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Abstract
Background: Both albuminuria and kidney dysfunction may affect circadian blood pressure (BP) rhythm, while exacerbating
each other’s effects. We investigated associations and interactions of these two risk factors with circadian BP rhythm variation
and non-dipper pattern progression in community-dwelling older men.

Methods: Thiswas a cross-sectional and longitudinal analyses in the third and fourth cycles of the Uppsala Longitudinal Study
of Adult Men, including 1051 men (age 71 years) with assessments on urinary albumin excretion rate (UAER), 24-h ambulatory
BP monitoring (ABPM) and cystatin-C-estimated glomerular filtration rate (eGFR). Of these, 574 men attended re-examination
after 6 years. Study outcomes were ABMP changes and non-dipping BP pattern (prevalence and progression).

Results: UAER associated with circadian BP rhythm both cross-sectionally and longitudinally. Longitudinally, significant
interactions were observed between UAER and kidney dysfunction (eGFR < 60 mL/min/1.73 m2) in its association with the
changes of both night-time systolic BP (SBP) and night–day SBP ratio. After stratification, UAER strongly predicted night–day SBP
ratio change only in thosewith concurrent kidney dysfunction. At re-examination, 221 new cases of non-dipperwere identified.
In multivariable logistic models, high UAER associated with increased likelihood of non-dipper progression, but more strongly
so among individuals with concurrent kidney dysfunction. These associations were evident also in the subpopulation of non-
diabetics and in participants with normal range UAER.

Conclusions: UAERassociateswith circadianBP rhythmvariation andnon-dipper progression in elderlymen. Concurrent renal
dysfunction modifies and exacerbates these associations.
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Introduction
Hypertension is highly prevalent among elderly individuals and
a well-documented risk factor of cardiovascular disease (CVD)
morbidity and mortality in the community [1, 2]. The kidneys
play an essential role in the pathogenesis and maintenance of
hypertension and circadian blood pressure (BP) rhythm [3, 4].
Both albuminuria [5, 6] and kidney dysfunction [3] associate
with measures of BP in cross-section. Traditionally, albuminuria
and kidney dysfunction are interpreted as a consequence of long-
term poorly controlled hypertension. However, existing observa-
tional evidence allows the speculation that these associations
may be bidirectional in nature, as some longitudinal studies
link albuminuria with progression of hypertension [7–12]. We
could recently report that both kidney dysfunction and albumin-
uria associate synergistically with the incidence of hypertension
among the elderly [13].

The loss of the physiologic decline in nocturnal BP, termed
non-dipping, is associated with worse CVD outcomes regardless
of arterial BP during daytime or during 24 h [14, 15]. There is an
emerging evidence that kidney dysfunction also affects circadian
BP rhythm: cross-sectional studies have linked both albuminuria
[16–18] and renal insufficiency [4] with non-dipping patterns, but
factors that drive the appearance of circadian fluctuation in the
kidney are not fully elucidated [19]. As a continuation of our pre-
ceding analysis [13], in this study, we address plausible associa-
tions between albuminuria, kidney dysfunction or both, on
circadian BP rhythm change and progression to non-dipping pat-
tern in community-dwelling older men.

Materials and methods
Participants

The present study is based on the Uppsala Longitudinal Study of
Adult Men (http://www.pubcare.uu.se/ULSAM/), when partici-
pants were 70–71 years old (1991–95; n = 1221). We excluded 170
subjects who were missing albuminuria, serum cystatin C and/
or 24-h ambulatory BP monitoring (ABPM) data, leaving 1051
men for the cross-sectional analysis. Of these 1051 individuals,
333 died or were lost to follow-up before a re-examination taking
place 6 years later when the participants were ∼77 years old. Of
the 718 men who attended the re-examination, 144 were ex-
cluded due tomissing ABPM records, leaving 574men for the lon-
gitudinal analysis (Figure 1). No major characteristics differed
between included and non-included participants at re-examin-
ation (Supplementary Table S1). All participants gave written
consent, and the Ethics Committee of Uppsala University ap-
proved the study.

Covariates

Smoking status was defined as current smoking versus non-
smoking. Physical activity was defined as the reporting of
exercise habits according to four physical activity categories
(sedentary, moderate, regular and athletic) [20]. Previous CVD was
defined asa history of anyCVDas recorded in the SwedishHospital
Discharge Registry [International Classification of Diseases (ICD)-8
codes 390–458 or ICD-9 codes 390–459]. Hyperlipidaemia was de-
fined as serum cholesterol >6.5mmol/L, triglycerides >2.3mmol/L
or treatment with lipid-lowering medications. Diabetes was

defined as fasting glucose ≥7.0 mmol/L, 2-h post-load glucose
level≥11.1mmol/L or theuse of oral hypoglycaemic agentsor insu-
lin [21]. Classification of antihypertensivewas performed according
to the, at that time, list of pharmaceutical specialties available in
Sweden (FASS 1992/1993). All information about use of diuretics,
α-blockers, β-blockers, calcium channel blockers and angiotensin-
converting enzyme inhibitors was collected with a medical ques-
tionnaire. Because previous literature correlates sodium intake
withcircadianBP rhythm [4],we also considereddietary sodium in-
take after correction for total energy intake by the residualmethod
[22] as derived from 7-day dietary records [23].

Kidney function and albuminuria measurements

Serum cystatin C was measured by latex-enhanced reagent (N
Latex Cystatin C, Dade Behring, Deerfield, IL) with a Behring BN
ProSpec analyser (Dade Behring). Estimated glomerular filtration
rate (eGFR) was calculated from serum cystatin C concentrations
(mg/L): eGFR = 77.24 × cystatin C−1.2623, which has been shown to
be closely correlated with iohexol clearance in this specific
population [24]. Kidney dysfunction was defined as cystatin-C
eGFR < 60 mL/min/1.73 m2 [25]. Urinary albumin excretion rate
(UAER) was calculated on the amount of albumin in the urine
collected during the night. The subjects were instructed to void
immediately before going to bed and to record the time. All
urine samples during the night and the first sample of urine in
themorning after rising were collected and used for the analysis.
The assay employed a commercially available radioimmuno-
assay kit (Albumin RIA 100, Pharmacia, Uppsala, Sweden). Nor-
mal range albuminuria was defined as UAER < 20 μg/min.

Circadian BP rhythm assessment

The ABPM device Accutracker II (Suntech Medical Instruments,
Raleigh, NC) was used in both examinations and attached to
the subjects’ non-dominant arm by a skilled lab technician,
and BP recordings were made every 20 min during 24 h (daytime:
06:00–23:00, night-time: 23:00–06:00). Data were edited to a lim-
ited extent omitting all readings of zero, all heart rate readings
<30 beats/min, diastolic BP (DBP) readings >170 mmHg, systolic
BP (SBP) > 270 and <80 mmHg, and all readings where the dif-
ference between SBP and DBP was <10 mmHg. Nocturnal BP
change = (SBPday− SBPnight)/SBPday × 100%, non-dipper BP pattern
defined as nocturnal BP change <10% and hypertension was de-
fined as either average daytime BP ≥135/85 mmHg or night-time
BP≥120/70 mmHg or 24-h daytime BP fromABPM ≥130/80 mmHg
or intake of antihypertensive drugs, according to the newNation-
al Institute for Health and Care Excellence Guidance [26] and the
Task Force for the management of arterial hypertension of the
European Society of Hypertension and of the European Society
of Cardiology [27].

Analyses

In cross-sectional analysis, multivariable linear regressions were
calculated to determine independent associations between
UAER and BP circadian rhythm measurements at baseline (day-
time SBP, night-time SBP and nocturnal BP change). UAER was
log2 transformed to improve its distribution towards normal.
Confounders in adjusted models included body mass index
(BMI), smoking status, physical activity, comorbidities (CVD,
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diabetes and hyperlipidaemia), eGFR, number of antihyperten-
sive drugs (1, 2 or ≥3 drugs) and sodium intake. Data are ex-
pressed as regression coefficients (β) and 95% confidence
intervals (CIs).

In longitudinal analysis, two outcomes were defined a priori:
(i) intra-individual BP changes, defined as changes in BP mea-
surements (delta daytime BP, delta night-time BP and delta noc-
turnal BP change) from baseline to re-examination and (ii)
progression to a non-dipper BP pattern. For the second outcome,
participants with non-dipper BP pattern at baseline were ex-
cluded from the analyses. Multivariable linear regressions were
used to examine the association between UAER and BP circadian
rhythm changes described above. Multivariable logistic regres-
sion models were used to examine the association between
UAER and the risks of de novo non-dipper BP pattern at re-exam-
ination. Covariance in adjusted models included BMI, smoking
status, physical activity, comorbidities, eGFR, number of anti-
hypertensive drugs at baseline and sodium intake. Results are
shown as odds ratios and 95% CI.

We examined multivariable models that included interaction
terms for UAER (as a continuous variable) and kidney function (as
a binominal variable: eGFR ≥60 or <60 mL/min/1.73 m2) and per-
formed the analyses after stratification of individuals according to
thepresence/absence of kidneydysfunction. P-values for interaction
were reported. In addition, because both diabetic nephropathy
and micro-/macro-albuminuria per se may affect study outcomes,
analyses were repeated in non-diabetics and in a subpopulation
with normal range UAER (<20 μg/min). P < 0.05 was regarded as
significant. All statistical analyses were performed using statistical
software STATAversion 12 (Stata Corporation, College Station, TX).

Results
Cross-sectional analysis

Baseline characteristics of the study population are presented in
Table 1. Multivariable regression analyses were fitted to study
cross-sectional associations of albuminuria with circadian BP
rhythm (night-time SBP, daytime SBP and nocturnal BP change)
by ABPM at baseline (Table 2). In fully adjustedmodels, albumin-
uria was considered an independent contributor to the variance
of circadian BP rhythm measurements. The associations were
similar, slightly improving in individuals with kidney dysfunc-
tion than in individuals without, but no statistically significant
interaction terms were noted.

Longitudinal analysis

After 6 years, 574 individuals attended a re-examination and
underwent 24-h ABPM assessment. In multivariable regression
analyses, associations were observed between albuminuria and
the change in bothnight-time SBPandnocturnal BP (Table 3). Sig-
nificant interaction terms between albuminuria and the pres-
ence of kidney dysfunction on the prediction of changes of
circadian BP rhythmwere observed. After stratification, albumin-
uria appeared as an independent predictor of these changes in
subjects with kidney dysfunction, but not in thosewithout. Simi-
lar associations were observed in individuals without diabetes as
well as in individuals with normal range UAER (<20 μg/min) (Sup-
plementary Table S2).

After exclusion of non-dippers at baseline (n = 395), 221 indivi-
duals progressed to non-dipper at re-examination. Albuminuria

Fig. 1. Flowchart of the participants. Flow chart depicting the selection of individuals for the current investigation including causes for exclusion of participants. ULSAM,

Uppsala Longitudinal Study of Adult Men; UAER, urinary albumin excretion rate; ABPM, ambulatory blood pressure monitoring.
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was associatedwith this non-dipper progression (Table 4). Again,
multiplicative interactions were observed between albuminuria
and the presence of kidney dysfunction in the prediction of this
progression (P = 0.03). After stratification, albuminuria was an in-
dependent predictor of non-dipper progression in subjects with
kidney dysfunction, but not in those without. Similar associa-
tions were observed in individuals without diabetes, as well as
in individuals with normal range albuminuria (Supplementary
Table S3).

Discussion
The main finding of our study is the longitudinal association be-
tween UAER, circadian BP rhythm changes and progression to
non-dipper BP pattern in elderly men. In addition, the presence
of concurrently impaired renal function exacerbated these
associations.

Our data confirmprevious ‘cross-sectional’ surveys showing a
positive association between albuminuria and circadian pattern

Table 1. Baseline characteristics of study participants according to quartiles of UAER (n = 1051)

Parameters

Quartiles of UAER (range, μg/min)

P for trendQuartile 1 (0.5–3.3) Quartile 2 (>3.3–5.3) Quartile 3 (>5.3–11.7) Quartile 4 (>11.7–1346)

n 264 261 262 264
eGFR (mL/min/1.73 m2) 61.4 (53.4–70.1) 62.7 (54.9–70.9) 61.4 (53.8–70.1) 60.7 (50.5–70.1) 0.32
BMI (kg/m2) 25.5 ± 3.2 25.9 ± 3.2 26.6 ± 3.3 27.0 ± 3.8 <0.001
Smokers, n (%) 35 (13) 52 (20) 55 (22) 62 (25) 0.002
Physical activity, n (%)
Sedentary 5 (2) 5 (2) 13 (5) 10 (4) 0.04
Moderate 80 (32) 90 (36) 82 (33) 94 (37)
Regular 149 (59) 144 (57) 144 (58) 135 (54)
Athletic 18 (7) 14 (6) 11 (4) 13 (5)

CVD, n (%) 68 (25) 83 (31) 81 (30) 97 (36) 0.02
Hyperlipidaemia, n (%) 96 (36) 80 (30) 91 (34) 111 (41) 0.14
Diabetes, n (%) 22 (8) 27 (10) 41 (15) 71 (26) <0.001
Dietary sodium intake (mg/day) 2486 ± 358 2484 ± 371 2576 ± 356 2526 ± 382 0.05
Circadian BP assessment
Daytime SBP (mmHg) 134 ± 15 136 ± 14 140 ± 16 145 ± 17 <0.001
Night-time SBP (mmHg) 115 ± 17 118 ± 17 122 ± 19 128 ± 21 <0.001
Nocturnal BP change 13.6 ± 8.5 12.9 ± 8.9 12.7 ± 8.7 11.8 ± 8.9 0.04
Non-dipper BP pattern, n (%) 69 (26) 86 (33) 94 (35) 103 (38) 0.002
Hypertension, n (%) 162 (61) 174 (67) 206 (79) 236 (89) <0.001

Antihypertensive medication
Number of drugs, n (%)

1 drug 41 (16) 48 (18) 53 (20) 70 (27) <0.001
2 drugs 21 (8) 21 (8) 32 (12) 45 (17)
≥3 drugs 5 (2) 8 (3) 5 (2) 10 (4)

ACEI use, n (%) 4 (2) 11 (4) 22 (8) 25 (10) <0.001
CCB use, n (%) 22 (8) 24 (9) 31 (12) 54 (21) <0.001
β-Blocker use, n (%) 49 (19) 43 (16) 44 (17) 69 (26) 0.03
α-Blocker use, n (%) 5 (2) 1 (0.4) 3 (1) 5 (2) 0.81
Diuretics use, n (%) 29 (11) 29 (11) 37 (14) 43 (16) 0.04

Data are expressed as mean ± SD, median (interquartile range) or number (percentage), as appropriate. Nocturnal BP change = (SBPday − SBPnight)/SBPday × 100% and

non-dipper BP pattern defined as nocturnal BP change <10%. UAER, urinary albumin excretion rate; BMI, body mass index ; eGFR, estimated glomerular filtration rate;

ABPM, ambulatory blood pressure monitoring; SBP, systolic blood pressure; ACEI, angiotensin-converting enzyme inhibitors; CCB, calcium channel blockers.

Table 2. Cross-sectional associations between UAER and circadian BP in the whole cohort and after stratification by the presence of kidney
dysfunction (n = 1051)

Log2 UAER (μg/min)

β Coefficient (95% CI)

Total (n = 1051) eGFR < 60 mL/min/1.73 m2 (n = 465) eGFR ≥ 60 mL/min/1.73 m2 (n = 586) P for interaction

Night-time SBP (mmHg) 2.51*** (1.79, 3.23) 2.94*** (1.86, 4.03) 2.13*** (1.14, 3.11) 0.62
Daytime SBP (mmHg) 2.04*** (1.42, 2.65) 2.08*** (1.22, 2.93) 2.04*** (1.13, 2.94) 0.74
Nocturnal BP change −0.51** (−0.86, −0.16) −0.79** (−1.31, −0.27) −0.24 (−0.73, 0.24) 0.36

Nocturnal BP change = (SBPday− SBPnight)/SBPday × 100%. Adjustedmodels included BMI, smoking status, physical activity, CVD, diabetes, hyperlipidaemia, eGFR, number

of antihypertensive drugs and energy-adjusted sodium intake. UAER, urinary albumin excretion rate; eGFR, estimated glomerular filtration rate; SBP, systolic blood

pressure; CI, confidence interval.

**P < 0.01, ***P < 0.001.
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of BP both in the community- and disease-specific populations
[16–18]. Furthermore, we now expand this evidence by demon-
strating, we believe for the first time, coherent ‘longitudinal’
associations and increased albuminuria-associated risk of non-
dipper progression. Of interest, these associations were also evi-
dent at UAER levels within the normal range, adding to previous
studies suggesting harm for albuminuria below currently pro-
posed thresholds [28, 29]. In addition, renal dysfunction directly
correlated with a non-dipper phenotype in our study, much like
a previous publication showing that non-dipping status was as-
sociated with both the presence of chronic kidney disease
(CKD) and proteinuria [17]. Non-dipper pattern among diabetics
was also suggested to be a risk factor for the progression tomani-
fest albuminuria and latent nephropathy [30]. These two above-
mentioned studies explored the potential interaction between
albuminuria and kidney function on non-dipper pattern as sec-
ondary outcome, however, offering mixed results [17, 30]. In our
sample, we had a large proportion (nearly 50%) of individuals
with CKD, as expected perhaps from the age range of the popula-
tion sampled. In this setting, we report a consistent effect
modification by underlying kidney disease in the longitudinal as-
sociation between UAER, circadian BP changes and progression
to non-dipper. Adding to the traditional view that albuminuria
and GFR reduction may be the result of hypertension and non-
dipper BP pattern and therefore signal an unfavourable prognosis
[31], our study allows us to speculate on the alternative sequen-
tial pathway that could also be encountered in clinical practice.
Although observational, our longitudinal design provides

additional support to the hypothesis that these associations
may be causal in nature. Nevertheless, interventional studies
are warranted to evaluate the clinical relevance of our findings.

Various mechanisms may contribute to explaining the pos-
sible role of albuminuria and renal function in maintaining nor-
mal circadian BP. Albuminuria is regarded as a surrogate marker
of not only glomerular but also systemic vascular damage, such
as vascular endothelial dysfunction and abnormal vascular per-
meability [32]. Furthermore, reduction in the number of ne-
phrons (via glomerular hyperfiltration in the residual nephrons)
followed by elevated intra-glomerular pressure, glomerular in-
jury and the concomitant incomplete absorption by proximal
tubular cells may also provide a link between higher albumin ex-
cretion and the circadian BP pattern [33]. Salt handling by the kid-
ney has long been recognized as a critical determinant of BP and
abnormal circadian BP, while in kidney hypertension, inappro-
priate sodium transport is frequently observed [19]. Because
glomerular filtration capability is one of the major factors deter-
mining sodium sensitivity, as GFR is reduced, night/day BP ratios,
natriuresis and proteinuria will increase [4]. In addition, the cir-
cadian BP rhythm can be affected by sodium intake in patients
with hypertension: in salt-sensitive patients with hypertension,
a non-dipper nocturnal BP pattern transformed into a dipper pat-
tern after sodium restriction [34]. Unfortunately, our cohort does
not have data on urinary sodium excretion, but energy-adjusted
sodium intake was correlated, as one would expect, with non-
dipper pattern in cross-section. Altogether, we speculate that a
decline in renal function could exaggerate the aforementioned
mechanisms with regard to albumin excretion and that this
may explain the interaction observed in our analysis.

Strengths of this study include the relatively large, commu-
nity-based sample, the prospective data collection and its longi-
tudinal designwithABPMvisits 6 years apart. Another strength is
that urinary albumin excretion was assessed from timed urine
samples collected overnight rather than from a spot sample. Fi-
nally, we had a careful and rich consideration of confounders,
and we confirmed our findings in normal-range albuminuria
and in non-diabetics. The rationale for the latter is that diabetic
nephropathy usually progresses with albuminuria, reduced
eGFR and hypertension, potentially influencing our findings.
We acknowledge, however, several limitations. The first one is
that, although the inclusion of elderly men with identical age,
ethnicity and geographical distribution reduced important con-
founding, these results may not necessarily be extrapolated to
women or other age categories. A considerable number of indivi-
duals did not participate in the re-examination, whichmay intro-
duce selection bias. Reasons for not attending re-examination
were death in approximately a third of the cases of this elderly

Table 3. Longitudinal associations between UAER and circadian BP variation 6 years apart, in the whole cohort and after stratification by the
presence of kidney dysfunction (n = 574)

Log2 UAER (μg/min)

β Coefficient (95% CI)

Total (n = 574)
eGFR < 60 mL/min/1.73 m2

(n = 245)
eGFR≥ 60 mL/min/1.73 m2

(n = 329) P for interaction

Delta night-time SBP (mmHg) 1.02** (0.23, 1.82) 2.51*** (1.19, 3.84) −0.25 (−1.22, 0.73) 0.002
Delta daytime SBP (mmHg) 0.48 (−0.22, 1.19) 1.22* (0.08, 2.36) −0.09 (−0.98, 0.80) 0.05
Delta nocturnal BP change −0.37* (−0.76, 0.00) −0.99** (−1.62, −0.36) 0.13 (−0.37, 0.64) 0.03

Nocturnal BP change = (SBPday − SBPnight)/SBPday × 100%. Adjusted models included BP measured at baseline (night-time SBP, daytime SBP and nocturnal BP change,

respectively), BMI, smoking status, physical activity, CVD, diabetes, hyperlipidaemia, eGFR, number of antihypertensive drugs and energy-adjusted sodium intake.

UAER, urinary albumin excretion rate; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; CI, confidence interval.

*P < 0.05, **P < 0.01, ***P < 0.001.

Table 4. Logistic regression models for progression to non-dipper at
re-examination among non-dipper-free individuals (n = 395)

Log2 UAER (μg/min)
Events/
total

Model A Model B
OR (95% CI) OR (95% CI)

Total 221/395 1.16 (1.00, 1.35) 1.16 (1.01, 1.35)
eGFR < 60 mL/min/
1.73 m2

89/159 1.43 (1.10, 1.87) 1.43 (1.10, 1.87)

eGFR ≥ 60 mL/min/
1.73 m2

132/236 0.98 (0.80, 1.20) 0.98 (0.80, 1.21)

P for interaction 0.03 0.03

Non-dipper BP pattern incidence defined as nocturnal BP change

[(SBPday − SBPnight)/SBPday × 100%] < 10% at re-examination. Model A included

BMI, smoking status, physical activity, CVD, diabetes, hyperlipidaemia, eGFR

and number of antihypertensive drugs. Model B included BMI, smoking status,

physical activity, CVD, diabetes, hyperlipidaemia, eGFR, number of anti-

hypertensive drugs and energy-adjusted sodium intake. UAER, urinary albumin

excretion rate; eGFR, estimated glomerular filtration rate; SBP, systolic blood

pressure; OR, odds ratio.
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population. The remaining individuals, at the age of 77, refused
to undergo the thorough questionnaires and clinical assessment
of this study. UAER was measured only once while current
recommendations suggest two consecutive measurements to
diagnose micro-/macro-albuminuria [25]. Regardless, potential
misclassifications would result in an underestimation of the
true risk reported here. Finally, residual confounding by un-
known or unmeasured factors, a problem nevertheless inherent
to observational studies.

Conclusions
Urinary albumin excretionwas associatedwith negative changes
of circadian BP rhythm and with progression to a non-dipper BP
pattern in community-dwelling older men. The presence of con-
currently impaired renal function amplified these associations.

Supplementary data
Supplementary data is available online at http://ndt.oxford
journals.org.
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