test the diffraction quality of the crystal: distance to detector (60 
mm), oscillation width (0.5°/image), oscillation range (1°), exposure time (30 sec/frame).

5.7. The best crystals (diffract to 3 Å and with mosaicity < 1°) are then transferred and stored in liquid nitrogen 
storage cans. CAUTION: Wear cryoprotective gloves and a face mask when handing liquid nitrogen.

5.8. Ship the crystals to the NSLS, Brookhaven National Laboratory, USA or the National Synchrotron Radiation 
Research Center (NSRRC), Taiwan, to collect complete SAD datasets for structure solution.

5.9. Use the following parameters to collect complete datasets at SeMet peak wavelength (0.9795 Å) using the 
Quantum 4-CCD detector: distance to detector (300 mm) oscillation width (0.5°/image), oscillation range 
(360°), exposure time (2 s/frame). All datasets in this case were collected at 100 K.

5.10. Process all the datasets using HKL2000 [27] and the .sca files generated are used for locating heavy atom 
(Se) positions, phasing and density modification using ShelxC/D/E [28] from CCP4. NOTE: It is important 
to follow the step-by-step procedure for scaling and phasing. CRTICAL STEP: Other programs, such as 
Phenix Autosol, can also be used for heavy atom (Se) phasing.

5.11. Heavy atom locations obtained from ShelxC/D/E are then further used to autobuild, based on the sequence 
using Buccaneer [29] from CCP4. NOTE: Other programs, such as Phenix Autobuild, can also be used for 
sequence-based model building from heavy atom locations.

5.12. Check the model obtained from the Buccaneer program in COOT [30]. Where necessary, the model can be 
manually built in COOT. NOTE: Build the model where significant electron density is available.

5.13. In the present case, the crystal analysis revealed the presence of a twin fraction. Hence twin refinement 
was carried out during the refinement stage using Refmac5 [31].

5.14. Stereochemistry of the models obtained are then verified using PROCHECK [32] in CCP4.

6. ITC assay: Validation.

6.1. Closely examine the structures (in this case, those of apo-CaM-(Gly)5-NmIQ/NgIQ) to identify key in-
teracting residues (in this case, from CaM and Nm/Ng IQ motif). NOTE: Use Contact run from CCP4 to 
identify the atoms involved in interactions and the distance between the interacting atoms (contacts <3.8 Å 
are considered for hydrophobic interactions and <3.2 Å are considered for H-bonding contacts).

6.2. Site-directed mutagenesis of the interacting residues from the full-length protein can then be performed 
using Inverse PCR [33]. In this case, the mutations for CaM were D81A, E85A, F90A, E115A, E121A, 
M125A, F142A, E85A/F142A and F90A/E121A; for Nm, F42A, R43A and I46A; and for Ng, I33A, Q34A, 
F37A and R38A. Primers were designed as described in the paper by Dominy et al.[33]. NOTE: In this case, 
double mutations of CaM were obtained sequentially by performing the second mutation on the plasmid 
consisting of the first mutation.

6.3. Use the following reaction and PCR program to generate the mutants.

PCR reaction mix: 50 µl reaction

Reagent Amount per reaction

Template DNA 10 ng

Primers (forward and reverse) 300 nM final concentration each

dNTPs 300 µM final concentration

KAPA HiFi DNA Polymerase 1 U

Buffer as provided by the manufacturer
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With the following program for PCR amplification:

Cycle number Denature Anneal Extend

1 95°C, 2 min

2 (16 times) 98°C, 20 s 52°C, 15 s 72°C, 3 min 30 sb

3 72°C, 5 min

bChange the time according to size, with extension time calculated based on 30 s kb-1 for the fragment being amplified.

6.4. Verify the newly linear amplified plasmid using 1.5% agarose gel electrophoresis and purify the PCR product 
using GeneAll Gel extraction kit. TROUBLESHOOTING

6.5. Transform the linear plasmid into chemically competent E. coli DH5α cells using heat shock (Recipes). 
Repeat steps 3.10–3.12 to obtain the mutants (in this case, the mutants for CaM, Ng and Nm).

6.6. Purify the mutants (in this case, of CaM, Nm and Ng) as described previously [19].

6.7. Prepare 10 µM of WT and mutants of full-length Nm/Ng in Buffer A to be used in the cell. Prepare 150 µM 
of WT and mutants of the full length protein (CaM) in Buffer A to be used in the syringe.

6.8. Perform ITC experiments to compare the WT and mutant binding. In this case, for WT Nm/Ng against 
mutants of CaM and mutants of Nm/Ng against WT CaM.

6.9. For ITC experiments, follow steps 1.2–1.10.

6.10. Apart from ITC experiments, which can be used for validating any protein-protein complexes, we used in 
vivo electrophysiological experiments to validate in vitro findings. These in vivo experiments are specific to 
this particular study. For the details of the electrophysiological experiments, please refer to Kumar et al. [19].

ANTICIPATED RESULTS

The Gly-linker strategy has been previously used to stabilize var-
ious protein complexes for structural studies [18]. We have adopted 
this procedure to determine the crystal structure of CaM in complex 
with two of its intrinsically unstructured binding partners, Nm and 
Ng, and further validated the findings in vitro and in vivo [19]. We 
identified the MBR of Nm and Ng that interacted with CaM using 
ITC experiments using various peptide lengths of Nm/Ng. We show 
that the MBR determined with ITC is comparable with the binding of 
full length Nm/Ng with CaM (Fig. 3A and 3B). We employed known 
structures of CaM-IQ motif complexes to generate a template model 
of the CaM-Nm/Ng complex using DeepView, in which the IQ motifs 
of Nm/Ng interacted with the C-lobe of CaM. This is consistent with 
previous findings that Nm and Ng interacted with the C-lobe of CaM 
[34-36]. Thus, we linked the IQ motif of Nm/Ng to the C-terminus 
of CaM using a (Gly)5 linker. It is important to note that the distance 
between the two termini of the binding partners will vary depending 
upon the protein-protein complex being studied.

Expression of fused constructs avoids the need to purify individ-
ual proteins and it alleviates the inherent difficulties associated with 
generating a homogenous and stable complex. With our strategy, we 
observed homogeneous complexes of both Nm and Ng linked with 
CaM (Fig.3C). Subsequently, the linked complexes were crystallized 

and diffracted to 2.7 Å. The molecular replacement method did not 
yield the structure solution. Thus, SAD phasing was performed using 
seleno-L-Methionine labeled proteins (Fig. 3D). Notably, the IQ motif 
of Ng and CaM adopted an intermolecular interaction [19]. This result 
demonstrates that if the linker length is not sufficient for the chimeric 
protein to engage in an intramolecular interaction, it will instead adopt 
an intermolecular interaction to stabilize the complex. This type of 
interaction has been observed previously for linked complexes [37].

It is important to validate the interactions obtained with linked bind-
ing partners. We performed this validation by mutating key residues 
involved in the interactions in the full length proteins, testing the binding 
in vitro with ITC and in vivo with electrophysiological experiments. In 
ITC experiments, substituting any key residue from Nm and Ng with 
alanine resulted in loss of interaction with CaM, while substituting 
any key residue from CaM with alanine resulted in reduced affinity 
towards Nm and Ng [19]. Furthermore, the in vivo experiments showed 
that mutating a key residue in Ng IQ motif resulted in its inability to 
potentiate synaptic transmission in CA1 hippocampal neurons [19]. 
Similarly, any appropriate in vivo experiments could be performed for 
any particular protein complex studied using this protocol. This protocol 
can be adopted to study other transiently interacting protein complexes 
involving structured or unstructured proteins, and offers potential ap-
plication in studying the transient protein-protein interactions involved 
in various biological processes.
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Table 1. Troubleshooting table.

Step Problem Possible Reasons Solution

1.10 Unstable ITC baseline or base-
line shift

Sample cell and syringe are dirty Thoroughly wash the cell and syringe

Air bubbles in the sample cell Remove air bubbles. Take care not to introduce bubbles when 
filling the cell and syringe

2.3 Template PDB not available No known structures of the binding 
partners

Search for homologous protein structure of the binding part-
ners and use them as template

No known homologous protein struc-
tures

Perform sequence based 3D structure prediction

3.5 Absence of a PCR product after 
fusion PCR

Gene fusion did not take place Recheck the primers and repeat the reaction by slightly vary-
ing the annealing temperature

Multiple PCR products after 
fusion PCR

The primers may have bound to related 
sequences elsewhere in the template

Redesign the primers and repeat the reaction

3.8 No colonies observed after 
transformation

incomplete double digestion Optimize the duration of restriction double digestion to obtain 
complete digestion of vector and insert

Star activity by the restriction digestion 
enzymes

Optimize the duration of restriction double digestion to reduce 
star activity

4.5 No protein in elution Cell culture conditions are not suitable Try different cell culture conditions by varying the IPTG con-
centration and temperature for induction and induction period

Protein is in the insoluble fraction Use a refolding method or use a solubility tag to make the 
protein soluble

No binding with Ni-NTA resin Use fresh Ni-NTA resin and equilibrate with lysis buffer for a 
minimum of 1 hr

Protein eluted away during wash steps Remove imidazole from wash buffers and repeat the assay

4.7 No protein peak observed in the 
elution profile

Protein has leaked due to tubing con-
nections.

Check the connections of the loop. Try to reconnect and inject 
the protein

UV lamp is not sensitive; this is particu-
larly a concern if the protein concentra-
tion is low

Change the UV lamp for better sensitivity

4.7 Protein eluted in void volume Protein shows higher order oligomeri-
zation

Optimize buffer conditions to prevent aggregation

Binding partners may not be interacting 
to form an intact complex

Optimize the length of the linker to retain natural interactions 
between the binding partners

4.8 Protein is not stable Protein precipitates while concentrating Optimize buffer conditions to prevent protein precipitation

Binding partners may not be interacting 
to form an intact complex

Optimize the length of the linker to retain natural interactions 
between the binding partners

4.8 Protein concentration does not 
increase

Protein may have precipitated Do not concentrate the protein beyond a particular level. Mea-
sure the concentration of the protein at frequent intervals

4.13 DLS shows high hydrodynamic 
radius

Protein tends to aggregate Optimize buffer conditions to reduce aggregation

5.2 No crystal formation Protein storage buffer may not be 
optimal

Try to vary the protein storage buffer composition and re-per-
form crystallization

Less number of screening conditions 
are used

Perform crystallization trials with an increased number of 
screens

6.4 Absence of PCR product after 
inverse PCR

Linear PCR product was not amplified Check the primers and optimize the PCR conditions accord-
ingly
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Figure 2: Schematic representation of key experimental setup required for linker technique to trap transiently interacting protein complexes. 
A. Isothermal titration calorimetry (ITC). Reference cell is filled with buffer; the sample cell and syringe are filled with proteins involved in interaction. 
B. Computational analysis. Structurally known homologues protein complexes are used as template to generate model for current protein complex of 
interest. C. Gene fusion. Two genes when fused together using fusion PCR produces a linear PCR product which corresponds to sum of the length of 
both of the genes. D. Size exclusion chromatography (SEC). SEC separates proteins based on their size. Higher molecular weight proteins are eluted 
earlier than the proteins of low molecular weight. E. Dynamic Light Scattering (DLS). DLS is used to characterize the size of proteins by measuring the 
fluctuations in scattered light intensity by protein molecules. F. Structure determination. Hanging drop vapor diffusion method utilizes a droplet consisting 
of purified protein and crystallization solution being allowed to equilibrate with a larger volume of crystallization solution. Diffraction pattern of crystals 
are obtained using X-rays and collect a complete dataset for structure determination.
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Figure 3. Trapping CaM and IQ motif of Nm complex for structural studies using linker technique. A. Initial ITC experiment with wild type full length 
proteins such as CaM and Nm [19]. B. ITC experiment with optimized Minimum Binding Region (MBR) peptide of Nm and full length CaM. Optimized 
MBR from Nm mimics full length Nm in terms of binding with CaM. C. Comparison of SEC profile shows that the hydrodynamic radius of apo-CaM and 
apo-CaM-(Gly)5-NmIQ are same and the chimeric protein is a well folded complex. D. Crystal structure of apo-CaM-(Gly)5-NmIQ (PDB code: 4E53). CaM 
is shown in green and NmIQ is shown in magenta.
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