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Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral

injuries to workers. Active exoskeletons can help workers lift loads by providing power

assistance, and therefore reduce the moment and force applied on L5/S1 joint of human

body when performing lifting tasks. However, most existing active exoskeletons for

lifting assistance are unable to automatically detect user’s lift movement, which limits

the wide application of active exoskeletons in factories. In this paper, we propose a

simple but effective lift detection strategy for exoskeleton control. This strategy uses

only exoskeleton integrated sensors, without any extra sensors to capture human

motion intentions. This makes the lift detection system more practical for applications in

manufacturing environments. Seven healthy subjects participated in this research. Three

different sessions were carried out, two for training and one for testing the algorithm.

In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled

in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was

executed with different techniques. The collected data were used to train the lift detection

model. In the testing session, the exoskeleton was controlled in order to deliver torque

to assist the lifting action, based on the lift detection made by the trained algorithm. The

across-subject average accuracy of lift detection during online test was 97.97 ± 1.39%

with subject-dependent model. Offline, the algorithm was trained with data acquired

from all subjects to verify its performance for subject-independent detection, and an

accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was

quantitatively evaluated and the time delay was <160ms across different lifting speeds.

Surface electromyography was also measured to assess the efficacy of the exoskeleton

in assisting subjects in performing load lifting tasks. These results validate the promise

of applying the proposed lift detection strategy for exoskeleton control aiming at lift

assistance.

Keywords: lift detection, lift assistance, hip exoskeleton, exoskeleton control, EMG reduction

INTRODUCTION

Repetitive lifting of heavy objects is one of the most common factors causing health problems such
as low back pain (Punnett et al., 2005) and work-related musculoskeletal disorders (da Costa and
Vieira, 2010). However, a lot of workers have to lift heavy loads during working. For example, the
sixth European Working Conditions Survey carried out in 2015 in 35 countries revealed that 32%
of workers perform tasks like carrying or moving heavy loads, and 10% of health and personal
care workers (e.g., nurses) are required to lift and carry patients (Eurofound, 2016). These two
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proportion values change very little when compared with those
in 2005 (32 and 8%) and 2010 (34 and 9%), which implies this
situation has not changed for more than 10 years. In recent
years, some passive exoskeletons have been developed and proved
to be able to reduce the muscle activities at the low back
when performing lifting tasks (Abdoli-e et al., 2006; Abdoli-
Eramaki et al., 2007; Abdoli-e and Stevenson, 2008; Lotz et al.,
2009; Wehner et al., 2009; Whitfield et al., 2014; Masood et al.,
2016). These systems typically rely on spring-based mechanisms,
designed so that the energy stored in the lowering phase is
exerted back to the user in the lifting phase. Despite the positive
results, such systems cannot generate high forces or torques,
and are not versatile for use in tasks different from lifting; for
example, when used in walking, they can hinder the movement
and cause increased leg muscle activity, discomfort and muscle
deconditioning (de Looze et al., 2016).

Active exoskeletons seem to be more promising in assisting
workers and reducing the risk of lumbar vertebral injuries due to
the higher versatility of the control system and external power
source. Over the last decade, several active exoskeletons have
been developed for lifting assistance worldwide (Naruse et al.,
2005; Kobayashi and Nozaki, 2007; Tanaka et al., 2008; Aida et al.,
2009; Kadota et al., 2009; Kobayashi et al., 2009; Muramatsu
et al., 2011; Li, 2013; Yu et al., 2015) and were demonstrated
to reduce the musculature effort of the back extensor muscles
(Li, 2013; Muramatsu et al., 2013). However, in many cases the
control systems do not independently detect the user’s intention,
and therefore are unable to automatically trigger the delivery of
the assistance at the right moment: power assistance is usually
manually triggered by users with extra joysticks or control
buttons. Kobayashi and Nozaki used two buttons to control the
supply and release of compressed air in the McKibben artificial
muscle (Kobayashi and Nozaki, 2008). The button controller was
tied to user’s belt and the user could easily reach the buttons
and trigger power assistance by himself. In a follow-up study,
Muramatsu et al. simplified the button controller by mounting
two small control switches on user’s fingers. When intended to
lift a load, the user was required to push the control switch to
trigger power assistance (Muramatsu et al., 2013). Though this
approach is simple and easy to operate, it has some limitations.
First, extra devices need to be placed on user’s fingers and
users have to manually control the exoskeleton, which increases
user’s cognitive burden and introduces inconvenience to the
user. Second, this approach makes lifting tasks intermittent
and reduces work efficiency, which could reduce exoskeletons
acceptability in work environments. Third, since user’s hands are
usually occupied when lifting heavy loads, mistaken operations
may happen when grasping the load. For all these reasons, the
development of control systems capable to automatically detect
the lift movement as soon as it starts can turn out fundamental.

Compared to the studies on lifting assistance exoskeleton
development, research on lift detection has not been deeply
investigated and the number of related studies is limited (Naruse
et al., 2003; Kawai et al., 2004). Kawai et al. proposed a
myoelectric controller for a power assist device (Kawai et al.,
2004). Artificial neural network (ANN) was used to process
electromyographic (EMG) signals measured from three front

and back thigh muscles. The controller could detect user’s lift
intentions and automatically output power assistance without
control buttons. The limitation of this approach is that extra
electrodes need to be placed on user’s body, which could
be not acceptable for workers in real scenarios (e.g., on the
production line). Furthermore, EMG signals usually vary over
time due to muscle fatigue, sweats, electrode displacement, skin
conductivity changes, and other factors, which could influence
the performance of lift detection. The optimal lift detection
system for exoskeleton control should not only make accurate
and timely detection of lift intentions, but also be simple and
well integrated with exoskeleton devices, which is crucial for
practical application. However, although there are some works
using exoskeleton signals to detect other locomotion tasks (e.g.,
walking, stair ascent and descent, sitting down, and standing
up) (Parri et al., 2017), to the best of our knowledge, there
are no existing studies about the development of lift detection
algorithms which use the signals from the exoskeleton’s onboard
sensors.

In this paper, we proposed a simple rule-based lift detection
strategy based on sensors embedded in an active pelvis orthosis
(APO). The algorithm is designed to detect lift movement at
the very beginning of the lifting procedure, namely as soon as
the user starts performing the lift movement. The set of sensors
included two on-board encoders to measure hip joint angles of
both sides and an inertial measurement unit (IMU) to measure
kinematic signals of the trunk. To validate the algorithm for
exoskeleton lift detection, seven healthy subjects were recruited.
Parameters of the lift detection model were determined by data
collected in two training sessions. During online test, the trained
algorithm was used to detect the lift movement and control
the exoskeleton to provide assistance. To evaluate whether
the algorithm could be generalized, we also performed offline
analysis of lift detection with subject-independent detection
model. Timeliness of lift detection algorithm is important for
real-time control of assistive exoskeletons, because it determines
whether users can receive power assistance in time and further
impact the performance of movement assistance. Therefore,
apart from inquiring subject’s subjective feedback on the
timeliness of assistance supply, we also made quantitative
evaluation of time delay of the detection. Finally, we assessed
the effectiveness of the developed lift detection algorithm in
conjunction with the delivery of assistive torque by measuring
the EMG signals of three back muscles.

MATERIALS AND METHODS

Experimental Setup
The experimental setup comprises: (i) the APO, (ii) an IMU, and
(iii) a commercial EMG recording system.

The APO is a light-weight lower-limb exoskeleton for the
assistance of the hip flexion/extension movement (Figure 1A).
The exoskeleton used in this study is an improved version
of the one presented in Giovacchini et al. (2015) and has
been developed by the Wearable Robotics Laboratory of The
BioRobotics Institute (Scuola Superiore Sant’Anna, Pisa, Italy).
It is composed of (i) a frame structure connected to the user’s

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2018 | Volume 12 | Article 17

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Real-Time Lift Detection Strategy

FIGURE 1 | Experimental setup of this study. (A) A subject wearing the APO endorsed with an IMU on the back. (B) Electrodes placement for targeting the Lumbar

Erector Spinae (LES), the Erector Spinae Iliocostalis (ESI) and the Thoracic Erector Spinae (TES). (C) Back view of the experimental setup. (D) Lateral view of the

experimental setup. The subject provided written informed consent for the publication of this image.

trunk bymeans of straps and braces, and (ii) two rotating linkages
connected with the user’s thighs. The two links are actuated by
means of two series elastic actuator units, which are able to
provide up to ±22 N·m of peak torque. In this study, we took
advantage of the torque delivered by the actuators to extend the
hips to provide also an extension torque to the trunk to assist the
lifting movement.

The APO controller architecture is hierarchical and developed
on two levels. The high-level layer runs at 100Hz and hosts the
assistive strategy, i.e., the way to set the desired torque profile.
The APO can be controlled in two different modalities, namely
in transparent mode (TM, i.e., the exoskeleton is providing no
assistive torque, but is fully transparent to user’s movements),
and in assistive mode (AM, i.e., the exoskeleton is delivering the
torque to assist the movement). The low-level layer is a field
programmable gate array (FPGA) running at 1 kHz; it is in charge
of controlling the torque delivered by the actuators. The assistive
strategy is designed to deliver an assistive torque based on hip
joint kinematics; the delivery of the torque starts accordingly

to the detection of the lifting movement by means of the lift
detection algorithm. The assistive torque is computed according
to (1):

{

θmean =
θR+θL

2
τd = −(A · θmean + B · θ̇mean + C)

(1)

where θR and θL are respectively the right and the left hip
joint angles, θmean is the averaged joint angle, θ̇mean is the
first derivative of the averaged joint angle, τd is the resulting
desired torque. A, B, C are model constants, which are adjusted
according to subject’s preference on power assistance. The sign of
the torque is the opposite of the joint angle. An example of the
assistance torque supplied by the APO is shown in Figure 3C.

An IMU is placed on the backpack of the exoskeleton
(Figure 1A). A sensory fusion algorithm is used to calculate
Euler angles using raw IMU signals. The roll angle describes the
movement of the trunk in the sagittal plane and it is used in the
algorithm of lift detection. Note that IMU signals are only used
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for lift detection in this research. Sampling rate of all sensors is
100Hz.

Electromyography (EMG) was recorded by means of a
TeleMyo 2400R EMG recording system (Noraxon Inc., AZ,
USA). Pre-gelled bipolar Ag/AgCl surface electrodes (Pirrone &
Co., Milan, Italy) were used to collect EMG signals. Recorded
EMG signals were sampled at 1.5 kHz and low-pass filtered at
500Hz by the EMG recording system.

The whole system communicates through a UDP link. The
three devices (i.e., the APO, the IMU, and the EMG recorder)
were connected by Ethernet cables through a switcher to the
main control laptop. In this way, it was possible to save all data
synchronously.

The setup also comprises a 5-kg box, a 40-cm stool, a 90-cm
table, a 20-cm raised stand from the ground, and a screen placed
on the table in front of the subjects displaying an intermittent
LED pacing the motion (Figures 1C,D).

Experimental Protocol
Seven healthy male subjects participated in this study (27.9 ±

2.3 years old, 178.1 ± 8.1 cm, 70 ± 6.4 kg). Experiments were
carried out at the premises of The BioRobotics Institute of
Scuola Superiore Sant’Anna (Pontedera, Italy). The research was
approved by the local ethical committee and was conducted
in accordance with the principles stated in the Declaration of
Helsinki.

Before starting the experiment, the subjects were prepared for
EMG signals measurements (Figure 1B). Surface electrodes were
placed on the left side of the back over three muscles: Lumbar
Erector Spinae (LES), Thoracic Erector Spinae (TES) and Erector
Spinae Iliocostalis (ESI). Electrodes were placed following the
SENIAM guidelines (Hermens et al., 2000). Then, two different
maximum voluntary contractions (MVCs) were recorded against
a resistance for 5 s and 1min apart (Frost et al., 2009). The
maximum value of the recordings was used as a reference to
normalize the EMG signals (Frost et al., 2009).

The experiment consisted of three sessions. In the first two
sessions, the APO was used in TM, so that subjects could move
freely without perceiving any resistance to their movements. Data
were collected for the training of lift detection model and offline
analysis. The third session was performed for online evaluation:
the APO was used in AM and torque assistance delivery was
automatically triggered by the lift detection module. In this
experiment, subjects were asked to lift a 5-kg box, and a visual
interface was designed to pace the lifting and lowering actions.

Session 1
Subjects were asked to perform the following tasks and repeat
them 10 times in each experimental trial. Once the visual
interface displayed a visual cue, subjects were instructed to lower
the body to reach the load on the stand, lift it up and put it
on the table, return to stand-up posture and wait for the next
visual cue; after a new visual cue was displayed, they were then
instructed to reach the load on the table, lower it down and
placing it on the stand, and finally return back to stand-up
posture.While the pace of lifting/lowering was determined by the
visual cue, the velocity of the lifting/lowering movement was at

the user’s self-selected speed. A total of five lifting conditions with
different lifting techniques were performed (Table 1), meaning 5
experiment trials, with only 1 lifting condition tested per trial.

Session 2
Subjects were asked to perform the following movement
sequence in each experiment trial: starting from a sitting position,
standing up, walking toward the load, performing lifting and
lowering tasks mentioned in session 1 (only once), walking back
to the seat and sitting down (Figure 2). A total of 20 experimental
trials were performed and each lifting condition was tested four
times.

Session 3
The sequence ofmovements was the same as in session 2, with the
main difference that subjects performed only “freestyle” lifting
tasks with the box placed in front of them (i.e., condition 3
in Table 1). Instead of performing a single lift, subjects had to
perform three repetitive lifts in each trial. In addition, in order
to verify the robustness of the algorithm against different lifting
speeds, subjects were asked to perform lift tasks at normal, slow
and fast speeds. In particular, subjects were asked to choose
their self-selected lifting speed, which was labeled as “normal”;
then, “slow,” and “fast” speeds were obtained by asking subjects
to perform lifting slower and faster than in normal speed,
respectively. A total of 30 experiment trials were performed, with
10 trials performed for each lifting speed.

Lift Detection Algorithm
A block diagram depicting the lift detection algorithm is
shown in Figure 3A. It is a two-level rule-based algorithm.
In the first level, the algorithm aims at detecting the possible
moment of lifting using hip joint angles alone. In the second
level, the algorithm aims at re-checking whether the detected
lifting is a real one or represents other activities (e.g., sitting
or walking) that could be mistakenly detected as lifting.
Hip joint angles of both sides and Euler angles measured
by the IMU on the trunk are used in the second level of
the algorithm. Details of these two levels are described as
follows.

TABLE 1 | Lifting conditions in session 1 and 2.

Index of different

lifting conditions

Initial position Lifting technique

Front left Front Front right Stoop Squat Freestyle

1
√ √

2
√ √

3
√ √

4
√ √

5
√ √

Stoop lifting is the one in which the knee joints are almost fully extended and the hip joints

and vertebral column are flexed to reach the load, while squat lifting is the one in which the

knee joints are fully flexed and the trunk is held as vertical as possible (Burgess-Limerick,

2003). Freestyle lifting is subject’s preferred technique when performing the lifting task.
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FIGURE 2 | Signal measurement for one representative trial of session 2 along with a graphical representation of the performed task. Blue and red curves denote hip

joint angle of the right and left side, respectively. Green curve denotes the roll angle measured by the IMU on the backpack.

FIGURE 3 | (A) Block diagram of lift detection algorithm. The light region denotes the first level of the algorithm, while the dark region denotes the second level. The

second level of the algorithm is only performed when lifting is detected in the first level. θdiff is defined as |θL − θR|, where θL and θR denote hip joint angle of the left

and right side, respectively. θmean is defined as (θL + θR)/2 and θstd is the standard deviation of (θL + θR) over the last 100ms. Tgrasp is the duration of current

grasping. β = θmean − ϕ, where ϕ is roll value of the IMU on the backpack of the exoskeleton. β could be considered as a rough estimation of thigh angle in the

sagittal plane. i denotes the current sample and igrasp0 denotes the sample at the initial moment of grasping in current lifting. HasPeak equals to 1 if a peak of

(θL + θR) has occurred within the grasping phase, otherwise it equals to 0. HasValley equals to 1 if a valley of (θL + θR) is detected within the lifting phase, otherwise it

equals to 0. α1 to α8, and T0 are predefined thresholds. Note that α1, α7 and α8 are adjusted according to the training data, while the other thresholds are

unchanged for different subjects. (B) Phase definition in the first level of lift detection algorithm. (C) Assistance torque supplied by the APO when a lift is performed.

First-Level Strategy
The first-level strategy was designed by assuming that before
lifting happens, there is usually a grasping action. Therefore, the
first level of the algorithm divides the lifting tasks into three
main phases:Grasp, Lift, andOther (Figure 3B). Since these three
phases happen sequentially, several rules are designed to detect
transitions between them (Figure 3A).

Other–Grasp transition
In the Grasp phase, the hip joint reaches peak flexion angle and
the user holds the grasping posture for a while (at least several
hundredmilliseconds), resulting in small hip joint angle variance.
Therefore, the detection of the transition from Other phase to
Grasp phase follows two main rules: (1) the average hip joint
angle of both sides θmean is larger than a flexion angle α2, and
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(2) the standard deviation of hip joint angle θstd is smaller than
a predefined threshold α3. Note that flexion is defined positive
and extension negative. In addition, since hip joint angles of both
sides are usually very similar during symmetric lifting a third rule
was used to detect the Grasp phase: (3) the absolute difference
value of left hip joint angle and right hip joint angle θdiff is smaller
than a threshold value α1. This rule helps to avoid mistakenly
detecting some asymmetric locomotion tasks (e.g., walking) as
lifting.

Grasp–Lift transition
In the lifting phase, the hip joint starts to extent and move from
a position corresponding to maximum flexion to the stand-up
posture, resulting in a larger extension angular velocity than
in grasping phase. Therefore, the detection of transition from
Grasp phase to Lift phase follows two main rules: (1) the peak
of hip joint angle has occurred, and (2) the standard deviation
of average hip joint angle of both sides should be larger than a
predefined threshold α4. Generally, the Grasp phase is very short
in time. To reduce the impact of possible false detection of Grasp
phase, the detection of Lift phase has also to satisfy a third rule:
(3) the duration of currentGrasp phase is shorter than a threshold
T0; otherwise, current phase is interpreted as Other.

Lift–Other transition
Apart fromGrasp phase and Lift phase, the rest is defined asOther
phase. At the end of Lift phase, the hip joint angle reaches the
maximum extension posture. From the observation of the hip
joint angle profile, we noticed that the hip joint angle has much
smaller variance than in Lift phase or that a valley value of hip
joint angle occurs. Therefore, the detection of transition from
Lift phase to Grasp phase has to satisfy the following rules: (1)
the average hip joint angle of both sides θmean is smaller than a
predefined threshold α5, and (2) the standard deviation of hip
joint angle θstd is smaller than a threshold α6 or the valley of hip
joint angle has been detected.

Second-Level Strategy
In preliminary experiments, we found that subjects sometimes
extend their trunks at a relatively fast speed immediately
after sitting down. Because of the similarity between hip joint
angles observed during lifting and trunk extension after sitting
(Figure 2), using the information from only hip joint angles
can cause erroneous lift detection. Therefore, the second level
of the algorithm needs to be performed using the additional
information provided by the IMU; additional detection rules
were implemented. It is worth noting that the second level of the
algorithm is only performed when a lift movement is detected
in the first level: the “lift” detected in the first level is labeled as
“possible,” and an intermediate phase is defined as Possible Lift. If
the detection rules are satisfied in the second level, the “possible
lift” is confirmed as “real lift,” namely the phase passes from
Possible Lift to Lift; otherwise, the decision flow goes to Other
phase.

The second level of the algorithm exploited hip joint angles
and IMU roll angle to estimate the thigh angle. Based on the
thigh angle we used the following two features: f1 = θmean and

f2 = β (i) − β(igrasp0), where θmean is the average hip angle
of both sides and β is defined as θmean − ϕ (ϕ is roll value of
the IMU on the backpack of the exoskeleton, i is the current
iteration and igrasp0 is the iteration when Other-Grasp transitions
occurred). Feature distribution of sitting and lifting with different
techniques are shown in Figure 4 for one representative subject.
To confirm the “possible lift” as “real lift,” the following two rules
have to be met: (1) f1 ≥ α8, and (2) f2 ≤ α7, where α7 and α8 are
two additional thresholds.

Data Analysis
Lift Detection Performance Evaluation
To evaluate the reliability of the lift detection strategy, accuracy,
precision and recall values were calculated. Their definitions are
provided in the following Equations (2–4):

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(2)

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

where tp is the number of true-positive, which denotes lift
correctly detected as lift; fp is the number of false-positive, which
denotes non-lift activity mistakenly detected as lift; tn is the
number of true-negative, which denotes non-lift activity not
detected as lift; fn is the number of false-negative, which denotes
lift not detected as lift. Note that whether lift and non-lift actions
are correctly detected is manually determined by observing the
raw signals.

Three different assessments of the lift detection performance
were carried out for: (i) preliminary evaluation of the
performance of subject-dependent training, (ii) online testing the
algorithm after subject-dependent training and for (iii) offline
evaluating subject-independent performances. In the first two
analyses, the thresholds used by the rule-based algorithm were
set for each subject, based on training data, whereas the algorithm
was tested in training data and session 3 data respectively for (i)
and (ii). In the third analysis, we set the same thresholds for all

FIGURE 4 | Features distribution for one representative subject for sitting (No

lift) and lifting with different techniques. Orange dashed lines show thresholds

identified for f1 and f2.
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the subjects based on the observation of all training data from
all subjects, and then tested on session 3 data. To compare the
performance of subject-dependent and subject-independent lift
detection, paired-samples t-test analysis was performed.

To quantitatively evaluate the timeliness of the lift detection
strategy, time delay of lift detection was calculated for session
3 data. Since we did not have external sensors to determine
the initial moment of lifting, we defined the time delay as the
duration from the time instant of hip flexion angle peak to the
one corresponding to lift being detected by the algorithm. One-
way repeated measures ANOVAwas performed to investigate the
influence of lifting speed on time delay.

EMG Analysis
The collected EMG signals were high-pass filtered (3rd-order
Butterworth filter, 20Hz cut-off frequency), rectified, and low-
pass filtered (3rd-order Butterworth filter, 2Hz cut-off frequency)
to obtain the enveloped signal. Finally, the EMG signals were
normalized by the maximum of the MVC. The integral of the
EMG (iEMG) was computed according to Equation 5 over the
time window of correct lifting detection:

iEMG = 1t ·
∑N

i=1
Xi (5)

where Xi is the ith sample of the signal, N is the number of
samples in the epoch and 1t is the integration step.

iEMG was computed to assess whether the assistive strategy
(namely the combination of lift detection and assistive torque)
could reduce the muscular effort requested to back extensor
muscles during the lifting action. iEMGs were averaged across
subjects and paired-samples Wilcoxon signed-rank test was
used to check for differences among transparent and assistive
conditions.

Data analysis and statistics were performed in Matlab 2017
(The Mathworks, Natick, USA). All statistical analyses were
considered significant for p < 0.05.

RESULTS

Training Performance of
Subject-Dependent Lift Detection
Algorithm
To have a basic understanding of whether the lift detection
model was well trained, it was offline tested on the training data.
Averaged across all the subjects, accuracy was 99.38 ± 0.43%,
precision was 99.5 ± 0.3%, and recall was 99.8 ± 0.2%. Most of
the errors were mistaken detection of sitting down as lifting.

Online Evaluation of Subject-Dependent
Lift Detection Algorithm Performance
Averaged across all subjects, accuracy was 97.97 ± 1.39%,
precision was 97.8 ± 1.5%, and recall was 100% (Figure 5). No
miss detection of lifting was observed for all subjects. An example
of online test is shown in Figure 6.

Offline Evaluation of Subject-Independent
Lift Detection Algorithm Performance
Averaged over all the subjects, accuracy was 97.48 ± 1.53%,
precision was 97.5± 1.6%, and recall was 99.8± 0.2% (Figure 5).
Compared to the performance of subject-dependent lift detection
algorithm, accuracy, precision and recall reduced by 0.49, 0.3,
and 0.2%, respectively. However, none of them was statistically
significant (p = 0.110 for accuracy, p = 0.350 for precision, and
p= 0.207 for recall).

Time Delay of Lift Detection
For all subjects there was no significant delay in torque delivering
when lifting tasks were performed. Note that only correct lift
detections were considered for time delay calculation. The values
of the time delay changed along with the lifting speed (Figure 7):
156 ± 7ms, 120 ± 10ms, and 102 ± 10ms for slow, normal
and fast speed, respectively. The impact of lifting speed on time
delay was statistically significant (p < 0.05 for all pair-wise
comparisons). The average values of slow, normal, and fast lifting
speed across subjects were 74.8 ± 7.3 deg/s, 109.1 ± 5.2 deg/s,
and 130.4 ± 4.6 deg/s, respectively. The lifting speed is defined
as the average hip joint angular speed from the moment of hip
angle peak to the end of the lifting procedure (detected by the
algorithm).

EMG Results
Figure 8A shows the iEMG computed during the trunk extension
movement for the three targeted muscles. Comparison between
TM and AM conditions is reported. All muscles showed
significant reductions of the iEMGmedian value during AMwith
respect to TM (p < 0.05): −30% for LES, −34.1% for TES, and
−30.4% for ESI (Figure 8B).

DISCUSSION

Intention detection is fundamental for the control of assistive
exoskeletons, determining whether a user can receive appropriate
power assistance from the exoskeleton at the optimal moment. In
this study, a lift detection strategy was developed for exoskeleton
control aiming at lift assistance. The proposed algorithm has
the following advantages that could make it promising for
practical application in factories and other working scenarios
(e.g., personal care workers, nurses).

First, the algorithm only employed sensory information
from signals collected with exoskeleton embedded sensors: this
property of our algorithm could make the overall system more
compact and convenient to use during working, thus fostering
the use of exoskeletons in real industrial environments. As
we already mentioned, the number of studies exploring lift
detection techniques and algorithms is limited. To the best of our
knowledge, in all these works off-robot signals were employed
to trigger exoskeleton assistance delivery. For example, one of
the most used strategy relies on EMG signals (Naruse et al.,
2003; Kawai et al., 2004). EMG signals have the potential to
be directly related to the human movement, thus different
control strategies can be implemented. Nevertheless, the use
of EMGs is not trivial in industrial scenarios, due to possible
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FIGURE 5 | Performance of lift detection. (A) Precision, (B) recall, and (C) accuracy for subject-dependent and subject-independent algorithm.

FIGURE 6 | An example of online verification of the lift detection algorithm (session 3 of subject 1). (A) Hip joint angles, IMU roll angle and assistance torque recorded

during online test. (B) Result of online lift detection.

acceptability issues from the workers. The need of wearing
electrodes and corruption of the signal over time due to sweat
are only some of the possible drawbacks (Sensinger et al., 2009).
Furthermore, these studies did not report systematic validation
of lift detection algorithms and results were only at a preliminary
stage. Compared to the algorithms based on EMG signals, our
algorithm does not need to use additional sensors that cannot be
embedded with the exoskeleton, which makes it more promising
for practical use. In addition, the proposed algorithm is a simple
rule-based one, which has much lower computation burden
compared to more complex recognition methods, such as deep-
learning, and it could be easily implemented in the real-time
controller of the robot without affecting the computational
cost. Therefore, the timeliness of lift detection can be
guaranteed.

Second, our algorithm is able to reliably detect lift intentions
with an accuracy higher than 97%. Furthermore, the algorithm
is robust to different lifting techniques and lifting speeds, which
makes it suitable to be used in different lifting tasks. For different
lifting techniques, kinematic signals change a lot. For example,
squat lifting has larger range of movement (RoM) in the knee
but smaller RoM in the trunk, whereas stoop lifting shows the
opposite behavior (de Looze et al., 1993). Moreover, inter-subject
variability adds another degree of complexity. These kinematic
differences introduce additional challenges to implement reliable
lift detection systems. To evaluate the robustness of the lift
detection strategy to different lifting tasks, subjects were asked
to lift the load under different lifting conditions (e.g., different
lifting techniques and lifting speeds). Training performance (lift
detection test with the training data) showed that the algorithm
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was able to overcome the impact of different lifting techniques
and achieved an average detection accuracy of 99.38%. For
simplicity sake, we tested the current lifting assistance strategy
only with freestyle lifting. However, according to the training
performance, we believe the lift detection algorithm can also
work well together with assistive strategies for other lifting
techniques.

Third, time delay of lift detection is small and will not
introduce any significant delay of the assistance supplied by
the exoskeleton. To provide timely assistance to users the lift
detection algorithm has to detect the onset of the movement
as soon as it occurs, otherwise the exoskeleton action could be
not properly synchronized with the movement to be assisted.
Quantitative results showed that time delay was related with
the lifting speed. However, even for the slow-speed lifting,
no obvious time delay of assistance supply was reported.
In fact, although a small time delay was observed, subjects
could still receive proper assistance from the exoskeleton as
demonstrated by reductions in EMG activities of back muscles.

FIGURE 7 | Average time delay of lift detection over seven subjects. Error bars

denote SEMs across subjects.

In addition, despite the existence of such small detection delay,
being the exoskeleton controlled in TM in movements other
than lifting, a comfortable human-robot interaction was always
ensured.

Fourth, the algorithm has the potential to be subject-
independent, which means it could work with new user without
any training. According to our findings, we observed the subject
height as the main factor influencing lifting kinematics for
different subjects. In the existing subject pool, subject’s height
ranges from 165 to 186 cm, which covers the height of most male
users, as the 5–95th percentiles ranges from about 163 to 188 cm
(Fryar et al., 2012). Though many thresholds were used in the lift
detection algorithm, we noticed that most of the thresholds did
not need to be changed. In the subject-dependent lift detection
algorithm, only α1, α7, and α8 were adjusted for different
subjects, possibly due to anthropometric differences and sit-
down behavior. Experimental results showed that the reduction
of lift detection performance was limited when replacing the
subject-dependent algorithm with the subject-independent one.
Furthermore, the reduction was not statistically significant.

The EMG analysis revealed that the developed lift
detection algorithm works effectively with the assistive
strategy implemented in the APO. Indeed, the iEMG of
muscles signal decreases while using the exoskeleton in
assistive mode. The achieved reductions are comparable
with those reported by a series of studies on the Muscle
Suit exoskeleton (Kobayashi and Nozaki, 2007, 2008; Aida
et al., 2009; Kobayashi et al., 2009; Muramatsu et al., 2011).
However, it is fair to stress that the experimental protocol of
this study did not include any experimental session without
wearing the exoskeleton and, in addition, there was not
any randomization of the experimental trials. This is due
to the main focus on the development of the lift detection
module, rather than assessing the effectiveness of an assistive
strategy.

FIGURE 8 | iEMG results. (A) Bars depicting the iEMG median values distribution for the subjects’ three muscles while wearing the APO operating in transparent

mode (i.e., session 1 and 2, green), and assistive mode (i.e., session 3, yellow). Red lines correspond to the median values, upper and lower limit of the bars are

respectively the maximum and the minimum values of median iEMG. Data for subject 1 and 2 are missing because of an operating failure of the EMG recording device

during the experimental sessions. (B) Bars pointing at the percentage variations of the iEMG values in assistive mode with respect to the median values of transparent

mode for the three muscles under investigation. Upper and lower limits of the bar are respectively the minimum and maximum variation achieved among subjects.
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The main limitation of the lift detection strategy is that
sometimes it still mistakenly detects sitting down as lifting
for some subjects (e.g., subject 2 and subject 5). Mistaken
detections are probably caused by the following reasons. First,
since subjects took off the exoskeleton after experiment sessions
for training and wore it again before testing sessions, the position
of the exoskeleton might change a little and therefore influence
readings of hip joint encoders and the IMU on the trunk.
As the algorithm is sensitive to these information, mistaken
detection could be caused by the wearing problem. Second,
threshold values were determined by the data measured in the
training sessions. If subjects changed their ways of sitting down
a lot, mistaken detections could also happen, which could cause
slight discomfort to users. However, in real working scenario,
the chance to sit down with an exoskeleton is expected to be
much lower than that in our experiment. In addition, for the
main purpose of this work, we considered acceptable occasional
misclassification of sitting down as lifting, since the main goal of
this algorithm was to effectively recognize lifting tasks when they
actually occurred.

Future works will be focused on improving the robustness
and generality of the lift detection strategy on a larger number
of subjects, especially for avoiding misdetection of sitting as
lifting. In particular, possible new features will be introduced and
used to validate the algorithm also for discriminating between
different lifting techniques. In addition, we will focus more on
assessing the real effectiveness of the developed assistive strategy
in reducing the muscular effort of the posterior chain muscles.

CONCLUSION

In this research, we proposed a simple rule-based lift detection
strategy. The algorithm only used hip joint angles of both sides
and trunk angle in the sagittal plane, which could be measured
by exoskeleton embedded sensors. The algorithm was able to
achieve reliable performance of lift detection and was robust to
different lifting techniques and lifting speeds. In addition, time

delay of lift detection was very small, which did not introduce
noticeable discomfort when power assistance was provided to
subjects. We also evaluated the generality of the algorithm
applying on different subjects. The result of subject-dependent
lift detection did not change significantly. Furthermore, by
combining the developed lift detection algorithm with a simple
assistive strategy, the EMG analysis revealed a general reduction
of the back muscles activity, proving that the assistance provided
by the exoskeleton is beneficial for the user in load lifting tasks.
These results validated the promise of applying the lift detection
strategy for the control of exoskeletons aiming at lift assistance.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Scuola Superiore Sant’Anna ethics
committee with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
Scuola Superiore Sant’Anna ethics committee.

AUTHOR CONTRIBUTIONS

BC carried out the experimental activities and data analysis,
participated in the design of the study and drafted the
manuscript. LG and FL carried out the experimental activities,
participated in the design of the study and drafted the
manuscript. SC and NV conceived the study, participated in the
design and coordination of the study. All authors approved the
submitted version of the manuscript.

FUNDING

This work was supported in part by Regione Toscana within the
CENTAURO project (Bando FAR-FAS 2014) and in part by EU
within the HUMANproject (H2020-FOF-2016 Grant Agreement
#723737).

REFERENCES

Abdoli-e, M., Agnew, M. J., and Stevenson, J. M. (2006). An on-body
personal lift augmentation device (PLAD) reduces EMG amplitude
of erector spinae during lifting tasks. Clin. Biomech. 21, 456–465.
doi: 10.1016/j.clinbiomech.2005.12.021

Abdoli-e, M., and Stevenson, J. M. (2008). The effect of on-body lift assistive
device on the lumbar 3D dynamic moments and EMG during asymmetric
freestyle lifting. Clin. Biomech. 23, 372–380. doi: 10.1016/j.clinbiomech.2007.
10.012

Abdoli-Eramaki, M., Stevenson, J. M., Reid, S. A., and Bryant, T. J.
(2007). Mathematical and empirical proof of principle for an on-body
personal lift augmentation device (PLAD). J. Biomech. 40, 1694–1700.
doi: 10.1016/j.jbiomech.2006.09.006

Aida, T., Nozaki, H., and Kobayashi, H. (2009). “Development of muscle suit and
application to factory laborers,” in International Conference on Mechatronics

and Automation: IEEE (Changchun). 1027–1032.
Burgess-Limerick, R. (2003). Squat, stoop, or something in between?

Int. J. Ind. Ergon. 31, 143–148. doi: 10.1016/S0169-8141(02)
00190-7

da Costa, B. R., and Vieira, E. R. (2010). Risk factors for work-related
musculoskeletal disorders: a systematic review of recent longitudinal studies.
Am. J. Ind. Med. 53, 285–323. doi: 10.1002/ajim.20750

de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., and O’Sullivan, L. W. (2016).
Exoskeletons for industrial application and their potential effects on physical
work load. Ergonomics 59, 671–681. doi: 10.1080/00140139.2015.1081988

de Looze, M., Toussaint, H., Van Dieen, J., and Kemper, H. (1993). Joint moments
and muscle activity in the lower extremities and lower back in lifting and
lowering tasks. J. Biomech. 26, 1067–1076. doi: 10.1016/S0021-9290(05)80006-5

Eurofound (2016). Sixth European Working Conditions Survey–Overview Report.
Publications Office of the European Union.

Frost, D. M., Abdoli, E. M., and Stevenson, J. M. (2009). PLAD (personal lift
assistive device) stiffness affects the lumbar flexion/extension moment and the
posterior chain EMG during symmetrical lifting tasks. J. Electromyogr. Kinesiol.
19, e403–e412. doi: 10.1016/j.jelekin.2008.12.002

Fryar, C. D., Gu, Q., and Ogden, C. L. (2012). Anthropometric reference data for
children and adults: United States, 2007-2010. Vital Health Stat. 252, 1–48.

Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., et al.
(2015). A light-weight active orthosis for hip movement assistance. Rob. Auton.
Syst. 73, 123–134. doi: 10.1016/j.robot.2014.08.015

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2018 | Volume 12 | Article 17

https://doi.org/10.1016/j.clinbiomech.2005.12.021
https://doi.org/10.1016/j.clinbiomech.2007.10.012
https://doi.org/10.1016/j.jbiomech.2006.09.006
https://doi.org/10.1016/S0169-8141(02)00190-7
https://doi.org/10.1002/ajim.20750
https://doi.org/10.1080/00140139.2015.1081988
https://doi.org/10.1016/S0021-9290(05)80006-5
https://doi.org/10.1016/j.jelekin.2008.12.002
https://doi.org/10.1016/j.robot.2014.08.015
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chen et al. Real-Time Lift Detection Strategy

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau, G. (2000).
Development of recommendations for SEMG sensors and sensor placement
procedures. J. Electromyogr. Kinesiol. 10, 361–374. doi: 10.1016/S1050-6411(00)
00027-4

Kadota, K., Akai, M., Kawashima, K., and Kagawa, T. (2009). “Development
of Power-Assist Robot Arm using pneumatic rubbermuscles with
a balloon sensor,” in The 18th IEEE International Symposium on

Robot and Human Interactive Communication (Toyama: IEEE),
546–551.

Kawai, S., Yokoi, H., Naruse, K., and Kakazu, Y. (2004). “Study for control of a
power assist device. Development of an EMG based controller considering a
human model,” in 2004 IEEE/RSJ International Conference on Intelligent Robots

and Systems (Sendai: IEEE), 2283-2288.
Kobayashi, H., Aida, T., and Hashimoto, T. (2009). Muscle suit

development and factory application. Int. J. Autom. Technol. 3, 709–715.
doi: 10.20965/ijat.2009.p0709

Kobayashi, H., and Nozaki, H. (2007). “Development of muscle suit for supporting
manual worker,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (Takamatsu: IEEE), 1769–1774.

Kobayashi, H., and Nozaki, H. (2008). “Development of support system for
forward tilting of the upper body,” in IEEE International Conference on

Mechatronics and Automation (Takamatsu: IEEE), 352–356.
Li, X. (2013). Design of wearable power assist wear for low back support

using pneumatic actuators. Int. J. Autom. Technol. 7, 228–236.
doi: 10.20965/ijat.2013.p0228

Lotz, C. A., Agnew, M. J., Godwin, A. A., and Stevenson, J. M. (2009).
The effect of an on-body personal lift assist device (PLAD) on fatigue
during a repetitive lifting task. J. Electromyogr. Kinesiol. 19, 331–340.
doi: 10.1016/j.jelekin.2007.08.006

Masood, J., Ortiz, J., Fernández, J., Mateos, L. A., and Caldwell, D. G. (2016).
“Mechanical design and analysis of light weight hip joint Parallel Elastic
Actuator for industrial exoskeleton,” in 2016 6th IEEE International Conference

on Biomedical Robotics and Biomechatronics (BioRob) (Singapore: IEEE),
631–636.

Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., and Kobayashi,
H. (2011). Quantitative performance analysis of exoskeleton augmenting
devices–muscle suit–for manual worker. Int. J. Autom. Technol. 5, 559–567.
doi: 10.20965/ijat.2011.p0559

Muramatsu, Y., Umehara, H., and Kobayashi, H. (2013). “Improvement and
quantitative performance estimation of the back support muscle suit”, in 2013

35th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC) (Osaka: IEEE), 2844–2849.
Naruse, K., Kawai, S., and Kukichi, T. (2005). “Three-dimensional lifting-up

motion analysis for wearable power assist device of lower back support,” in
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems

(Edmonton, AB: IEEE), 2959–2964.

Naruse, K., Kawai, S., Yokoi, H., and Kakazu, Y. (2003). “Development of wearable
exoskeleton power assist system for lower back support,” in 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems (Las Vegas, NV:
IEEE), 3630–3635.

Parri, A., Yuan, K., Marconi, D., Yan, T., Crea, S., Munih, M., et al. (2017). Real-
time hybrid locomotion mode recognition for lower limb wearable robots.
IEEE/ASME Trans. Mech. 22, 2480–2491. doi: 10.1109/TMECH.2017.2755048

Punnett, L., Prüss-Ütün, A., Nelson, D. I., Fingerhut, M. A., Leigh, J., Tak, S., et al.
(2005). Estimating the global burden of low back pain attributable to combined
occupational exposures. Am. J. Ind. Med. 48, 459–469. doi: 10.1002/ajim.20232

Sensinger, J. W., Lock, B. A., and Kuiken, T. A. (2009). Adaptive pattern
recognition of myoelectric signals: exploration of conceptual framework and
practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 270–278.
doi: 10.1109/TNSRE.2009.2023282

Tanaka, T., Satoh, Y., Kaneko, S. I., Suzuki, Y., Sakamoto, N., and Seki, S. (2008).
“Smart suit: Soft power suit with semi-active assist mechanism-prototype for
supporting waist and knee joint,” in International Conference on Control,

Automation and Systems (Seoul: IEEE), 2002–2005.
Wehner, M., Rempel, D., and Kazerooni, H. (2009). “Lower extremity exoskeleton

reduces back forces in lifting,” in ASME 2009 Dynamic Systems and Control

Conference (Hollywood, FL), 49–56.
Whitfield, B. H., Costigan, P. A., Stevenson, J. M., and Smallman, C. L. (2014).

Effect of an on-body ergonomic aid on oxygen consumption during a repetitive
lifting task. Int. J. Ind. Ergon. 44, 39–44. doi: 10.1016/j.ergon.2013.10.002

Yu, H., Choi, I. S., Han, K.-L., Choi, J. Y., Chung, G., and Suh, J.
(2015). Development of a stand-alone powered exoskeleton robot
suit in steel manufacturing. ISIJ International 55, 2609–2617.
doi: 10.2355/isijinternational.ISIJINT-2015-272

Conflict of Interest Statement: SC and NV have commercial interests in IUVO
S.r.l., a spin-off company of Scuola Superiore Sant’Anna. Currently, part of the IP
protecting the APO technology described in the paper has been licensed to IUVO
S.r.l. for commercial exploitation. The authors confirm that this did not affect the
analysis of the results.

The other authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2018 Chen, Grazi, Lanotte, Vitiello and Crea. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2018 | Volume 12 | Article 17

https://doi.org/10.1016/S1050-6411(00)00027-4
https://doi.org/10.20965/ijat.2009.p0709
https://doi.org/10.20965/ijat.2013.p0228
https://doi.org/10.1016/j.jelekin.2007.08.006
https://doi.org/10.20965/ijat.2011.p0559
https://doi.org/10.1109/TMECH.2017.2755048
https://doi.org/10.1002/ajim.20232
https://doi.org/10.1109/TNSRE.2009.2023282
https://doi.org/10.1016/j.ergon.2013.10.002
https://doi.org/10.2355/isijinternational.ISIJINT-2015-272
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	A Real-Time Lift Detection Strategy for a Hip Exoskeleton
	Introduction
	Materials and Methods
	Experimental Setup
	Experimental Protocol
	Session 1
	Session 2
	Session 3

	Lift Detection Algorithm
	First-Level Strategy
	Other–Grasp transition
	Grasp–Lift transition
	Lift–Other transition

	Second-Level Strategy

	Data Analysis
	Lift Detection Performance Evaluation
	EMG Analysis


	Results
	Training Performance of Subject-Dependent Lift Detection Algorithm
	Online Evaluation of Subject-Dependent Lift Detection Algorithm Performance
	Offline Evaluation of Subject-Independent Lift Detection Algorithm Performance
	Time Delay of Lift Detection
	EMG Results

	Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	References


