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ABSTRACT

DNA barcoding through the use of amplified regions
of the ribosomal operon, such as the 16S gene, is
a routine method to gain an overview of the mi-
crobial taxonomic diversity within a sample with-
out the need to isolate and culture the microbes
present. However, bacterial cells usually have mul-
tiple copies of this ribosomal operon, and choosing
the ‘wrong’ copy could provide a misleading species
classification. While this presents less of a prob-
lem for well-characterized organisms with large se-
quence databases to interrogate, it is a significant
challenge for lesser known organisms with unknown
copy number and diversity. Using the entire length
of the ribosomal operon, which encompasses the
16S, 23S, 5S and internal transcribed spacer regions,
should provide greater taxonomic resolution but has
not been well explored. Here, we use publicly avail-
able reference genomes and explore the theoretical
boundaries when using concatenated genes and the
full-length ribosomal operons, which has been made
possible by the development and uptake of long-read
sequencing technologies. We quantify the issues of
both copy choice and operon length in a phyloge-
netic context to demonstrate that longer regions im-
prove the phylogenetic signal while maintaining tax-
onomic accuracy.

INTRODUCTION

Microbes are the most numerous organisms on the planet,
and although some are of great importance to our health
and well-being, we do not understand the full diversity of
microbes present (1). This is compounded by the fact that
only a small number of bacterial species can currently be
cultured. Knowing the diversity of the microbial population

of an environment, the microbiota, can allow us to begin to
understand their relevance, such as measuring the impact of
changes in diet or drugs on the gut microbiota (2,3). Short-
read shotgun sequencing of amplified regions of 16S, 23S
ribosomal RNA genes and the internal transcribed spacer
(ITS) region have become a cheap, routine and direct way
to gain a high-level understanding of microbial taxonomic
diversity within complex samples, such as feces or soil, with-
out requiring culturing of microbes (4,5). For example, eval-
uating the short hypervariable regions of the 16S gene gives
family-level taxonomic resolution, distinguishing between
the common Staphylococcal and Streptococcal pathogens
(6).

This approach has limitations as it is expected to detect
not only just previously characterized microbes but also
those for which we have very little knowledge, using genome
regions that are theorized to exist in all microbes. There
can be multiple copies of the ribosomal operon within a
bacterium, and the variation between operons within a sin-
gle bacterium can exceed the variation between different
species (7). For example, Salmonella enterica has 7 riboso-
mal operons while Bacillus thuringiensis has 17 rRNA oper-
ons. Although there are techniques capable of discriminat-
ing between paralog copies, reducing chimerism and primer
bias (8), sequencing of different operons even within the
same species can therefore give conflicting taxonomic iden-
tification. Linking the phylogenetic signal to these short am-
plified markers can be challenging, so it is important to un-
derstand the limitations and potential of current technolo-
gies.

Full-length 16S RNA can be recovered using short-read
platforms (9), but the 16S-ITS-23S region of the rRNA
operon has four times the variability of the 16S region alone,
and can be used to classify sequences taxonomically, even at
the strain level in certain cases (10). This is more accurate for
well-characterized species where large numbers of genome
sequences, the majority of which are short-read sequences,
allow a greater understanding of ribosomal operon diver-
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sity. However, the best resolution of this variable operon is
obtained through complete, contiguated genome sequences;
long-read sequencing provides reads that can span the en-
tire operon. As the cost of long-read sequencing continues
to fall, it is set to replace short-read sequencing. Despite
this, the taxonomic resolution achievable using long-read
sequencing of the entire length of the ribosomal operon is
not well explored. Here, we use a set of 691 publicly avail-
able complete reference genomes as our data set, explore
different combinations and lengths of a representative ribo-
somal operon and evaluate their utility in providing taxo-
nomic resolution. We also studied qualitatively all copies of
the full-length ribosomal operon from a set of 194 Staphy-
lococcus and Pseudomonas genomes. These experiments al-
low us to define the theoretical boundaries when using the
full-length ribosomal operon for population diversity ex-
periments. We use a phylogenetic rationale to infer the ef-
fect of rRNA gene choice in taxonomic classification, and
we demonstrate that using a longer operon allows for an
increase in both phylogenetic signal and classification accu-
racy.

MATERIALS AND METHODS

Single copy data sets

For analysis of single-copy data sets, we downloaded all
complete bacterial assemblies from RefSeq (accessed on
15 February 2019) of selected Gram-positive and Gram-
negative bacteria genera. We used the Genome Taxonomy
Database (GTDB) both to provide the binomial nomen-
clature and to validate the sequences, since only curated
genomes are included in GTDB (11). We analyzed all
those with more than four strains from the same species,
while also down-sampling over-represented ones. The gen-
era were arbitrarily selected, based on pathogenic impor-
tance and availability, and comprised Klebsiella, Enterococ-
cus, Escherichia, Pseudomonas, Staphylococcus and Strep-
tococcus. For species with >32 strains, we assigned a prob-
ability of being chosen inversely proportional to their rep-
resentativity in the database, such that we had, on average,
32 strains in the final data set. The final data set comprised
691 genomes. When a strain contained several copies of the
same ribosomal RNA gene, we chose the longest gene to
provide a single sequence for phylogenetic analysis. The se-
quence lengths, in base pairs (bp), were 1550 ± 32 for the
16S gene, 2908 ± 89 for the 23S gene and 116 ± 1 for the
5S gene. The related statistics for all genomes, including the
number of copies per genome, can be found in the Supple-
mentary Tables.

The hypervariable regions chosen where the v1+v2 and
the v3+v4 segments of the 16S gene. They were found by
similarity search using the sequence pair AGAGTTTGAT
CCTGGCTCAG and ACTCCTACGGGAGGCAGCA as
flanking regions for 16Sv1v2, and sequences CCTACGGG
AGGCAGCAG and ATTAGAWACCCBDGTAGTCC as
flanking the segment 16Sv3v4. These sequences represent
standard primers for these hypervariable regions (12), and
the 16S regions mapped between them were included. If a
particular primer is missing, its location was predicted using
the other primers, or in the worst case the region was con-
servatively predicted using its relative location (6): for a 16S

gene of any size the first 24% of the sites were chosen as seg-
ment 16Sv1v2 and the sites comprising the interval between
24% and 55% were assigned to segment 16Sv3v4. These, as
well as the single genes 16S, 23S and 5S, were aligned in-
dependently, encompassing multiple common genomic re-
gions used for taxonomic classification. Furthermore, the
multi-locus data sets like 16S+23S and others were created
by concatenating the previously aligned single-locus genes.

In real-world metagenomic data sets, it is not always pos-
sible to unambiguously distinguish between copies of the
operon within a single strain because algorithms essentially
create a chimeric or consensus sequence between all the
copies. We simulated this scenario by calculating the con-
sensus sequence between all copies, but then used the IU-
PAC ambiguity code rather than calling the ambiguity code
N when the most frequent base cannot be accessed. This
allowed us to preserve more information than would have
been possible using typical methods, which mistake dupli-
cates along the genome with polymorphism within a single
copy. In terms of the tree silhouette score, this creation of
consensus sequences did not affect the results when com-
pared to the longest sequence, and are therefore not shown.

Evaluation––tree silhouette score and monophyly score

We implemented both tree silhouette scores and mono-
phyly scores for this study. The silhouette score is a mea-
sure of how close a sample is to others from the same cluster
(species or genera, in our case), while at the same time how
far away it is from samples from other clusters. It is com-
monly used in cluster analysis to define the optimal num-
ber of clusters. The silhouette score of strain i from cluster
(species) K is defined as:

si = d(i, J) − d(i, K)
MAX[d(i, J), d(i, K)]

where d(i, K) is the average distance between strain i and all
other strains from the same cluster (species) K; and d(i, J) is
the average distance between i and all strains from the clos-
est distinct cluster (species) J �= K. By definition, the score
si is zero if there are no other strains in the same cluster
(species) K. In our context, the chosen distance is the pa-
tristic distance and the clusters are the species as described
in the database. The patristic distance between two strains
is the total path (sum of branch lengths) along the phylo-
genetic tree between the two leaves representing the strains.
It corresponds to the cophenetic correlation coefficient in
cluster analysis (13).

The tree silhouette score as described above does not rep-
resent the phylogenetic information fully, since very short
branches for sister strains (from the same species) will lead
to very high scores but will have less information than one
with longer terminal branches. Therefore, we also calculated
silhouette scores using a simplified version of the patristic
distance, sometimes called ‘path difference’, which neglects
estimated branch lengths and just gives the number of in-
ternal nodes between two leaves in a tree. The fraction of
strains with a positive value for this simplified score is given
in Supplementary Figure S1 and estimates the fraction of
strains that are closer to another strain in the same species
than to one from a different species.
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Besides the silhouette scores, we also implemented two
statistics explicitly based on the monophyletic status of the
species: the monophyly score and the best monophyletic
clade score. The monophyly score of a species is the frac-
tion of strains below its last common ancestor that are in
fact from this species. In other words, for each species we
find the most recent common ancestor among all strains
from that species, and then we see if there are also other
species below this ancestor on the tree. The score based on
the most diverse monophyletic clade is the average patristic
distance between all samples below monophyletic clades. A
monophyletic clade is one for which all leaves below it be-
long to the same species, and the average patristic distance
between these leaves estimates its phylogenetic divergence.
If, for a given species, we found several monophyletic clades,
we chose the most diverse one, i.e. the one with the highest
average distances. Higher values represent more phyloge-
netic information (more substitutions per site) while main-
taining taxonomic resolution. In both cases we minimized
spurious clades by midpoint-rerooting the trees. Note that
this ‘best monophyletic clade’ is similar, but not identical
to the ‘largest taxonomically consistent subtree’ (LTCS) de-
scribed by (14). For paraphyletic clades, we also tried using
an average instead of the maximum between monophyletic
subclades, with very similar results (Supplementary Figure
S3).

To have an idea of the distribution of scores in the ab-
sence of phylogenetic signal, we generated a random tree
with the same leaf names (i.e. same taxonomic information)
and same tree length as the original data set. Generation
of random tree branch order and lengths was achieved un-
der a simple coalescent model using the Dendropy pack-
age version 4.4.0 (15). The same software was used for all
tree manipulations and patristic distance calculations, and
scikit-learn version 0.21.3 was used for the distance-based
silhouette score inference.

Operon multi-copy analysis

To study the influence of paralogy on the rRNA-based
classification, we simulated the effect of long-read-based
sequencing (operon multi-copy analysis) by extracting
all full operons from the best represented Pseudomonas
and Staphylococcus species in the RefSeq database. These
were chosen as they are well-studied, clinically important
pathogens. The operons were constructed by finding all an-
notated 16S, 23S and 5S genes in the genome and merg-
ing all genes that were closer than 1000 bp from each other
into a single operon. For example, if the first base of a 23S
gene was <1000 bp downstream of a 16S gene, then they
would belong to the same operon, together with all sites be-
tween them. In this way, we reconstructed the 16S-ITS-23S-
5S operon that represents the maximum resolution achiev-
able under real-world conditions.

Similarly to the previous analysis, we selected all sam-
ples from the RefSeq database (accessed on 15 Febru-
ary 2019) and used the GTDB to establish their taxon-
omy to the strain level. For this analysis, however, we down-
sampled more aggressively to an average of two samples
per species as we just want to find examples where dis-
tinct copies provide conflicting classification information.

Our final data sets comprised 45 genomes from Staphy-
lococcus and 149 for Pseudomonas. Since we included
all copies (average of 4.18 operons per Staphylococcus
and 5.03 for Pseudomonas samples), this gave rise to 188
rRNA operon sequences for Staphylococcus and 749 rRNA
operon sequences for Pseudomonas. More information can
be found as Supplementary Tables 3 and 4. The operon
lengths were between 4887 and 6211 bp for the Staphylo-
coccus samples and between 4957 and 7127 bp for Pseu-
domonas. We then aligned all sequences from each genus
independently with MAFFT v7.310 (16) (automatic algo-
rithm selection and offset of 0.3) and estimated their max-
imum likelihood trees with IQTREE v1.6.12 (17) using the
HKY+gamma evolutionary model, replicating best prac-
tice (18). The alignments had 6789 columns for Staphylo-
coccus and 8410 columns for the Pseudomonas data set. The
scripts necessary for reproducing all results are available
as Jupyter notebooks from https://github.com/quadram-
institute-bioscience/70S-resolution, and all source code is
available under the GNU GPL 3 open source licence.

RESULTS

By analyzing all paralogous copies at once, we found that
even when the full ribosomal RNA operon was available
without chimerism or other assembly artifacts, the choice
of which genomic copy to analyze affected the phylogenetic
inferences. This phenomenon was observed not only at the
strain level, but also at the species level as well. The fact that
the choice of full-length rRNA gene copy has such a strong
influence reinforces the importance of capturing sufficient
genetic variability to inform strain-level specificity; this can-
not be properly addressed using ribosomal amplicon-based
sequencing. Accounting for underlying genetic diversity has
implications not only for taxonomic classification, but also
for downstream analyses at the ecological or evolutionary
level. In this study, we show that this has not been fully ex-
plored previously.

To quantify the evolutionary information from distinct
rRNA segments we designed a tree silhouette score, which
is a measure of how well an evolutionary tree repre-
sents taxonomically related strains, and we also used other
monophyly-based scores for comparison. Using a compre-
hensive data set of clinically relevant bacteria, we were able
to compare the advantages and disadvantages of analyzing
only hypervariable regions of the 16S gene or using all three
genes on the ribosomal RNA operon (16S, 23S, 5S), either
independently or concatenated in all possible combinations
(e.g. ‘16S23S’ represents the aligned sequences from the 16S
and 23S genes concatenated for each strain). Since there can
be several copies of each operon in the same genome, we
used the longest copy in our analysis, to emulate the best
case scenario, being conservative while avoiding incomplete
operons. However, the results were very similar when we
used a consensus of all copies (see ‘Materials and Methods’
section).

Influence of operon length

In cluster analysis, the silhouette score averaged over all
strains is used as an indication of clustering fitness (19).

https://github.com/quadram-institute-bioscience/70S-resolution
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However, we can also look at the score for each individual
strain, and here we describe a simple ‘tree silhouette score’
using the patristic distance (i.e. path length between strains
in the estimated phylogeny). This allowed us to quantify
how well the tree retained the taxonomic classification at the
species level while also providing evolutionary information.
The distributions of silhouette scores for maximum likeli-
hood trees estimated using (i) hypervariable regions of the
16S gene, (ii) entire genes independently and (iii) concate-
nated gene sequences can be seen in Figure 1A. We also
generated a random tree with the same leaf names (same
taxonomic information) for comparison. All data sets [(i),
(ii) and (iii)] performed in a similar way in terms of taxo-
nomic resolution that could be achieved, with the exception
of the 5S gene, that showed an overall poor congruence with
the established taxonomic information. We observe a steady
increase in the tree silhouette score from shorter to larger
segment concatenations. For instance, the 16Sv3v4 segment
had high scores for a few strains, but it also provided quite
poor scores for several other strains. By computing the pro-
portion of samples with ‘good’ scores (i.e. above zero, which
indicates correct clustering), it was apparent that longer se-
quences led to better taxonomic resolution overall (Supple-
mentary Figure S1).

We also calculated the monophyletic status of a species
directly by looking at the last common ancestor of all strains
from each species, and seeing how often those ancestors
have descendants from other species. The distribution of
monophyly scores for all species is shown in Figure 1B;
longer sequences resulted in phylogenetic inferences more
consistent with the taxonomic classification. In particular,
the concatenated data set 16S23S5S has the lowest num-
ber of species with a monophyly score <0.9; this value
means that, from the most recent common ancestor of a
species, for every ten strains nine will be from one species
and one will be from a different species. For the longest
concatenated data sets, the estimated evolutionary distance
between samples from the same species in monophyletic
clades was larger than when using smaller sequences (Figure
1C). Overall this means that longer alignments can provide
richer phylogenetic signals (more diverse sequences) than
short alignments, without compromising taxonomic reso-
lution.

Influence of distinct operon copies

Species of bacteria often contain multiple copies of the ri-
bosomal operon, and each has its own distinct phylogenetic
diversity; intragenomic variability in the 16S gene has been
studied most commonly (20,21), but there are also studies
on the 23S and 5S genes (22,23). When we consider the evo-
lutionary history of all copies of the ribosomal RNA oper-
ons from a given species, one underlying assumption is that
all those copies should be monophyletic, i.e. they should
be closer to each other than to operons from other species.
This is the justification for using a single copy, or a con-
sensus of all operons as sufficient for phylogenetic inference
and reconstruction of the correct groupings. However, this
is not the case as ribosomal gene copies can be mobile be-
tween operons. Sequence variation among ribosomal oper-

ons from within one bacterium can be greater than inter-
species variation (7).

The choice of operon affects the phylogeny at the strain
level, i.e. the inference of the closest sister taxon is depen-
dent on the choice of the paralog. As an example, each copy
of the rRNA operon within a particular Pseudomonas mon-
teilii B strain (labeled 000325725), clustered with a distinct
strain of P. hunanensis or P. putida H (Figure 2). The other
strains of P. monteilii B clustered together with P. monteilii
(GTDB assigns an alphabetic suffix to paraphyletic groups
according to their reference tree, so in this case P. mon-
teilii B is classified as a distinct species from P. monteilii).
This behavior is quite common; in the same figure (Fig-
ure 2), we observe that the distinct strains of P. putida H
(labeled 000410575 and 002356095) do not form mono-
phyletic groups, being closer to P. putida Q or P. putida P.
The same behavior was observed between P. syringae, P. sy-
ringae M and P. cerasi. Similar results were observed when
applying the same analysis with Staphylococcus, particu-
larly for S. hyicus, S. lugdunensis and S. agnetis, where
the location of certain samples depended on which paralog
operon was chosen (Supplementary Figure S4). This agrees
with previous studies showing the importance of account-
ing for the intra-individual diversity of the 16S gene (20,21).
Here, we show that this issue cannot be resolved by sequenc-
ing larger regions of the genome at the same time. This be-
havior is not due to stochastic errors in the inference, but to
underlying biological processes such as gene duplications
in the sequences analyzed (with differential losses) and, to a
lesser degree to lateral transfers (24) and incomplete lineage
sorting (25).

DISCUSSION

Our objective was to see if longer rRNA segments offer
any advantage over more common 16S markers. From an
evolutionary perspective, an informative marker is one that
is variable enough to provide diversity within a clade. A
pure classification approach, on the other hand, tends to
favour measures that provide closer within-clade samples.
For this purpose we designed a tree silhouette score that
can account for branch lengths, or not, and also a mono-
phyly score accompanied by its distance score. Our overall
results show that we do observe an increase in the phyloge-
netic information––longer alignments are better for afford-
able population and selection studies––without compromis-
ing its taxonomic resolution (i.e. they can be used to classify
new pathogens or metagenomic samples as is done with 16S
or other markers). The improvement is more pronounced
when we compare concatenations including 16S or 23S than
when we include 5S to the alignment.

We also show how being able to account for all operon
copies––a single genome has several paralogous copies of
the rRNA genes––do impact the classification and down-
stream evolutionary studies. Many studies may be ham-
pered by the confounding effect of multiple copies being
summarized by one (e.g. through chimerism or consen-
sus base calling). Long-read assemblies are less affected by
these misassemblies, and we will soon need to use all avail-
able information from paralogs in deep evolutionary anal-
yses (26,27). The full rRNA operon is a good candidate for
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Figure 1. Silhouette and monophyly scores. Results from maximum likelihood trees using the longest copy of the operon. This shows the changes in
phylogenetic and taxonomic resolution apparent when either: (i) just a fragment of a gene (regions v1+v2 or v3+v4 of the 16S rRNA), (ii) a whole gene or
(iii) several concatenated genes are analyzed. (A) The silhouette score describes how close each strain is to others from the same species, compared to the
closest strain from a different species. (B) Monophyly scores are the fraction of strains from the same species below their last common ancestor. (C) The
average patristic distance between monophyletic strains is the average distance between strains below the most diverse monophyletic clade of each species.
The Y-axis is truncated at 0.02.
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Figure 2. Maximum likelihood tree of full operons for Pseudomonas, including paralogs, with colors representing species. Most leaves were pruned, and
only the region of interest is shown to emphasize the uncertain location of P. monteilii B (strain 000325725) and P. putida H (strains 000410575 and
002356095): phylogeny would vary depending on the copy selected.

long-read studies since it extends the well-known 16S clas-
sification advantages while improving the phylogenetic sig-
nal. It is worth mentioning that although we use the taxon-
omy given by the Genome Taxonomy Database (GTDB),
the same trends are observed if we use alternative nomencla-
tures like those provided by SILVA (4) or NCBI (28) (Sup-
plementary Figure S2). Similar results were obtained for al-
ternative choices of samples or genera (results not shown).

Therefore we believe that, whenever possible, longer seg-
ments of the rRNA operon should be preferred to 16S, while
accounting for the heterogeneity in the copies––both tasks

that become feasible with long-read sequencing technolo-
gies. This would allow the resulting trees to be interpreted
not only for classification, but also potentially for down-
stream analyses like diversity or divergence times estima-
tion, where 16S currently presents limited usefulness (29).

DATA AVAILABILITY

The source code for reproducing all analyses is available un-
der the GNU GPL 3 open source licence at https://github.
com/quadram-institute-bioscience/70S-resolution.
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