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Abstract

Maleic acid (MA), an intermediate reagent used in many industrial products, instigated pub-

lic health concerns in Taiwan when it was used to adulterate an array of starch-based delica-

cies to improve texture and storage time. Established studies reported that exposure to high

concentrations of MA induce renal injury; little is known whether oxidative stress is induced

at a relative low dose. This study aims to investigate the effect of oral single dose exposure

of MA on the status of oxidative stress and inflammation. Single dose of MA at 0, 6 and 60

mg/kg (control, low- and high-dose groups, respectively) were orally administered to adult

male and female rats. Urine samples were collected and analyzed to measure 8-hydroxy-2’-

deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-IsoPGF2α), 8-nitroguanine (8-

NO2Gua) and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA)

using LC-MS/MS. Results revealed that oral consumption of MA induced oxidative DNA

damage and lipid peroxidation, as demonstrated by the statistically significant increases in

urinary levels of 8-NO2Gua, 8-OHdG, and 8-isoPGF2α, in high-dosed male rats within 12 h

of oral gavage (p < 0.05). Additionally, increases in concentration of these biomarkers per-

sist for days after consumption; male rats appear to be more sensitive to oxidative burden

compared to their counterparts. The aforementioned findings could help elucidate the mech-

anisms through which nephrotoxicity occur.

Introduction

Intentional adulteration of Maleic anhydride (MAH), an organic and multifunctional chemical

intermediate used in many fields of applied chemistry, in many foods raised health-related

anxiety in both Taiwan and abroad. Maleic acid (MA), the hydrolyzed form of MAH, typically
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functioned as a pH adjuster, a fragrance ingredient at low concentrations, as well as an adhe-

sive in endodontics [1]. Thus, the general population is likely to be exposed to MA upon con-

tact from personal care products and through inhalation of dust and aerosols from automobile

emissions [2, 3]. The California Environmental Protection Agency estimated the statewide

emission rate of MAH from industrial facilities at 3340 kg year-1. Upon dermal contact and via

inhalation, MA can irritate the mucous membranes of the eye and the upper respiratory tract,

respectively, at as low as 0.25 ppm [4].

Toxicity studies on MA revealed a broad range of symptoms in various animal hosts. Expo-

sure to high doses of MA could result in phenotypic manifestations such as alopecia and signif-

icant decreases in both absolute and relative organ weights [5]. To achieve detection of low

concentrations of MA, advances in analytical methods with LC-MS/MS and Near-Infrared

(NIR) spectroscopy and chemometrics were reached to attain high sensitivity and specificity

[6, 7]. Improvements in these methods furthered our understanding of the pharmacokinetic

behavior and can also assist in investigating the toxicological implications of MA from con-

sumption [8–10]. However, most of the toxic effects occur at the cellular and tissue levels. Few

studies have explored the relationship between MA exposure and oxidative stress, which

occurs when the formation of ROS overpowers cellular antioxidant defenses and exert cytotox-

icity by damaging cellular constituents. Existing literature note that once consumed, absorbed

and metabolized, MA can penetrate kidney cells to incur renal injury, which is associated with

elevated oxidative stress status [11]. When MA is injected into rodents and once intracellular

accumulation occurs, maleate becomes the preferred substrate for succinyl-Coenzyme A

(CoA):3-oxoacid CoA transferase (SCOTase). This newly formed maleyl-CoA, when trans-

forms into a stable thioether, results in CoA and adenosine triphosphate (ATP) depletion [12–

15]. MA was also observed to conjugate the sulfhydryl group of glutathione (GSH) thus deplet-

ing GSH; previous reports speculated such depletion inhibits glutathione peroxidase activity,

increases lipid peroxidation in renal tissue and may also induce potential does-dependent oxi-

dant proximal tubule (PT) injury [16–18]. Available research indicated that rats treated with

maleate toxicity increases the production of heme oxygenase 1 (HO-1), which is generated in

response to oxidant stress [16, 19]. Filtration failure and proximal tubular necrosis could result

depending on the severity of these processes. However, others noted that maleate-induced

ATP depletion, and not oxidative stress, is responsible for proximal tubule injuries [20]. This

concept is further supported by Zager, as no evidence of maleate-induced stress responses

were noted in trial exposures [21]. Therefore, current literature has yet to agree on whether

MA induces oxidative stress, lipid peroxidation and inflammatory response on a cellular level.

Oxidative stress is also reported to correlate with the onset or progression of an array of ail-

ments, including cancer, interstitial lung disease and acute renal ischemia [22, 23]. 8-OHdG,

induced by ROS, is a biomarker indicative of oxidative DNA impairment and has utility in

predicting renal damage [24]. 8-NO2Gua, a potential biomarker for nitrative DNA damage, is

also shown to be indicative of inflammatory response [25]. Furthermore, 8-OHdG and

8-NO2Gua have also been recognized as indicators of cellular mutagenicity [22, 26]. The

F2-isoprostanes is another sensitive and reliable indicator of oxidant burden. Among them,

many studies indicated 8-isoPGF2α as reliable indicator of lipid peroxidation because of its sta-

bility. Additionally, elevated levels of 8-isoPGF2α have been noted in association with exposure

to toxic compounds and may thus indicate disease progression in the lungs and kidneys [27–

33]. Moreover, HNE-MA, a biomarker detected in rats after an acute oxidative stress insult,

can indicate levels of lipid peroxidation and be used to evaluate cytotoxicity in biological sys-

tems [34].

In light of the inconsistent reports regarding whether MA exposure induces oxidative stress,

inflammation, and lipid peroxidation, coupled with the extreme difficulty in determining
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ROS/RNS in tissues or body fluids due to their high reactivity and extremely short half-lives,

this study aims to determine, via LC-MS/MS, whether single-dose exposure of MA affects the

urinary levels of the four aforementioned biomarkers. To our knowledge, no study has yet ana-

lyzed whether consumption of MA induce oxidative burden. This study also investigated the

histological alterations that may precipitate from such exposure. The results of our study

would not only clarify the relationship between MA exposure and oxidant stress status, but

also broaden our understanding of the mechanisms through which organ damage occur at a

cellular level.

Materials and methods

Chemicals and reagents

HNE-MA (1mg in 100 μl ethanol), HNE-MA-d3 (100 μg in 100 μl ethanol), 8-isoPGF2α, and

8-isoPGF2α-d4 were purchased from Cayman Chemicals (Ann Arbor, MI, USA). Maleic anhy-

dride, 8-OHdG, and 7.5M of ammonium acetate solution (NH4Ac(aq)), 0.1 N sodium hydrox-

ide (NaOH) standard solutions, and were purchased from Sigma–Aldrich (St. Louis, MO,

USA). The internal standard, 15N5-8-OHdG (99% purity), was acquired from Cambridge Iso-

tope Laboratories (Andover, MA, USA). Unlabeled 8-NO2Gua and its internal standard,

8-NO2Gua-4, 8-13C2-7-15N, were obtained from Santa Cruz Biotech (Santa Cruz, CA, USA).

HPLC-grade methanol (MeOH) was procured from MACRON Chemicals (Center Valley,

PA). For all subsequent steps, Milli-Q water was produced by a Millipore Elix 10 RO system

and a Millipore Synergy UV system (Millipore SAS, Molsheim, France).

Stock solutions and working solutions

All stock solutions were preserved at -20˚C. The stock solutions of 8-OHdG and 8-isoPGF2α

(both at 10 μg/ml) were prepared by dissolving the solid standards in methanol and 0.1 M

NaOH aqueous solution, respectively, to reach a concentration of 10 μg/ml. To construct a cal-

ibration curve in the aqueous solution, six working standard solutions containing the four ana-

lytes were prepared by serial dilutions in deionized water to final concentrations covering a

range of 0.1 to 50 ng/ml. Each working solution contained the four internal standards at a

fixed amount of 10 ng/ml, and each calibration point was determined from the average of

three replicate measurements.

Animal treatment and sample collection

Equal numbers of male and female SD rats (n = 15 per sex; body weight = 215 g to 250 g for

males; BW = 185 g to 210 g for females) were purchased from BioLasco Taiwan Co., Ltd.

(Yilan, Taiwan). Animals were allowed to acclimate for a week prior to the initiation of

treatment, during which time they were weighted and checked daily for dietary and

excretory conditions. Animals were housed in a temperature- (22 ± 1˚C) and humidity-

(45 ± 5%) controlled room with a 12-hour light/dark cycle. All rats’ feed and water were

provided separately and ad libitum; with purified water (18.2 MO�cm) supplied as source of

drinking water. The Institutional Animal Care and Use Committee (IACUC) of China

Medical University (No. 102-258-N) deemed the treatment of these animals ethical and

approved this investigation.

Animals were allocated to dosage groups based on the stratified weight to achieve identical

group weight averages. On the day of oral gavage (prior to administration), the average BW of

male rats ranged from 231.6 g to 234.4 g; average BW of female rats ranged from 194.6 g to

205.6 g. Rats were treated via oral gavage with single dose at 0 mg/kg (control group), 6 mg/kg

Oxidative stress induced by oral single-dose of maleic acid in rats
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(low-dose group), and 60 mg/kg (high-dose group) of MA with distilled deionized water as the

vehicle. Before treatment, urine samples were collected for analyzing background levels of

MA. After dosing, rats were immediately placed into metabolic cages; daytime urine samples

were collected, with 50-mL centrifuge tubes containing 100 μL of 5% sodium azide, at 0.5, 1, 2,

3, 4, 5, 6, 7 d after initial oral gavage. Post collection, urine volumes were recorded and samples

were centrifuged at 3420 × g using a Universal 320R centrifuge (Andreas Hettich GmbH & Co.

KG, Germany) for 5 min; all samples were stored at -80˚C until analysis. All animals were sac-

rificed by decapitation at the end of the trial.

Measurements of urinary biomarkers

The collected urine samples were prepared and analyzed according to our previously published

protocol with slight modification [35]. In brief, samples were thawed at room temperature,

vigorously vortexed and centrifuged at 10,000 rpm for 10 min. Subsequently, 50 microliters of

urine supernatant was pipetted into an Eppendorf tube, diluted 20-fold with deionized water

containing 1 mM of ammonium acetate, spiked with 10 μl of isotopically labeled standards

(100 ng/ml), and vortexed again for solid-phase extraction (SPE), which was carried out by

using an Oasis HLB cartridge (1 cc, 30 mg; Waters, Milford, MA, USA). The cartridge was

preconditioned with 2 ml of methanol and 2 ml of water. After sequential loading, the car-

tridge was washed with 2 ml of water. Subsequently, the analytes were eluted with 1 ml 100%

(v/v) MeOH. The solutions were evaporated to dryness with a rotary evaporator (Savant

SPD131DDA SpeedVac Concentrator, Thermo scientific); subsequent residue was re-dis-

solved in 200 μl of 5% (v/v) MeOH containing 1mM of NH4Ac(aq). An aliquot of 25 μl was

injected into the LC-MS/MS system for quantitation.

Quantitation and qualification were performed with the HPLC system comprised a quater-

nary pump (Accela micropump, Thermo Fisher Scientific), an autosampler (Accela, Thermo

Fisher Scientific), and a 3 μm, 100x2 mm Gemini-NX-C18 analytical column (Phenomenex,

Torrance, CA). HPLC was executed with mobile phase A, comprised of 95% MeOH and 1

mM NH4Ac(aq) (Methanol:1mM ammonium acetate = 95:5, v/v) and mobile phase B, which

consist of 5% MeOH and 1 mM NH4Ac(aq) (Methanol:1mM ammonium acetate = 5:95; v/v).

With the flow rate set at 150 μl/min, the linear gradient was modified to the following: held

constant at 1%A for 2 min; running from 1 to 40% A for 0.5 min, 40 to 75% A over the next

3.5 min, and 97% A for 1 min; increasing to 99% A for next 1.5 min; held constant for 2 min;

returned to 1% A for 0.5 min; and held constant for 2 min to reach equilibrium.

Analytes were detected with a triple-quadrupole tandem mass spectrometer (TSQ Quan-

tum Access, Thermo Fisher Scientific, USA) equipped with a heated ESI source. To accomplish

separation analysis under different detection modes, we used Xcalibur software (version 2.0.7,

Thermo Fisher Scientific, USA), to divide the analytical process into several segments. With

the exception of unlabeled and isotopically labeled 8-OHdG, all other analytes (8-NO2Gua,

8-isoPGF2α, HNE-MA) and their internal standards were detected under the negative ion

mode. Several parameters were optimized to the following: For the analysis of 8-NO2Gua,

8-isoPGF2α and HNE-MA, spray voltage was set at 2500V, the vaporizer temperature was

maintained at 100˚C, and the capillary temperature was set at 250˚C. The sheath and auxiliary

gas pressures were set at 30 and 5 psi, respectively. The argon gas pressure was set at 1.5

mTorr. For the quantitation of 8-OHdG, the optimized spray voltage was set at 3000 V, and

the vaporizer and capillary temperatures were maintained at 100 and 210˚C, respectively. In

addition, the sheath and auxiliary gas pressures were set at 45 and 15 psi, respectively. The col-

lision gas pressure set at 1.5 mTorr. Fig 1 displays the successful simultaneous quantitation of

the abovementioned analytes with their respective internal standards.

Oxidative stress induced by oral single-dose of maleic acid in rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0183675 October 26, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0183675


Measurements of urinary creatinine

Urinary creatinine was used to normalize the measured levels of the four biomarkers, and the

creatinine concentration was measured as the creatinine-picrate complex with a U-2000UV/

VIS spectrophotometer (Hitachi, Tokyo, Japan) at a wavelength of 520 nm. The urinary levels

of each analyte were expressed as μg/g creatinine.

Statistical analyses

One-way ANOVA for multiple comparisons and Student’s t-test for unpaired data were calcu-

lated using SAS 9.2 to determine statistical significance. Results were considered statistically

significant at p<0.05 and<0.01.

Results

Effect of maleic acid on body weight

On the day of exposure, the average body weights of SD male rats in the control, low- and

high-dosed groups were 211.0, 213.0 and 214.6 g, respectively (shown in Table 1). After the

7-day single-dose study, the average body weights of control group become 263.2 g and those

Fig 1. Chromatogram of rat urine samples using offline SPE-LC-MS/MS; the quantitation channels are marked with *.

https://doi.org/10.1371/journal.pone.0183675.g001
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of low- and high-dosed groups were 235.8 and 239.1 g, respectively. Slowing down of increases

in average body weight of the low- and high-dosed group was statistically significant (p = 0.023

and 0.01, respectively). Furthermore, average body weights of the female MA-treated rats did

not demonstrate significant fluctuations compared to those of male group (displayed in S1 and

S2 Figs).

Effect of maleic acid on the urinary biomarkers

Male rats. This study presented 7 day-excretion profile of the four urinary biomarkers for

the control and treated male rats (Fig 2A–2D). 24 h after MA exposure, our results demon-

strated that marked differences in urinary level of 8-OHdG was observed in the high-dosed SD

rats when compared to that of the untreated rats (Fig 2A). Such significant increase in response

persisted from 0.5 to 5 d post dosing. The highest observed urinary concentration of 8-OHdG

was 9.87 ± 0.38 μg/g creatinine, which occurred at 24 h post exposure in the high-dose group,

with the increase in urinary 8-OHdG in the high-dose group attaining statistical significance

at the 0.01 level (p = 0.003).

The observed elevation and persistence in the urinary concentration of 8-NO2Gua was sim-

ilar to that of 8-OHdG; in high-dosed male rats, the urinary concentration of 8-NO2Gua

peaked at 24 h of dosing (12.42 ± 1.29 μg/g creatinine), attained statistical significance at the

0.01 alpha level, and gradually decreased to levels comparable to that detected in the low-dose

and control groups (Fig 2B).

Urinary 8-isoPGF2α concentrations for the control and low-dosed groups peaked at 0.75 ±
0.17 and 1.21 ± 0.17 μg/g on day 1 (Fig 2C); such increase did not attain statistical significance

(p = 0.073). For the high-dose group, highest mean concentrations occurred on day 2 at 2.26 ±
0.24 μg/g with a p-value less than 0.01 (p = 0.006). Notably, levels of 8-isoPGF2α remained ele-

vated until day 6. Furthermore MA exposure did not appear to induce meaningful fluctuations

in urinary HNE-MA levels in either treatment groups (Fig 2D). In the low- and high- dosed

groups, peak concentrations occurred on day 1 at 23.29 ± 3.03 and 24.98 ± 3.77 μg/g. In gen-

eral, concentrations of the four biomarkers in the control rats were lower than those in the

treatment groups and maintained stable over the course of the study.

Female rats. Concentrations of 8-OHdG, 8-NO2Gua and 8-isoPGF2α and HNE-MA all

peaked within 48 h of exposure to MA (Fig 3A–3D) with minor fluctuations detected for the

Table 1. Body weight change in maleic acid-treated SD rats.

Group (mg/kg) Day 0

(BW in g)

Day 1

(BW in g)

Day 2

(BW in g)

Day 3

(BW in g)

Day 4

(BW in g)

Day 5

(BW in g)

Day 6

(BW in g)

Day 7

(BW in g)

Male

0 233.4a ± 7.348b 211.0 ± 8.354 234.4 ± 8.203 218.0 ± 8.093 240.2 ±10.40 255.0 ±12.30 254.8 ± 11.28 263.2 ± 9.549

6 231.6 ± 11.59 213.0 ± 12.02 235.0 ± 16.66 221.4 ± 13.46 244.6 ± 11.33 255.2 ± 16.69 258.4 ± 19.82 *235.8 ±19.63

60 234.4 ± 11.57 214.6 ± 11.33 241.6 ± 10.17 226.6 ± 11.15 243.4 ± 11.67 259.0 ± 13.37 264.6 ± 13.18 *239.1 ± 13.32

Female

0 195.0a ± 3.768b 191.8 ± 10.32 191.2 ± 7.190 196.6 ± 7.956 198.6 ± 9.044 204.0 ± 8.573 207.2 ± 9.091 206.2 ± 7.949

6 205.6 ± 17.40 196.4 ± 13.05 196.6 ± 14.47 201.0 ± 14.97 207.6 ± 14.94 213.8 ± 14.72 217.4 ± 19.07 215.0 ± 19.27

60 194.6 ± 5.549 176.2 ± 3.153 190.8 ± 4.147 191.8 ± 4.266 196.8 ± 9.471 197.4 ± 12.72 198.4 ± 13.48 199.4 ± 2.792

BW: body weight
aMean of observed values (n = 5)
bStandard deviation of observed values (n = 5)

*statistically significant at p <0.05

https://doi.org/10.1371/journal.pone.0183675.t001
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duration of the study. In general, our data demonstrated dose-dependent responses in urinary

levels of 8-OHdG, 8-NO2Gua and 8-isoPGF2α; which was also observed in male rats (Fig 3A to

3C). Moreover, variations in the levels of the four biomarkers in the low-dose group were not

statistically meaningful. For 8-OHdG, maximum mean concentrations of 8-OHdG were

detected on day 1 (low-dose) and 2 (high-dose) after dosing. Our results demonstrated that the

increase in 8-OHdG levels in the high-dose group reached statistical significance at day 2

(p< 0.01).

In high-dosed group, urinary 8-NO2Gua concentrations peaked on day 2 and decreased

gradually to levels similar to that of low-dose and untreated rats by day 7. Statistically signifi-

cant differences (p<0.05) in urine concentrations of 8-NO2Gua as compared to the controls

were sporadic, only on day 1 and day 2 (Fig 3B). Much like that exhibited in the male rats, the

shifts in the urine concentrations after MA exposure did not reach significance level denoted

Fig 2. Excretion profiles of four oxidative biomarkers after single-dose exposure to maleic acid in male rats. (a) 8-OHdG levels remain elevated and

persist until day 5; (b) 8-NO2Gua levels display similar trend to that of 8-OHdG; (c) 8-isoPFG2α levels demonstrate elevation and persistence until day 6; (d)

HNE-MA levels remain less affected after single-dose exposure to maleic acid. *, ** indicate statistically significant at p<0.05 and 0.01, respectively. Dose

groups receiving 0 mg/kg (●), 6 mg/kg (�),and 60 mg/kg (▼) are denoted accordingly.

https://doi.org/10.1371/journal.pone.0183675.g002
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at α = 0.05. For 8-isoPGF2α, the increases in urinary levels in both dose groups occurred 2 days

after dosing. In particular, the observed maximum mean concentration of 8-isoPGF2α from

the high-dose group was statistically significant at the 0.05 alpha level. We observed that for

rats exposed to MA, concentrations of these three aforementioned biomarkers decreased grad-

ually over time; only that of 8-OHdG remained distinctly and consistently higher than those

measured in the control group. None of the fluctuations in urinary concentrations of

HNE-MA reached statistical significance at both 95 and 99% confidence intervals.

Discussion

The main objective of this study was to use a sensitive and non-invasive analytical method to

investigate the effect of MA consumption on the formation of biomarkers indicative of

Fig 3. Excretion profiles of four oxidative biomarkers after single-dose exposure to maleic acid in female rats. (a) 8-OHdG levels remain slightly

elevated over the course of the study; (b) 8-NO2Gua levels display similar trend to that of 8-OHdG; (c) 8-isoPFG2α levels demonstrate statistical significant

elevation on day 2; (d) HNE-MA levels remain less affected after single-dose exposure to maleic acid. *, ** indicate statistically significant at p<0.05 and 0.01,

respectively. Dose groups receiving 0 mg/kg (●), 6 mg/kg (�),and 60 mg/kg (▼) are denoted accordingly.

https://doi.org/10.1371/journal.pone.0183675.g003
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oxidative stress (8-OHdG), inflammation (8-No2Gua) and lipid peroxidation (8-isoPGF2α and

HNE-MA). These aforementioned burdens can eventually result in cellular or tissue damage,

manifested as cell necrosis or apoptosis [36–38]. Recently, Tapia and associates demonstrated

that single intraperitoneal injection (i.p.) of MA, at 400 mg/kg, induced oxidative stress in kid-

ney tissues; however, no other doses nor routes of administration was investigated [39]. To

our knowledge, this present study is the first to examine whether oxidative burden occurs after

single oral low-level exposure to MA at relatively low doses. Our study demonstrated that,

with the exception of HNE-MA, statistically significant elevations in urinary levels of 8-

OHdG, 8-NO2Gua and 8-isoPGF2α, which suggest that detoxification of MA induced oxidative

burden and inflammatory responses through the production of ROS and RNS.

With the kidneys as the known major target organs of MA toxicity, several in vitro and in
vivo studies have postulated the mechanisms through which renal damages occur. Some dem-

onstrated that the preferential transportation of MA via organic anion transporters (OAT),

and the formation of maleyl-CoA both induce dose-dependent ATP depletion, thus result in

damages to the proximal tubule and renal ischemia [23, 40]. An alternate concept state that

maleate toxicity stems partially from the build-up of oxidative stress, which is due to MA’s abil-

ity to deplete GSH [20, 41, 42]; other studies note that MA exposure leads to the formation of

heme oxygenase-1, an enzyme formed as a response to oxidative stress [16, 19]. Given these

discrepancy, our findings lend support to the latter toxicological mechanism of action since rat

urine analysis confirmed statistically significant elevated urinary levels of 8-OHdG, the oxida-

tive DNA lesions formed when ROS react with 2’-deoxyguanosine, as well as 8-NO2Gua, a

nitrative DNA adduct caused by reactive nitrogen species and a reliable inflammatory bio-

marker [43–45].

Previously, our group published the pharmacokinetic study of MA upon oral administra-

tion [8]. In that study, MA is rapidly absorbed and metabolized upon consumption, with the

majority of administered dose excreted through urine. Our current results suggest that even

after MA has been absorbed and excreted, the elevated levels of the abovementioned biomark-

ers persisted for days after dosing. The occurrence of oxidative stress in light of rapid kinetic

behavior upon administration was reported in established research. Similar observations were

noted in monosodium glutamate (MSG), a compound with comparable pharmacokinetic

behavior to MA. Repeated i.p. injections and oral intake of MSG induced oxidative stress, as

evidenced by elevated levels of malondialdehyde (MDA) in rat thymus and kidneys [46–48].

However, the effect between single-dose exposure and oxidative burden formation is less

explored. Therefore, to our knowledge, our study is to first to examine the time-course effect

of single-dose oral exposure to MA on the kinetics of oxidant burden formation and clearance

in vivo; since the excretion of these biomarkers in urine represents the average rate of oxidative

and nitrative damage in the body, both of which are important factors in predicting disease

development [49, 50]. Furthermore, our results demonstrated that regardless of sex, dose-

dependent increases in the excreted levels of the 8-OHdG and 8-NO2Gua within 12 h of expo-

sure. Current findings suggest that even after MA has been absorbed and excreted, the elevated

levels of the abovementioned biomarkers persisted for days after dosing. As a result, we postu-

late that MA consumption may have weakened cellular antioxidant defenses, which is reflected

in the increased formation of detectable 8-OHdG, 8-No2Gua and 8-isoPGF2α in urine. There-

fore, our results counter previous observations that MA induces neither oxidative stress nor

inflammatory response and thus promote the concept that oxidative stress is, at least in part,

responsible for MA-induced cytotoxicity.

8-isoPGF2α is a biomarker of peroxidative attack of polyunsaturated fatty acids and mem-

brane lipids [51, 52]. The statistically meaningful increase in 8-isoPGF2α levels signals not only

lipid peroxidation, but can also be a powerful predictor of kidney and lung diseases, since high
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urinary levels of 8-isoPGF2α may also reflect cellular damage to the lungs [30]. Considering

that the general population is likely to be exposed to MA via inhalation of automobile exhaust

and aerosols [2, 3], future studies could examine whether chronic inhalation exposure to MA

would also induce similar phenomenon observed in our study.

Existing research explored whether sex- and age-related differences contribute to variations

in oxidative biomarkers [53, 54]. Some studies demonstrated that plasma concentrations of cer-

tain biomarkers, such as F2-isoprostanes, are higher in men than women, while others found

that post-menopausal women have higher levels of urinary 8-isoPGF2α compared to those who

are premenopausal [55–57]. The aforementioned differences indicate that certain oxidant

attacks, such as lipid peroxidation, may be more pronounced in males than females due to dif-

ferent expressions of antioxidant enzymes [58]. Although Brunelli and team reported that varia-

tions in oxidative stress biomarkers observed in rats are not attributed to sex-related differences

[59], the preliminary results of our study revealed that, in male rats, urinary concentrations of

8-OHdG, 8-NO2Gua, 8-IsoPGF2α, are more likely to reach statistical significance compared to

that detected in female rats.; previous research reported similar observations in urinary

8-OHdG levels in humans [60, 61]. Thus, our initial findings suggest that female rats may be

less susceptible to oxidative stress incurred by MA, even though higher urinary creatinine levels

of 8-OHdG and 8-IsoPGF2α were detected in female rats. This observed phenomenon is in

keeping with previously reported literature, which revealed that 8-OHdG levels are higher in

females than males [62, 63]. Additional and more complex animal studies, along with different

animal models and varied dosing regimen, analyzing biomarkers in plasma, kidneys and liver

can lend credence to our findings.

The data presented in this study demonstrated that urinary concentrations of the four ana-

lytes from the treatment groups remained consistently higher than those from unexposed rats.

Such results indicated that single-dose exposure lead to accumulation and persistence of these

biomarkers, implying inadequate detoxification of MA at the cellular level and thus may signal

the inception of cytotoxicity. Additional studies with a larger animal sample size could look

into whether the abovementioned biomarkers can be detected in the liver or kidneys; future

studies are needed to reveal conspicuous cellular structure alterations from both dose groups,

since our initial histopathological observations fell short to reveal physio-morphological

changes.

Conclusion

The present study is the first, to our knowledge, to confirm that single-dose oral exposure to

MA elevates urinary levels of 8-NO2Gua, 8-OHdG, and 8-isoPGF2α, which are representative

biomarkers of oxidative and peroxidative damage, as well as inflammation. Our analysis also

demonstrated that the elevated levels of the aforementioned biomarkers remain for days after

one-time exposure. These findings promote the concept MA-induced hepato- and nephrotoxi-

city arise, at least in part, from oxidant and nitrative burdens. Considering the increase in uri-

nary levels of HNE-MA was not statistically significant, and the histology readings were

inconclusive, additional repeat-dose exposures to MA can help confirm such findings.
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