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Abstract

Zika virus (ZIKV) causes congenital Zika syndrome (CZS), which is characterized by fetal

demise, microcephaly and other abnormalities. ZIKV in the pregnant woman circulation

must cross the placental barrier that includes fetal endothelial cells and trophoblasts, in

order to reach the fetus. CZS occurs in ~1–40% of cases of pregnant women infected by

ZIKV, suggesting that mothers’ infection by ZIKV during pregnancy is not deterministic for

CZS phenotype in the fetus. Therefore, other susceptibility factors might be involved, includ-

ing the host genetic background. We have previously shown that in three pairs of dizygotic

twins discordant for CZS, neural progenitor cells (NPCs) from the CZS-affected twins pre-

sented differential in vitro ZIKV susceptibility compared with NPCs from the non-affected.

Here, we analyzed human-induced-pluripotent-stem-cell-derived (hiPSC-derived) tropho-

blasts from these twins and compared by RNA-Seq the trophoblasts from CZS-affected and

non-affected twins. Following in vitro exposure to a Brazilian ZIKV strain (ZIKVBR), tropho-

blasts from CZS-affected twins were significantly more susceptible to ZIKVBR infection

when compared with trophoblasts from the non-affected. Transcriptome profiling revealed

no differences in gene expression levels of ZIKV candidate attachment factors, IFN recep-

tors and IFN in the trophoblasts, either before or after ZIKVBR infection. Most importantly,

ZIKVBR infection caused, only in the trophoblasts from CZS-affected twins, the downregula-

tion of genes related to extracellular matrix organization and to leukocyte activation, which

are important for trophoblast adhesion and immune response activation. In addition, only

trophoblasts from non-affected twins secreted significantly increased amounts of chemo-

kines RANTES/CCL5 and IP10 after infection with ZIKVBR. Overall, our results showed that

trophoblasts from non-affected twins have the ability to more efficiently activate genes that

are known to play important roles in cell adhesion and in triggering the immune response to
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ZIKV infection in the placenta, and this may contribute to predict protection from ZIKV dis-

semination into fetuses’ tissues.

Author summary

The Zika virus (ZIKV) infection in adults is usually characterized by mild flu-like symp-

toms, with most cases remaining asymptomatic. However, in the last years, widespread

ZIKV infection was shown for the first time to be associated with congenital Zika syn-

drome (CZS) and death of neonates. It is estimated that CZS occurs in ~1–40% of cases of

pregnant women infected by ZIKV, which suggests that different susceptibility factors

might be involved, including the host genetic background. Here, by analyzing trophoblast

cells that recapitulate the placenta from three pairs of dizygotic twins discordant for CZS,

we were able to show that trophoblasts from CZS-affected twins were significantly more

susceptible to ZIKV infection when compared with trophoblasts from the non-affected

twins. We also provide a detailed picture of genes differentially expressed by trophoblasts

from the discordant twins after infection with ZIKV. These genes can be further investi-

gated as possible therapeutic targets to avoid viral dissemination into developing fetus’ tis-

sues. Our results suggest that CZS might be caused, among other factors, by a decreased

ability of the placenta to respond to ZIKV infection in CZS-affected neonates, concomi-

tant with a previously known deregulation of neural development genes in ZIKV-infected

neuroprogenitor cells of these CZS-affected babies.

Introduction

Zika virus (ZIKV) is a flavivirus with sporadic outbreaks reported in several countries, causing

an infection usually characterized by mild symptoms, where up to 80% of cases remain asymp-

tomatic [1–3]. However, most likely due to the mutation acquired during the large outbreak

recorded in French Polynesia in 2013–2014 [4–6], for the first time, widespread ZIKV infec-

tion was shown to be associated with congenital Zika syndrome (CZS) and death of neonates

[3,7–13].

CZS is characterized by variable clinical presentations, including fetal demise, microcephaly

and other abnormalities (hearing and ocular loss, mental retardation, epilepsy, muscle weak-

ness, learning disabilities and behavioral abnormalities) [14–16]. It is well established now that

ZIKV shows tropism for a wide range of host tissues [17–19], especially neuronal cell types,

including neural progenitor cells, mature neurons and astrocytes (reviewed by Christian et al.

[20]), and replicates in ex vivo slices from adult human cortical tissues [21]. Also, Zika virus

infection reprograms global transcription in the host cells [22]. ZIKV in the maternal circula-

tion needs to cross the placental barrier that includes fetal endothelial cells and trophoblasts in

order to reach the fetus [23,24]. Several placenta related cells have been shown to be infected

by ZIKV, including placental macrophages and trophoblasts [25–29].

It has been estimated that CZS occurs in ~1–40% of cases of pregnant women infected by

ZIKV [3,13,30,31]. This suggests that mothers’ infection by ZIKV during pregnancy is not the

only factor determining CZS phenotype in the fetus, and other susceptibility factors might be

involved. Indeed, neural progenitor cells (NPCs) from different individuals have been shown

to respond differently to ZIKV infection [32,33]. It has recently been shown that infant out-

comes can be discordant between twins with prenatal ZIKV exposure, suggesting that each
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twin should be evaluated independently for vertical transmission [34]. In this scenario, discor-

dant twins represent a good case–control sample to test for the genetic contribution determin-

ing the fetuses’ discordant outcome of gestational infection with ZIKV, as they are supposed to

have been exposed to ZIKV under similar conditions in the uterus during gestation.

We have previously shown that twins discordant for CZS outcome show differential neural

progenitor cells (NPCs) in vitro viral susceptibility to a Brazilian ZIKV strain (ZIKVBR) [32],

but it remains to be determined if discordant CZS twins also show differential placental sus-

ceptibility to viral infection. Here, we compared the susceptibility and molecular signatures

associated with in vitro ZIKVBR infection of trophoblasts from the same CZS-affected and

non-affected twins, using a well-established trophoblasts model that recapitulates the primitive

placenta formed during implantation [35,36]. We show here that hiPSC-derived trophoblasts

from CZS-affected twins were significantly more susceptible to in vitro ZIKVBR infection

when compared with trophoblasts from non-affected twins. In this context, we had previously

shown that, before infection, ESC-derived trophoblasts express a wide range of attachment fac-

tors for ZIKV entry and lack the components of a robust antiviral response system [36]; in

contrast, cells from term placentas, which resist infection, do not express genes encoding

attachment factors implicated in ZIKV entry and do express many genes associated with anti-

viral defense [36]. However, no ZIKV infection assays were performed with these ESC-derived

trophoblasts [36]. Here, transcriptome profiling of hiPSC-derived trophoblasts revealed that

ZIKVBR infection elicited different responses in hiPSC-derived trophoblasts from CZS-

affected and non-affected twins, highlighting that genes involved with extracellular matrix

organization as well as with immune response activation in the placental tissue may contribute

to modulate ZIKV infection outcome.

Materials and methods

Human subjects

Three pairs of DZ-D (dizygotic, dichorionic and diamniotic) twins discordant for the presence

of microcephaly (#10608–1 and #10608–4; #10763–1 and #10763–4; #10788–1 and #10788–4)

whose peripheral blood mononuclear cells had been previously collected and isolated [32]

were examined in this study. PBMCs were collected in the subjects between 4 months of age

and 1 year and 6 months of age. Zygosity had been previously confirmed by whole-exome

sequencing (WES) and by microsatellite analysis [32]. All babies were born from mothers neg-

ative for previous STORCH infections and in each affected baby (#10608–1, #10763–1 and

#10788–1) the head circumference was three standard deviations (SD) below the mean for the

given age, sex, and gestation stage at birth [32,37]. Diagnosis of microcephaly due to ZIKV

infection (CZS) in all the three affected subjects was confirmed by neuroimaging, serology and

by the mother reporting ZIKV infection symptoms during pregnancy (S1 Table and Caires-

Junior et al. [32]). The protocol used in this study was approved by the Human Research Ethics

Committee from Biosciences Institute, University of São Paulo (protocol # 184/2016). All

mothers gave written informed consent in accordance with the Declaration of Helsinki.

Cell lines and maintenance of hiPSCs

hiPSCs were generated according to Caires-Junior et al. [32]. Briefly, CD71+ cells were isolated

from the three pairs of DZ-D twins’ peripheral blood samples (#10608–1 and #10608–4;

#10763–1 and #10763–4; #10788–1 and #10788–4). CD71-positive cells were sorted using

magnetic labeled antibody (Miltenyi) following the manufacturer’s instructions. All hiPSC

lines were tested for ZIKV infection by RT-qPCR using primers described in S2 Table and the

results were negative. The reprogramming protocol was performed with episomal vectors
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system (Addgene plasmids 27077, 27078 and 27080), and using the Amaxa human CD34

+ cells Nucleofection Kit (Lonza), following the manufacturer’s recommendations. Three days

after nucleoporation, cells were seeded on irradiated murine embryonic fibroblasts (Millipore,

A24903) in embryonic stem cell (ESC) medium (Dulbecco’s modified Eagle’s medium

(DMEM)/F12 supplemented with 2 mM GlutaMAX-I, 0.1 mM non-essential amino acids,

100 μM 2-mercaptoethanol, 20% knockout serum replacement (all provided by Life Technolo-

gies), 10 ng/mL bFGF (Peprotech), 0.25 mM NaB, 0.5 mM VPA, 2 μM thiazovivin, 0.5 μM PD

0325901 and 2 μM SB 431542; all provided by Tocris Bioscience). The typical hiPSC colonies

were transferred to hESC-qualified Matrigel (Corning)-coated 60 mm petri dishes (Corning)

and cultured in Essential 8 Medium (Gibco) with 100 μg/mL normocin (InvivoGen). hiPSC

differentiation was confirmed by immunofluorescence staining of pluripotency markers TRA-

1-60 and OCT4 and by demonstrated expression of the pluripotency transcription factors

NANOG and OCT4 [32]. All derived cell lines were checked for mycoplasma contamination

periodically.

Differentiation of human iPSCs into trophoblasts

Differentiation of human iPSCs into trophoblasts was performed according to Amita et al.

[35]. Briefly, hiPSCs were seeded at 15,000 cells/cm2 on Matrigel (Corning) coated plates and

cultured in mTESR1 medium (Stem Cell Technologies) for 3 days with daily medium changes.

Next, basal medium was changed to hES medium supplemented with 4 ng/mL FGF-2 for 24 h.

For the next 9 days, hES-BAP medium was used, which consisted of hES medium supple-

mented with BMP4 (10 ng/mL), A83-01 (1 μM) and PD173074 (0.1 μM), with daily medium

changes. hES medium was composed of DMEM/F-12 supplemented with 20% KO-serum

replacement, 1% NEAA, 1% glutamine, 0.1 mM 2-mercaptoethanol, all from Gibco. Tropho-

blast differentiation was confirmed by immunofluorescence staining of chorionic gonadotro-

pin subunit beta 3 (CGB/β-CG/ hCGB3) and keratin 7 (CK7/KRT7).

In situ immunofluorescence

hiPSCs and trophoblast cultures were fixed with 4% PFA followed by permeabilization with

0.01% Triton X-100 and then blocked with 5% bovine serum albumin (BSA) for 1 h. The cells

were incubated overnight with primary antibodies at 4˚C (Anti-hCG beta/β-CG/hCGB3,

Abcam #ab53087 and Anti-Cytokeratin 7/CK7/KRT7, Abcam #ab9021), washed with PBS and

subsequently incubated with secondary fluorescent antibodies for 1 h at room temperature.

Finally, cells were stained with DAPI (4’,6-diamidino-2-phenylindole) and or Phalloidin for 2

min at room temperature. Confocal analysis was performed using Zeiss LSM 800.

Zika virus

ZIKVBR was a courtesy of Dr. Pedro Vasconcelos [38], Instituto Evandro Chagas, Brazil. Viral

stock was established after viral propagation for two serial passages in VERO cells (ATCC

CCL-81) in serum-free medium (VP SFM, Thermo scientific).

Infection of the hiPSC-derived trophoblasts

hiPSC-derived day-9 trophoblasts were seeded into 6-well or 24-well plates (Corning) and

2-well chamber slides (Nunc; Thermo Fisher Scientific) to a confluence of 3 × 104 cells/cm2.

The differentiation protocol was initiated with the same cellular density for all groups. To ver-

ify the exact initial cellular density at the moment of infection, we quantified DAPI-positive

trophoblast cells by IF and we observed that there was no difference between all tested groups

PLOS NEGLECTED TROPICAL DISEASES Molecular signatures from ZIKV-infected discordant twins’ trophoblasts

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008424 August 3, 2020 4 / 24

https://doi.org/10.1371/journal.pntd.0008424


at the moment of infection. Trophoblasts (monolayer) were exposed to ZIKVBR (MOI: 0.3, 3

and Mock). Monolayer cells were exposed to the virus for 1 h at 37˚C and 5% CO2 (g), washed

with hES-BAP medium, and then maintained by up to 96 h (end point).

Measurement of viral burden

For ZIKV titration, plaque assays for each twin sample were performed with the supernatants

collected after 96 h of ZIKVBR infection from three different trophoblast cell cultures, obtained

from three different differentiations of the same hiPSC into trophoblasts. For the plaque assay,

an amount of 6 × 104 VERO cells/well were seeded in 24-well plates 48 h before the assay. Each

supernatant sample was serially diluted in DMEM culture medium from 10−1 to 10−6, applied

to the VERO cells in two technical duplicates of 100 μL each, and incubated for 30 min at

37˚C. After virus adsorption, wells were overlaid with culture medium containing carboxy-

methyl cellulose (1%) and incubated at 37˚C. After 5 days, plates were drained, washed with

PBS, and stained with 0.1% naphthol blue-black, 1.6% sodium acetate in 6% glacial acetic acid

for 30 min. Plaque formation units were visually determined in the most appropriate viral dilu-

tion and expressed as PFU/mL.

RNA-Seq assay

Total RNA from hiPSC-derived trophoblast controls (mock) and trophoblasts infected for 96

h with ZIKVBR was extracted using the RNeasy Micro Kit(Qiagen, 74004), treated with

TURBO DNase (Ambion, AM2238) for 30 min at 37˚C, and then re-purified with the Qiagen

RNeasy Micro Kit. RNA samples were quantified using the Qubit RNA HS Assay Kit (Thermo

Fisher Scientific, Q32852); purity was evaluated using NanoDrop ND-1000 Spectrophotome-

ter (NanoDrop Technologies) and the integrity was verified using the Agilent RNA 6000 Pico

Kit (Agilent Technologies, 5067–1513) in the 2100 Bioanalyzer Instrument (Agilent Technolo-

gies). Stranded tagged cDNA libraries were prepared using the KAPA Stranded mRNA-Seq

Kit (Illumina, KK8421) and cluster generation was performed using the Illumina HiSeq 4000

PE Cluster Kit (Illumina, PE-410-1001). Tagged libraries were pooled and sequenced (300

cycles, paired-end sequencing) in the Illumina HiSeq 4000 instrument using a HiSeq 4000 SBS

Kit (Illumina, FC-410- 1003). Raw reads were preprocessed using the standard Illumina pipe-

line to segregate multiplexed reads.

RNA-seq data processing and analysis

Paired-end adapters and low quality reads were removed by fastp version 0.20.0 [39] using the

quality-filtering parameters -l 20–5 3–3 3. Filtered paired-end reads were mapped and quanti-

fied at gene level by the STAR-RSEM pipeline [40,41], using an index made from GRCh38.p12

GencodeV.28 [42]. All differential expression (DE) analyses used the bioconductor package

edgeR [43]. To call differentially expressed genes a general linear models (glm) was fitted, and

likelihood ratio tests (lrt) were performed using twins’ covariates as blocking groups in all

cases. P-values were adjusted using FDR, all genes with FDR lower than 0.05 were considered

differentially expressed genes. To identify up-regulated or down-regulated genes, the logCPM

data from edgeR were used. Heatmaps were plotted using the R package pheatmap. Enriched

gene ontology analysis was perform using the bioconductor package clusterProfiler [44], based

on the annotation of the bioconductor package org.Hs.eg.db. All plots were generated with the

R packages gg plot2, cowplot and the bioconductor package DOSE.
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Reverse transcription—Quantitative PCR (RT-qPCR)

Total RNA from hiPSCs and hiPSC-derived trophoblasts was extracted as described above.

The reverse transcription (RT) reaction was performed with 150 ng of each total RNA sample

using the SuperScript IV First-Strand Synthesis System (Life Technologies, cat. #18091050)

and random hexamer primers in a 20 μL final volume. The obtained cDNAs were diluted 10

times in water and quantitative PCR was performed using 2.5 μL of each diluted cDNA in a

total volume of 10 μL containing 1× LightCycler 480 SYBR Green I Master Mix (Roche Diag-

nostics, cat. #04707516001) and 800 nM of each primer in a LightCycler 480 System (Roche

Diagnostics). RT-qPCR was run in two biological replicates with three technical replicates

each and primers are shown in S2 Table. The GAPDH gene (NM_002046) was used as the ref-

erence for internal normalization.

Cytokine and chemokine protein quantification

Supernatants from trophoblasts’ cell cultures were collected after 48 h or 96 h of infection with

ZIKVBR and then evaluated for 33 cytokines/chemokines for the following analytes: IFNalfa2,

IFNbeta, IFNg, IFN-lambda1/ IL-29, IFN-lambda 2/ IL28a, IL6, IL10, IL12p40, IL12p70, IL13,

IL15, IL17A, IL1RA, IL1a, IL1b, IL2, IL3, IL4, IL5, IL7, IL8, IP10, MCP1, MIP1a, MIP1b,

RANTES, TNFa, TNFb, VEGF, EGF, EOTAXIN, GCSF and GMCSF. The Human Cytokine/

Chemokine Magnetic Bead Panel kit (Millipore) was used according to the manufacturer’s rec-

ommendations. Samples were analyzed in the MagPix instrument (Luminex) and the data was

analyzed with the Milliplex Analyst software (Millipore). Each sample was run in technical

duplicates.

Quantification and statistical analysis

Two-tailed unpaired t test was used for pairwise comparisons. Graphpad Prism software was

used to perform statistical analysis (version 7.0). Quantification of data are represented as

mean ± SEM and p-value threshold was � <0.05, �� <0.01, ��� <0.001 and ���� <0.0001.

Results

Infection with ZIKVBR of hiPSC-derived trophoblasts from discordant

twins

We obtained blood from three pairs of dizygotic twins discordant for CZS (non-affected:

#10608–4, #10763–4, and #10788–4; CZS-affected: #10608–1, #10763–1, and #10788–1) for

generation of hiPSC-derived trophoblasts and for phenotypic and gene expression analysis

after in vitro infection with ZIKVBR (Fig 1A). Erythroblasts from the three pairs of DZ twins

were reprogrammed towards hiPSCs. All hiPSC lines were previously shown by immunofluo-

rescence staining to express markers of pluripotency (TRA-1-60 and OCT4) and by RT-qPCR

to express endogenous pluripotent transcription factors including NANOG and OCT4 [32].

Then, the hiPSCs originated from the three pairs of twins were differentiated into primitive

trophoblasts using an established protocol [35,36] and further characterized to confirm their

differentiation in vitro. Under these conditions, we found that all hiPSC-derived trophoblast

lines robustly expressed CGB, chorionic gonadotropin subunit beta 3 (β-CG/ hCGB3) and ker-

atin 7 (CK7/KRT7) (Fig 1B), two of the most commonly used trophoblast markers [45]. We

quantified the CGB positive and KRT7 positive cells in each hiPSC-derived trophoblast and

observed no statistically significant differences between the trophoblasts from non-affected

and affected individuals (S1 Fig), indicating no differences in their ability to differentiate to
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trophoblasts. Undifferentiated hiPSCs from each of the six twins lacked CGB and KRT7 stain-

ing (S2 Fig).

Fig 1. Experimental design and ZIKVBR infection in hiPSC-derived trophoblasts. (A). Schematic: generation of

trophoblasts from congenital Zika syndrome affected and non-affected discordant twins’ hiPSCs followed by ZIKVBR

infection and analysis. Silhouettes are courtesy of www.vecteezy.com (mother) and Yulia Ryabokon (babies). (B).

Immunofluorescence for CGB (β-CG, human chorionic gonadotropin β) and KRT7 (CK7, cytokeratin 7, a pan

trophoblast marker) in hiPSC-derived trophoblasts. Scale bar: 20 μm. (C). ZIKV PFU/mL in trophoblasts’ supernatant at

MOI = 0.3 and MOI = 3; mean ± SEM of the three twins; �p< 0.05; Student’s t test. (D). Representative plaque forming

assay wells with stained VERO cells exposed to ZIKV collected at 96 hpi from the culture supernatants of affected or non-

affected #10608 twins’ hiPSC-derived trophoblasts infected at a MOI of 0.3.

https://doi.org/10.1371/journal.pntd.0008424.g001
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Subsequently, we infected hiPSC-derived trophoblasts with ZIKVBR using multiplicity of

infection (MOI) of 0.3 and 3, and at 96 hpi (hours post-infection) we investigated the viral titer

by measuring the number of plaque-forming units (PFU) in cell culture supernatants (Fig 1C).

Virus titers were significantly higher (2.8-fold) in the supernatant of CZS-affected twins’ tro-

phoblasts infected with MOI 0.3 (Fig 1C and 1D), indicating that trophoblasts from CZS-

affected twins were significantly more susceptible to ZIKV infection or at least more virus pro-

ductive when compared with trophoblasts from non-affected twins. Infection with the higher

MOI (MOI = 3) obliterated this difference due to the high susceptibility of trophoblasts in gen-

eral to the Zika infection. In order to have a better resolution of the differences between cells

derived from CZS-affected and non-affected twins, subsequent studies were performed with

MOI of 0.3.

Potential flavivirus attachment factors and IFN receptor genes were not

differentially expressed between trophoblasts from discordant twins

To evaluate the possible differences in molecular signatures associated with ZIKVBR infection

in trophoblasts from CZS-affected and non-affected twins, we performed RNA-Seq analysis in

hiPSC-derived trophoblasts before and after in vitro infection with ZIKVBR for 96 h

(MOI = 0.3). With this approach, we could analyze possible differences in gene expression of

potential attachment factors for ZIKV and of genes related to antiviral response.

We first confirmed the efficiency of hiPSC differentiation into trophoblasts by looking at

the expression levels of a set of over 100 genes which have been associated with the trophoblast

lineage of mammals [36,45]. When compared with hiPSCs, most of these genes showed signifi-

cant upregulation in trophoblasts after differentiation (S3 Table). We validated by RT-qPCR

the differential expression of NANOG, a hiPSC marker, and of HCGA, HCGB and KRT7, three

of the genes upregulated in the trophoblasts upon differentiation, as compared with the hiPSCs

(S3 Fig). Consistent with this and with previous experiments that used the same differentiation

protocol [36], proliferation-related genes were downregulated in the trophoblasts relative to

the hiPSCs (S4 Fig). In addition, four genes encoding transcription factors–CDX2, ELF5,

EOMES and ASCL1, which are generally regarded as markers of trophoblast stem cells [46]–

were found to be barely expressed (TPM< 1) in all six hiPSC-derived trophoblast samples

from the twins analyzed here. This suggests that all trophoblasts from all the twins differenti-

ated beyond the trophoblast stem-cell stage.

We then looked for differences in the expression levels of potential flavivirus attachment

factor genes, of IFN genes and of IFN receptor genes between the trophoblasts from CZS-

affected and non-affected twins. These differences could be related to the greater susceptibility

to ZIKVBR infection of the trophoblasts from CZS-affected twins.

Many potential flavivirus attachment factors have been proposed as ZIKV candidate recep-

tors, including glycosaminoglycans (CD209/DC-SIGN and HSPG2) and TAM receptors

(TYRO3, AXL, MERTK) [47–49]. None of these receptor genes was found to be differentially

expressed between the trophoblasts from CZS-affected and non-affected twins (S5 Fig).

CD209/DC-SIGN gene was barely expressed in the hiPSC-derived trophoblasts either before or

after ZIKVBR infection (S5 Fig). HSPG2 gene had the highest expression levels in hiPSC-

derived trophoblasts among the genes encoding potential ZIKV candidate receptors, however

no differences in the expression levels of HSPG2 gene between trophoblasts from CZS-affected

and non-affected twins were found either before or after ZIKVBR infection (S5 Fig). Recently,

AXL has been reported as the receptor involved in ZIKV entry in many cell types, including

neural stem cells [50], human umbilical vein endothelial cells (HUVECs) [51], primary human

astrocytes [52] and Sertoli cells [53]. AXL gene expression showed a marked increase upon
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differentiation from hiPSC towards trophoblasts (> 5-fold on average), but infected and non-

infected hiPSC-derived trophoblasts from non-affected or CZS-affected twins show similar

expression levels of AXL gene (S5 Fig). TAM-family receptors bind phosphatidylserine indi-

rectly, through the soluble intermediates GAS6 (growth arrest-specific 6) and PROS1 [54].

Recently, it was shown that ZIKV infects HUVECs much more efficiently than other flavivi-

ruses because it binds GAS6 more avidly, which in turn facilitates its interaction with AXL

[51]. Infected and non-infected hiPSC-derived trophoblasts from non-affected or CZS-affected

twins show similar expression levels of GAS6 and PROS1 genes (S5 Fig). HAVCR1 (TIM1;

hepatitis C receptor) was shown to have an important role in the entry of ZIKV into primary

cell types from mid- and late-gestation placentas and explants from first-trimester chorionic

villi [26]. Interestingly, HAVCR1 gene was barely expressed in all the hiPSC-derived tropho-

blasts (S5 Fig). Expression levels of all the above receptor genes measured here in non-infected

hiPSC-derived trophoblasts from the three pairs of twins confirmed previous data from ESC-

derived non-infected trophoblasts [36].

Production of interferons has been reported as a key step in the antiviral immune response

to ZIKV [25,55,56]. In agreement with Sheridan et al. [36], primitive trophoblasts expressed

lower levels of mRNAs from all the IFN genes (S6 Fig) when compared with ZIKV potential

attachment factors (S5 Fig). In fact, only IFNE and IFNL1 mRNAs were detected at low levels

in the hiPSCs-derived trophoblasts (TPM< 1), while all the other IFN mRNAs were not

detected. Upon in vitro infection with ZIKVBR, a marked induction of mRNA expression of

IFNB1, IFNL1, IFNL2 and IFNL3 genes but not of IFNE was observed (S6 Fig). Of note, IFN

genes were not differentially expressed between the trophoblasts from CZS-affected and non-

affected twins (S6 Fig). IFNA, IFNG, IFNK and IFNW1 genes were not detectable in any

hiPSC-derived trophoblast cells.

Interestingly, IFNGR1 and IFNGR2 (type II IFN receptor genes) were highly upregulated in

hiPSC-derived trophoblasts when compared with the hiPSCs that originated them (S7 Fig).

These two IFN receptor genes were not differentially expressed between trophoblasts from

CZS-affected and non-affected twins, and their expression was not changed upon ZIKVBR

infection (S7 Fig). Compared with the expression of type II IFNR genes, the expression levels

of the other interferon receptor genes, namely type I IFNR (IFNAR1 and IFNAR2) and the first

(IFNLR1) and second (IL10RB) subunits of type III IFNR gene (IFNL) were lower in both

hiPSCs and hiPSC-derived trophoblasts (S7 Fig), and again none of them had their expression

affected by ZIKVBR.

When the global gene expression changes between hiPSC-derived trophoblasts from CZS-

affected and non-affected twins were analyzed before ZIKVBR infection, only 4 differentially

expressed genes were found, being two of them upregulated (CDRT4/CMT1A duplicated
region transcript 4 and TMEM176A/Transmembrane protein 176A) and two downregulated

(TGFB2-OT1/TGFB2 overlapping transcript 1 and HIST2H4B/histone cluster 2 H4 family mem-
ber b) in the CZS-affected twins. This result shows that trophoblasts from CZS-non-affected

and CZS-affected twins possess similar global gene expression programs before ZIKVBR infec-

tion, which include similar expression levels, in both groups, of genes potentially involved in

ZIKV replication (candidate receptors, interferons, and interferon receptors).

Induction of interferon-stimulated genes (ISGs) expression and of IFN

secretion in hiPSC- derived trophoblasts upon ZIKVBR infection

It is known that interferons participate as mediators of the response to ZIKV infection in the

maternal-fetal interface [25,57,58] and that ESC-derived trophoblasts lack components of a

robust antiviral response system before infection with ZIKV [36]. However, it is not known if
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hiPSC-derived primitive trophoblasts are able to induce an antiviral response after infection

with ZIKV. To determine this, we analyzed our RNA-Seq data and looked for differentially

expressed genes (DEGs) in the hiPSC-derived primitive trophoblasts after in vitro infection

with ZIKVBR.

An important gene expression response was induced in both hiPSC-derived trophoblasts

from CZS-affected and non-affected twins following in vitro infection with ZIKVBR, and a set

of 471 DEGs were upregulated in hiPSC-derived trophoblasts after infection with ZIKVBR

(FDR< 0.05, Edge R exact test) (Fig 2A). These genes (S4 Table) include interferon-stimu-

lated genes (ISGs) and genes related to cytokine secretion. We found a significant

(FDR< 0.05, cumulative hypergeometric distribution) enrichment of different Gene Ontology

(GO) terms among these 471 upregulated DEGs detected in the RNA-Seq experiment, being

the top categories “response to type I interferon”, “defense response to virus” and “negative

regulation of viral process” (Fig 2B, S5 Table). Consistent with the GO analysis, Ingenuity

Pathway Analysis (IPA) also pointed to an enriched network of interferon-stimulated genes

upregulated in hiPSC-derived trophoblasts after ZIKV infection (upregulated ISGs are colored

in pink in Fig 3A).

We also quantified in the hiPSC-derived trophoblasts the secreted levels of type I (IFNA2),

type II (IFNG) and type III (IFNL1) IFNs produced by these cells in the absence of virus or

after infection with ZIKVBR and culture for 48 h (Fig 3B, upper panel) or 96 h (Fig 3B, lower

panel). After 48 h in culture without infection, hiPSC-derived trophoblasts from both CZS-

affected and non-affected twins were able to secrete IFNA2 and IFNG, whereas IFNL1 was not

detectable. There was no statistically significant increase in any IFN secretion at 48 h after

ZIKVBR infection of trophoblasts (Fig 3B, upper panel). After 96 h in culture, hiPSC-derived

trophoblasts from both CZS-affected and non-affected twins secreted higher levels of IFNA2,

IFNG and IFNL1 compared with those at 48 h, although high variability in the secreted IFN

levels was observed among the trophoblasts from different individuals (Fig 3B, lower panel).

More importantly, a statistically significant increase in the secretion of IFNL1 by trophoblasts

from non-affected twins was observed at 96 h after infection with ZIKVBR (p-value = 0.033),

whereas in trophoblasts from CZS-affected twins no statistically significant increase of IFNL1

was observed (p-value = 0.1632) (Fig 3B, lower panel).

Taken together, these results indicate that hiPSC-derived trophoblasts from both CZS-

affected and non-affected twins were able to respond to ZIKVBR infection by secreting IFNA2,

IFNG and IFNL1, which induced the upregulation of a set of ISG genes potentially involved in

the response to ZIKVBR infection. In addition, only trophoblasts from non-affected twins

showed a significant increase in secreted IFNL1 at 96 hpi with ZIKVBR (Fig 3B, lower panel).

Differential response of trophoblasts from CZS-affected and non-affected

twins to ZIKVBR infection–gene expression changes

We next investigated if there were differences in gene expression between trophoblasts from

CZS-affected and non-affected twins after ZIKVBR infection. In total, 44 genes were downre-

gulated after ZIKVBR infection in trophoblasts from CZS-affected when compared with non-

affected twins (FDR < 0.05, Edge R exact test) (Fig 4A and S6 Table). Different Gene Ontol-

ogy (GO) terms were found to be significantly (FDR< 0.05, cumulative hypergeometric distri-

bution) enriched among these 44 downregulated DEGs, including “extracellular matrix” and

“regulation of leukocyte activation” (Fig 4B, S7 Table). Significantly enriched Gene Ontology

(GO) terms that were found among the upregulated DEGs are shown in S8 Fig and S7 Table,

and the most significantly enriched categories are “amino acid biosynthetic process” and “acid

secretion”.
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Differential response of trophoblasts from CZS-affected and non-affected

twins to ZIKVBR infection–cytokines and chemokines secretion

The levels of a panel of cytokines and chemokines secreted by the hiPSC-derived trophoblasts

were quantified in the supernatants of 48 h or 96 h cell cultures in the absence of virus or after

infection with ZIKVBR. Interestingly, from all the analytes tested, the chemokines RANTES/

Fig 2. Gene expression analyses of RNA-Seq data from hiPSC-derived trophoblasts from non-affected and CZS-affected twins in culture after

ZIKVBR infection. (A). Heatmap representation and unsupervised clusterization of differentially expressed genes (DEGs) (FDR< 0.05; edgeR exact test),

one gene in each line, in trophoblasts in culture after ZIKVBR infection (purple bar at top) compared with control non-infected trophoblasts (blue bar at

top), in cells derived from non-affected twins (samples #10608–4, #10763–4, #10788–4) and CZS-affected twins (samples #10608–1, #10763–1, #10788–1)

(one sample in each column, as indicated at the bottom). Color scale bar at right = Z score. (B). Gene Ontology terms enrichment analysis of upregulated

genes in hiPSC-derived trophoblasts after ZIKVBR in vitro infection. The three major GO term categories, namely Biological Process, Cellular Component

and Molecular Function are separately represented in each panel. The size of the circles is proportional to the number of genes in each significantly

enriched category, as indicated at the lower part scales; the colors show the statistical significance of the enrichment, as indicated by the -log10 FDR values

that appear in the color-coded scales at the bottom. A GO enrichment significance cutoff of FDR� 0.05 was used.

https://doi.org/10.1371/journal.pntd.0008424.g002
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Fig 3. Interferon responses in hiPSC-derived trophoblast after ZIKVBR infection. (A). Pathway enrichment of

genes detected as differentially expressed (FDR< 0.05) between hiPSC-derived trophoblasts from non-affected and

CZS-affected twins at 96 h after ZIKVBR in vitro infection; analysis was carried out with the ingenuity pathway analysis

(IPA) tool. Gene upregulation is depicted in shades of pink, from white (not significantly changed), to dark pink

(highly upregulated). (B). Luminex quantitation of IFNA, IFNG and IFNL1 detected in the supernatants of hiPSC-

derived trophoblasts in culture, from non-affected or CZS-affected twins at 48 h or 96 h after ZIKVBR infection. Data

are represented as mean ± SEM and p-value � < 0.05 (Paired Student’s t test).

https://doi.org/10.1371/journal.pntd.0008424.g003
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Fig 4. Differential response of hiPSC-derived trophoblast from CZS-affected and non-affected twins to ZIKVBR infection–

gene expression and cytokines/chemokines secretion. (A). Heatmap representation and unsupervised clusterization of

differentially expressed genes (DEGs) (FDR< 0.05; edgeR exact test), one gene in each line, after ZIKVBR in vitro infection of

trophoblasts from non-affected twins (green bar at top; samples #10608–4, #10763–4, #10788–4) as compared with trophoblasts

from CZS-affected twins (pink bar at top; samples #10608–1, #10763–1, #10788–1) (one sample in each column, as indicated at

the bottom). Color scale bar at right = Z score. (B). Gene Ontology terms enrichment analysis of downregulated genes in hiPSC-

derived trophoblasts from CZS-affected twins when compared with trophoblasts from non-affected twins after ZIKVBR in vitro
infection. The three major GO term categories, namely Biological Process, Cellular Component and Molecular Function are

separately represented in each panel. The size of the circles is proportional to the number of genes in each significantly enriched

category, as indicated at the scales in the lower part; the colors show the statistical significance of the enrichment, as indicated by

the -log10 FDR values that appear in the color-coded scales at the bottom. A GO enrichment significance cutoff of FDR� 0.05

was used. (C). Luminex quantitation of RANTES/CCL5 and IP10 detected in the culture supernatants of hiPSC-derived
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CCL5 and IP10 showed a consistent (both at 48 h and 96 h post-infection) and significant

increase in secretion by trophoblasts from non-affected twins after infection with ZIKVBR, but

not by trophoblasts from CZS-affected twins (Fig 4C). RANTES/CCL5 secretion levels by tro-

phoblasts from non-affected twins increased 2.4- and 4.6-fold at 48 h or 96 h after infection

with ZIKVBR, respectively, while IP10 secretion levels increased 16- and 96-fold (Fig 4C). The

other tested cytokines and chemokines did not show statistically significant differences in the

levels produced by infected trophoblasts from CZS-affected or non-affected twins.

Discussion

Here, we were able to analyze, for the first time, the in vitro viral susceptibility and the gene

expression patterns after in vitro ZIKVBR infection of hiPSC-induced trophoblasts from dizy-

gotic (DZ) twins discordant for the presence of microcephaly. Because these are DZ twins

whose mothers were infected with ZIKVBR during pregnancy, the two fetuses in each of the

three twin pairs were exposed to the virus at the same time, thus representing a rare and

unique cohort to test whether the host genetic background plays any role in determining CZS

outcome. Indeed, we have previously shown that hiPSC-induced NPCs from the same subjects

exhibit differential in vitro ZIKVBR susceptibility, as NPCs from CZS-affected twins had signif-

icantly higher ZIKVBR replication and reduced cell growth when compared with NPCs from

non-affected twins [32]. No rare Mendelic potentially pathogenic variant was assigned in this

cohort that could explain NPCs susceptibility to CZS [32], suggesting that CZS caused by

ZIKV may be a multifactorial disorder. Herein, using a well-established model that recapitu-

lates the primitive placenta formed during fetal implantation [35,36], we sought to investigate

if hiPSC-induced trophoblasts from the same twins also show differential responses to in vitro
ZIKVBR infection.

Many studies have established causal effects between ZIKV infection during pregnancy and

microcephaly developed in the fetus [15], using in vitro as well as mice and non-human pri-

mates in vivo models [59–63]. Cells localized in the epidermis and dermis were primarily con-

sidered as targets for ZIKV infection [64], as mosquito bite remains the major transmission

route [65]. ZIKV infection exhibits broad distribution and persistence in body tissues and flu-

ids, and the presence of ZIKV in the amniotic fluid of pregnant women and in semen [66–70]

suggests the additional possibility of sexual and perinatal transmissions. Trophectoderm cells

of pre-implantation human embryos can be infected with ZIKV [71]. Also, endometrial stro-

mal cells are highly permissive to ZIKV infection, and likely represent a crucial cell target of

ZIKV reaching them, either via the uterine vasculature in the viremic phase of the infection or

by sexual viral transmission, being a potential source of virus spreading to placental tropho-

blasts during pregnancy [72]. Indeed, recent studies suggest that the placenta is the key media-

tor for vertical transmission of ZIKV from infected mothers to fetal brains; several placental

cells have been shown to be infected by ZIKV, including placental macrophages, trophoblasts

and fibroblasts of the maternal decidua basalis [25–29,36,67]. Here, we show that hiPSC-

induced trophoblasts from DZ twins discordant for CZS were differentially susceptible to

infection with ZIKVBR. Interestingly, 96 hpi with ZIKVBR, virus titers in culture supernatants

were significantly higher in the CZS-affected twins’ trophoblasts when compared with non-

affected (Fig 1C), indicating that ZIKVBR can replicate more efficiently in the trophoblasts

from CZS-affected twins, potentially facilitating virus dissemination into fetal tissues.

trophoblasts from non-affected twins or from CZS-affected twins at 48 h (left panels) or 96 h (right panels) after ZIKVBR

infection. Data are represented as mean ± SEM and p-value � < 0.05 (Paired Student’s t test).

https://doi.org/10.1371/journal.pntd.0008424.g004
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Noteworthy, our RNA-seq results indicate that hiPSC-derived trophoblasts express the

ZIKV candidate receptor genes (HSPG2 and TAM receptor genes) and the IFN receptor genes,

and at lower levels the IFN genes; however none of these genes were differentially expressed

between the trophoblasts from CZS-affected and non-affected twins either before or after

ZIKVBR infection.

Interestingly, ZIKVBR infection caused a significant increase in IFNL1 secretion by tropho-

blasts from non-affected twins (Fig 3B), whereas in trophoblasts from CZS-affected twins no

significant increase was observed (Fig 3B). IFNL1 is a type III IFN constitutively released by

primary human trophoblasts from full-term placentas [25], which are known to be refractory

to ZIKV infection [25,36]. The increased secretion of IFNL1 by trophoblasts from non-affected

twins, already at 48 hpi by ZIKVBR, but especially at 96 hpi, may protect against ZIKVBR dis-

semination, as shown in the female reproductive tract of mice [56,73,74]. Our results indicate

a possible role of IFNL1 in the control of ZIKV infection by primitive trophoblasts. In addi-

tion, after ZIKVBR infection, trophoblasts from the non-affected twins were able to signifi-

cantly induce the secretion of immune mediator chemokines RANTES/CCL5 [75,76] and

IP10 [77], while trophoblasts from the CZS-affected twins were not (Fig 4C). RANTES/CCL5

promotes trophoblasts cell migration and can recruit immune cells [78–80], whereas IP10

plays a role as a chemotactic molecule implicated in the migration of trophoblast cells [81].

Thus, lower secretion of RANTES/CCL5 and IP10 indicates that CZS-affected twins’ tropho-

blasts have a lower ability of migration, immune cell recruitment and viral control.

The placenta plays a critical role in immunological protection and can undergo major

structural and functional adaptations in order to protect the fetus from environmental stress-

ors [57,58]. When the placental function is impaired [82], the intrauterine environment might

be perturbed and the placental defenses involved in fetal protection compromised. In the

RNA-Seq analysis, we found 79 differentially expressed genes in common among the three

CZS-affected compared with non-affected twins, 44 of which were downregulated after

ZIKVBR infection in the trophoblasts from CZS-affected compared with non-affected twins.

The top GO category associated with these downregulated differentially expressed genes is

“extracellular matrix”. It is known that for successful fetus development, one of the critical

steps is proper invasion of the maternal decidua by trophoblasts [83] and that many molecules,

including galectins, are involved in this process [84,85].

One of the downregulated genes in the trophoblasts from CZS-affected twins after ZIKVBR

infection was COL3A1 (Fig 4A). Collagens are the main structural proteins in the extracellular

matrix, and they have been related to pregnancy and/or placental pathological conditions

including gestational diabetes and pre-eclampsia [86,87]. ITGA1, another gene downregulated

in trophoblasts from CZS-affected twins after ZIKVBR infection, interacts with the extracellular

matrix, particularly with collagen and laminin [88]. Importantly, extravillous trophoblasts

(EVT) have been shown to express ITGA1 as they invade from the anchoring villi deeply into

the maternal endometrium and myometrium in weeks 8–13 of gestation [89,90]. EVTs fail to

express ITGA1 in preeclampsia, which is associated with both poor trophoblast invasion and

oxidative stress [90,91]. In addition, LGALS3 gene (encoding galectin-3) was downregulated in

trophoblasts from CZS-affected twins after ZIKVBR infection. LGALS3 is a galectin that has

been described as involved in the process of trophoblast cell migration and invasion, signifi-

cant for human embryo implantation [92,93]. Overall, downregulation of genes involved in

trophoblast adaptation to the intrauterine environment, including ITGA1, COL3A1 and

LGALS3 (S9 Fig), in the trophoblasts of CZS-affected twins after ZIKVBR infection, may affect

trophoblast migration, implantation, homeostasis and possibly impair the control of ZIKVBR

infection. Noteworthy, all the above differentially expressed genes were found in common

among the three CZS-affected compared with non-affected twins, in spite of the genetic
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background variability of our cohort. Importantly, as all experiments were done under the

same conditions, these differences in genetic background underlie both possible differences in

progression of trophoblasts differentiation and the resulting difference in susceptibility to

ZIKV infection. Thus, the set of 79 differentially expressed genes found here represents the

minimum core of genes significantly altered in common among the three pairs of twins. This

study provides genetic targets to be further explored as possible infection susceptibility factors

in the placenta.

Our gene expression results indicate that ZIKVBR infection has caused, only in the tropho-

blasts from CZS-affected twins, the downregulation of genes important for trophoblast adhe-

sion as well as immune response activation. Noteworthy, when gene expression differences

between the NPCs from these non-affected and CZS-affected twins were analyzed [32],

another set of 64 genes was found to be differentially expressed, including FOXG1 and LHX2,

two transcription factors important for neural development [94,95], which were down-regu-

lated in NPCs from CZS-affected compared with non-affected twins [32]. Overall, develop-

ment of congenital Zika syndrome might result, among other factors, from a concomitant

decreased ability of the placenta to respond to ZIKV infection in the CZS-affected neonates,

along with a deregulation of neural development genes in ZIKV-infected NPCs of these CZS-

affected neonates.

Based on our gene expression analyses, we suggest that the ability to respond more effi-

ciently to ZIKV infection in the placenta may be a key parameter to predict the success of

ZIKV dissemination into fetuses’ tissues. Moreover, further understanding of the participation

of immune mediators, such as the chemokines RANTES/CCL5 and IP10, in the trophoblast

response to ZIKV infection may open a path for drug development or repurposing to possibly

inhibit viral replication or avoid viral dissemination into fetus’ tissues.

Supporting information

S1 Fig. Quantification of positive staining for trophoblast markers in hiPSC-derived tro-

phoblast cell lines from each of the six twins. Immunostaining for (A) KRT7 and (B) CGB

determined in three different replicates for each twin. No statistically significant differences

among the different twins were observed (One-way ANOVA, Tukey’s post-test, n = 3 repli-

cates for each twin).

(PDF)

S2 Fig. Undifferentiated iPSC cell lines from each of the six twins stained for KRT7 and

CGB. Bar = 100 μm.

(PDF)

S3 Fig. Expression measured by RT-qPCR of marker genes of hiPSCs and trophoblasts.

Expression measured by RT-qPCR of NANOG, a hiPSC marker, and of HCGA, HCGB and

KRT7, three of the genes upregulated in the trophoblasts as compared with the hiPSCs. Twins

from each family are represented with a different color: red, #10608 twins; blue, #10763 twins;

green, #10788 twins. (mean ± SEM; n = 2 biological replicates, except for #10763 due to sample

loss during culture)

(PDF)

S4 Fig. Expression levels measured by RNA-Seq of proliferation-related genes in the

hiPSCs and in the hiPSC-derived trophoblasts from non-affected or CZS-affected twins.

Related to Fig 2. The bars represent expression levels (in TPM) of selected genes associated

with cellular proliferation in hiPSCs from non-affected (light blue, hiPSC NA) or CZS-affected

(dark blue, hiPSC Aff) twins, in the hiPSC-derived trophoblasts from non-affected twins’
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mock (yellow, Troph–NA-Mock) or ZIKV-infected cells (orange, Troph–NA-MOI 0.3), and

in the hiPSC-derived trophoblasts from CZS-affected twins’ mock (red, Troph–Aff-Mock) or

ZIKV-infected cells (brown, Troph–Aff-MOI 0.3). The levels of expression of the genes were

compared between non-affected (both non-infected and infected) trophoblasts and non-

affected hiPSCs; and from CZS-affected (both non-infected and infected) trophoblasts and

CZS-affected hiPSCs. Genes significantly down-regulated in trophoblast cells when compared

with hiPSCs are shown (one-away ANOVA, p-value threshold was � 0.05, �� 0.01, ��� 0.001

and ���� 0.0001). Error bars show SEM.

(PDF)

S5 Fig. Expression levels measured by RNA-Seq of genes encoding candidate attachment

factors implicated in ZIKV infection of human cells. Related to Fig 2. The bars represent

expression levels (in TPM) of eight candidate ZIKV attachment factor genes in hiPSCs from

non-affected (light blue, hiPSC NA) or CZS-affected (dark blue, hiPSC Aff) twins, in the

hiPSC-derived trophoblasts from non-affected twins’ mock (yellow, Troph–NA-Mock) or

ZIKV-infected cells (orange, Troph–NA-MOI 0.3), and in the hiPSC-derived trophoblasts

from CZS-affected twins’ mock (red, Troph–Aff-Mock) or ZIKV-infected cells (brown,

Troph–Aff-MOI 0.3). None of these genes was significantly differentially expressed in hiPSC-

derived trophoblasts from CZS-affected twins, when compared with hiPSC-derived tropho-

blasts from non-affected twins in pairwise comparisons (two-tailed t-test, equal variance).

Error bars show SEM.

(PDF)

S6 Fig. Expression levels measured by RNA-Seq of genes encoding representatives of Type

I, Type II, and Type III IFNs. Related to Fig 2. The bars represent expression levels (in TPM)

of genes encoding interferons in hiPSCs from non-affected (light blue, hiPSC NA) or CZS-

affected (dark blue, hiPSC Aff) twins, in the hiPSC-derived trophoblasts from non-affected

twins’ mock (yellow, Troph–NA-Mock) or ZIKV-infected cells (orange, Troph–NA-MOI 0.3),

and in the hiPSC-derived trophoblasts from CZS-affected twins’ mock (red, Troph–Aff-Mock)

or ZIVK-infected cells (brown, Troph–Aff-MOI 0.3). None of these genes was significantly dif-

ferentially expressed in hiPSC-derived trophoblasts from CZS-affected twins when compared

with hiPSC-derived trophoblasts from non-affected twins in pairwise comparisons (two-tailed

t-test, equal variance). None of the 13 recognized human IFNA (IFNA1, 2, 4, 5, 6, 7, 8, 10, 13,

14, 16, 17, 21), IFNG, IFNK and IFNW1 genes were significantly expressed in any of the data

sets. Error bars show SEM.

(PDF)

S7 Fig. Expression levels measured by RNA-Seq of genes encoding receptors for Type I,

Type II, and Type III IFNs. Related to Fig 2. The bars represent expression levels (in TPM) of

genes encoding interferon receptors in hiPSCs from non-affected (light blue, hiPSC NA) or

CZS-affected (dark blue, hiPSC Aff) twins, in the hiPSC-derived trophoblasts from non-

affected twins’ mock (yellow, Troph–NA-Mock) or ZIKV-infected cells (orange, Troph–

NA-MOI 0.3), and in the hiPSC-derived trophoblasts from CZS-affected twins’ mock (red,

Troph–Aff-Mock) or ZIKV-infected cells (brown, Troph–Aff-MOI 0.3). None of these genes

was significantly differentially expressed in hiPSC-derived trophoblasts from CZS-affected

twins when compared with hiPSC-derived trophoblasts from non-affected twins in pairwise

comparisons (two-tailed t-test, equal variance). Error bars show SEM.

(PDF)

S8 Fig. Differential gene expression between hiPSC-derived trophoblast from CZS-affected

and non-affected twins after ZIKVBR infection. Related to Fig 4. Gene Ontology terms
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enrichment analysis of upregulated genes in hiPSC-derived trophoblasts from CZS-affected

compared with non-affected twins after ZIKVBR in vitro infection. The major GO term catego-

ries, namely Biological Process and Molecular Function are separately represented in each

panel. The size of the circles is proportional to the number of genes in each significantly

enriched category, as indicated by the scale at right; the colors show the statistical significance

of the enrichment, as indicated by the -log10 FDR values that appear in the color-coded scale

at right. A GO enrichment significance cutoff of FDR� 0.05 was used.

(PDF)

S9 Fig. Expression measured by RT-qPCR of genes found in the RNA-Seq analysis downre-

gulated after ZIKVBR infection in trophoblasts from CZS-affected when compared with

non-affected twins. Expression measured by RT-qPCR of COL3A1, ITGA1 and LGALS3,

three of the genes downregulated after ZIKVBR infection in trophoblasts from CZS-affected

(Aff) when compared with non-affected (NA) twins. Twins from each family are represented

with a different color: red, #10608 twins; blue, #10763 twins; green, #10788 twins.

Mean ± SEM is shown. (n = 2 biological replicates, except for #10763 due to sample loss during

culture; One-tailed t-test, � p<0.05).

(PDF)
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