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Rapid endogenic rock recycling in magmatic arcs
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In subduction zones, materials on Earth’s surface can be transported to the deep crust or

mantle, but the exact mechanisms and the nature of the recycled materials are not fully

understood. Here, we report a set of migmatites from western Yangtze Block, China. These

migmatites have similar bulk compositions as forearc sediments. Zircon age distributions and

Hf–O isotopes indicate that the precursors of the sediments were predominantly derived

from juvenile arc crust itself. Using phase equilibria modeling, we show that the sediments

experienced high temperature-to-pressure ratio metamorphism and were most likely trans-

ported to deep arc crust by intracrustal thrust faults. By dating the magmatic zircon cores and

overgrowth rims, we find that the entire rock cycle, from arc magmatism, to weathering at the

surface, then to burial and remelting in the deep crust, took place within ~10Myr. Our findings

highlight thrust faults as an efficient recycling channel in compressional arcs and endogenic

recycling as an important mechanism driving internal redistribution and differentiation of

arc crust.
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Magmatic arcs witness the interplay between endogenous
and exogenous processes, including magmatism, crustal
thickening, uplift, erosion, sedimentation and burial of

detritus1–4. Magmatism produces new crust, which later interacts
with the hydrosphere and atmosphere through erosion and
weathering. On the other hand, crustal materials from the surface
are recycled to Earth’s interior. This chain of processes in mag-
matic arcs play important roles in driving much of the mass
exchange between Earth’s interior and surface. The inward
transport of surface materials, including volatiles, has profound
influence on the cycling of carbon, oxygen, sulfur, etc. on Earth’s
surface and may alter the chemical and physical properties of the
deep crust and even mantle.

Nearly every Phanerozoic arc in the world exhibit crustal sig-
natures in geochemistry, suggesting pervasive crustal recycling in
the formation of arc crust. Conventional views link crustal
recycling processes to slab subduction, including sediment sub-
duction and subduction erosion (± relamination) have been
widely invoked to explain the crustal signatures seen in most arc
magmas5,6. Yet the recent work on continental arcs hints at thrust
faults as potential recycling channels7–10.

Here, we examined a suite of migmatites from a Neoproter-
ozoic magmatic arc in western China. We used combined pet-
rologic, geochronologic and geochemical studies of these samples
to understand the nature of the recycled materials and evaluate
how thrust faults may contribute to rock recycling in compres-
sional arc settings.

Results
Geological setting and samples. The Yangtze Block in Eastern
Asia consists of Archean–Paleoproterozoic crystalline basement
surrounded by Neoproterozoic fold belts. It is bounded by the
Tibetan Plateau to the west, the North China Block to the north
and the Cathaysia Block to the southeast. It was placed in a
marginal position in Rodinia supercontinent and has underwent a
long-term evolution and complex tectonic-magmatic processes in
a continental margin setting during Neoproterozoic11–13. The
western margin of the Yangtze Block became tectonically active
since the early Neoproterozoic; it started with intra-oceanic arc
magmatism before 971 ± 16 Ma (ref. 14) and then transitioned to
Andean-type magmatism at ca. 870 Ma (ref. 15). This ancient
subduction relic was lately imaged by deep seismic reflection
profile16. The prolonged magmatic history gave rise to linearly
distributed Neoproterozoic arc magmatic rocks spanning over
800 km (Supplementary Fig. 1a). The Longmenshan Thrust Belt
to the northwestern margin of the Yangtze Block exposed
abundant Neoproterozoic plutonic complexes due to the major
Miocene extrusion and thrust process17, of which the largest one
is known as the Pengguan Complex, comprising voluminous
860–750Ma plutonic rocks (Supplementary Fig. 1b, c). The
Huangshuihe Group in the core region of the Pengguan Complex
exists as a huge roof pendant of the plutonic rocks and
consists of metamorphic rocks of schist, metapelite, quartzite and
meta-pyroclastic rock. Ductile deformation, faults, mylonite with
S-C fabric, and migmatitic lineation are extensive in the
sequences.

Two main types of migmatites were identified in the field
(Supplementary Fig. 2): the inhomogeneous migmatites (or
diatexite) contain abundant blocks of melanosome and associated
aplite vein; the stromatic migmatites preserve a regular layered
structure and are characterized by centimeter-thick, foliation-
parallel leucosome, melanosome and mesosome. Patch-shaped
neosomes are abundant in stromatic migmatites and formed
during incipient partial melting. Large leucosomes (~50 cm in
width) occur occasionally and are usually fed by a few small

leucosome veins. The stromatic migmatites have a NNW-dipping
foliation (S1) (~355°/48°) defined by oriented biotite or feldspar
augen. The S1 foliation is parallel to bedding planes defined by the
metapelite (Supplementary Fig. 2c) and is folded locally by syn-
anatectic deformation on varying scale (Supplementary Fig. 2e, f).
The fold axial planes (S2) generally display E–W striking, S-
dipping orientation. Besides, the study area was superimposed by
massive high-angle, S-verging thrust faults (Supplementary
Fig. 2g), which should be linked with post-Mesozoic structural
tectonics17.

Six stromatic migmatite and one leucosome samples in the
Huangshuihe Group were collected in this study (Supplementary
Fig. 1d). The main minerals in migmatite are plagioclase, biotite,
K-feldspar, quartz and muscovite (Supplementary Fig. 3). Ana-
texis of primary mineral assemblage led to prevalent zircon
overgrowth and muscovite-rimmed biotite in the migmatite
(Supplementary Figs. 3 and 5–7). Entrainment of peritectic phase,
which consists of small spessartine-rich garnet grains, biotite,
muscovite, quartz, plagioclase, K-feldspar and Fe-oxides, was
found in 16YX-1-1 (Supplementary Fig. 3 and Supplementary
Data 4). The reaction of “biotite +MnO, Al2O3, SiO2 (from melt)
= garnet + muscovite”18 may control garnet paragenesis. These
observations are indicative of near-solidus partial melting with
local melt segregation.

Zircon U–Pb–Hf–O isotopes. Most zircon grains in the Peng-
guan migmatites have core-rim structures. The zircon core
domains, presumably derived from arc magmatic detritus, show
limited variation in their ages, concentrating at ~830–870Ma,
with few at ~930Ma (Fig. 1a), and have mantle-like to slightly
elevated δ18O values (5.3 to 7.4‰) (Fig. 1b). Their εHf(t) values
vary from –3 to +13, with most being positive, indicative of
heterogeneous but generally juvenile sources. Zircon overgrowth
rims are slightly younger than the maximum depositional age for
each sample, with U− Pb dates generally ranging from ~815Ma
to ~860Ma (Supplementary Data 3). The overgrowth rims
have significantly higher δ18O values (9.3 to 13.3‰) compared
with those of core domains, despite their similar εHf(t) range
(–3 to +8 except one analysis of –9) as core domains (Supple-
mentary Data 2). Zircon grains from the leucosome sample show
homogeneous δ18O values (11.1 to 13.4‰) with a large range of
εHf(t) values (–6.9 to +8.4) (Supplementary Data 2). All εHf(t)
values were calculated to t= 850Ma in order to facilitate
comparison.

Anatexis P-T conditions. We reconstructed the metamorphic P-
T conditions for the Pengguan migmatites using Perple_X 6.9.0
(http://www.perplex.ethz.ch). The bulk rock composition of
sample 16YX-1-1 was chosen for calculation because this sample
clearly documents: (1) mineral-melt interaction; (2) coexistence
of minerals (Mn-rich garnet + biotite + muscovite + quartz +
plagioclase + K-feldspar + Fe-oxides) and; (3) minor partial
melting with no evident melt migration. In the calculated P-T
pseudosection, the mineral assemblage of the Pengguan migma-
tite falls in a narrow domain (domain 1 in Fig. 2a) near the
solidus. Using Si pfu in muscovite from 16YX-1-1 (3.08 to 3.14, in
moles per formula unit; Supplementary Data 4), which is sensitive
to pressure in the K-feldspar + phlogopite + quartz system19, we
further constrained the anatexis P–T conditions to ~670 °C and
5.9−8.1 kbar (Fig. 2). The low anatexis temperature is also con-
sistent with the extremely low Th/U ratios of the zircon over-
growth rims (Fig. 1a). At near-solidus temperatures, Th
concentration in the melt is largely buffered by Th-rich accessory
minerals (such as monazite and allanite)20.
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Discussion
The Pengguan migmatites are peraluminous with aluminum
saturation indices (ASI) of 1.10–1.44 (Supplementary Data 1).
Muscovite and peritectic garnets are observed in all samples,
indicating peraluminous composition of the protoliths. These
migmatites also show geochemical signatures similar to those arc
magmatic rocks and forearc sediments from Peninsular Ranges
batholith, but distinct from those of MORB and intraplate vol-
canics (Fig. 3), suggesting that the protoliths of these migmatites
are dominated by arc-related magmatic detritus. This view is also
consistent with the observation that the magmatic cores of zircon
in the migmatites have very similar age distributions to that of the
arc-related magmatic rocks in the study area (Fig. 1a). The
absence of pre-Neoproterozoic zircon xenocrysts hints that
forearc magmatic detritus may have served as the protoliths of the
Pengguan migmatite. The consistent and juvenile Hf isotopes of
the zircon cores and overgrowth rims lends further support for
the arc origin of the migmatite precursor materials. We thus
suggest the Pengguan migmatites documented a process that
recycled the arc crust itself, and we refer to this process as
endogenic recycling to distinguish it from recycling of oceanic
sediments or oceanic crust into subduction zones.

We note that the zircon overgrowth rims have systematically
higher δ18O values than the magmatic cores (Fig. 1b), which is
indicative of equilibrium with high-δ18O anatectic melts during
crystallization. High δ18O is a diagnostic signature of low-
temperature water-rock interaction at Earth’s surface. Thereby
the protoliths of the Pengguan migmatites must have undergone

some extent of chemical weathering and O isotope exchange at
low temperatures before being buried and remelted. Downward
infiltration of meteoric water may be another important
mechanism to introduce oxygen isotopic heterogeneity to the
deep crust. But this mechanism would likely cause water-rock
interaction at high temperatures and impart low δ18O signature
to the rocks, as has been clearly seen in the lower oceanic crust21.
In addition, the maximum penetration depth of meteoric water
ranges from 5 to 18 km (ref. 22), which is less than the depth of
anatexis (~18 to 24 km) calculated for our migmatites. We thus
exclude interaction with downward infiltrated meteoric water as a
likely mechanism to explain the high δ18O recorded by the zircon
rims of this study.

An important question pertains to how the magmatic detritus
that had been initially deposited at the surface was transported to
the hot deep crust. In magmatic arc settings, recycling of surface
rocks has generally been associated with slab subduction. Sub-
ducting slabs can directly bring trench sediments to the deep
crust or even mantle5,6. Subduction erosion has also been
recognized as an important mechanism for downward transport
of shallow crustal materials5. Slab tops are cold (dT/dP= <34 °C/
kbar) (Fig. 2b; estimated from Peacock23) and melting of the
sediments deposited at the slab surface is generally considered
difficult at crustal depths24. Phase equilibrium modeling shows
that the Pengguan migmatites formed at ~670 °C and 5.9−8.1
kbar. These P–T conditions translate into a hot geothermal gra-
dient of 83−114 °C /kbar or 25 to 34 °C /km, considerably hotter
than slab top geothermal gradients but consistent with those seen
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in arc crust with continuous magmatic inflation25 (Fig. 2b). This
would imply that the Pengguan forearc detrital sediments, shortly
after their deposition, were rapidly transported to the deep crust
beneath the active arc volcanic front. We suggest the most likely
recycling mechanism is via deep thrust faults in the upper con-
tinental plate rather than by slab subduction (Fig. 4). Downward

flow of wall rocks during magma ascent26 could be another
mechanism in transporting surface materials to the deep crust,
but we think it less likely occurred because: (1) wall rock xenoliths
were not seen in the plutonic rocks, and (2) vertical flow foliation
or lineation is absent in the wall rocks. In compressional mag-
matic arcs, including mature island arcs and continental arcs, fold
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and thrust belts may extensively develop in the forearc and
inboard side of the arc and serve as important crustal recycling
channels. Typical examples include the thrust fault systems in
Lachlan orogen27, Japan arc28 and the Cordilleran continental arc
system7.

The nearly identical age distributions of the zircon cores and
overgrowth rims (Fig. 1a) hint at a fast rock cycle, from arc
magmatism to water-rock interaction, then to burial and
remelting. To estimate the timescale and rate of burial for the
Pengguan forearc magmatic detritus, we took the weighted
average value of the 50% of youngest U− Pb dates with con-
cordant U− Th−Pb isotopes from zircon core domains as the
maximum depositional age, and the weighted average age of
zircon rims as the remelting (anatexis) age (Supplementary
Data 2 and Fig. 1a). In doing so, we see that the maximum
depositional ages are less than 1 to 14Myr older than the
remelting ages for each sample. With the errors of zircon dating
taken into account, the magmatic protoliths of the Pengguan
forearc sediments must have been exhumed, deposited in a
sedimentary basin, and then buried to the depth of crustal ana-
texis on a ~10Myr timescale. This would imply an efficient burial
process with minimum burial rate of 2–3 mm/y.

Our findings point to endogenic recycling as an important
mechanism driving internal redistribution of arc crustal materials.
The role of such endogenic recycling in the formation of arc crust
has been largely overlooked in the past. Radiogenic isotopes are
widely employed to constrain crustal recycling processes, but
given the short residence time (e.g., 10 Myr), radiogenic isotopes
can be completely blind to endogenic recycling. We speculate that
extensive endogenic recycling may also generate significant
decoupling between radiogenic and stable isotope compositions
in recycled materials and their derivative melts, which may fur-
ther complicate the use of isotope-based proxies in tracing crustal
recycling in arc settings.

Rapid endogenic recycling may be facilitated by thrust fault
networks. Deep thrust faults may serve as critical transport
channels connecting the surface and deep arc crust with ongoing
magmatism. And by transporting hydrated surface crustal
materials to the deep crust, endogenic recycling enhances the

overall differentiation of arc crust. Because large-scale thrust
faults necessarily form in compressional settings, efficient endo-
genic recycling may partly explain why thick arc crust formed in
compressional settings (e.g., continental arcs) tend to be more
differentiated than thin arc crust formed in extensional settings
(e.g., immature island arcs)29.

Methods
In situ Zircon isotopes. Zircon grains were separated using conventional density
and magnetic techniques, mounted in epoxy resin disk, and polished to expose
their internal texture. In situ U–Th–Pb–Hf–O isotope analyses were carried out
guided by cathodoluminescence (CL) images and transmitted and reflected pho-
tographs. The CL images were taken with a Carl Zeiss Supra 55 field-emission
scanning electron microscope (FE-SEM) coupled to a GATAN MonoCL4 detector
at the State Key Laboratory for Mineral Deposits Research in Nanjing University
(MiDeR-NJU) under following conditions: an accelerating voltage of 3 kV, working
distance of 11.5 mm, and aperture size of 30 μm.

Zircon U–Pb isotopes were analyzed using the Cameca IMS-1280HR second
ion mass spectrometry (SIMS) at the Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (SKLabBIG GIG CAS) under the following operating
conditions: 7 scan cycle, ~8 nA primary O2

– beam, 20 × 30 µm spot size, and ~5400
mass resolving power. Calibration of Pb/U ratios is relative to the primary standard
zircon Plešovice30 and is based on an observed linear relationship between ln
(206Pb/238U) and ln (238U16O2/238U)31. A long-term uncertainty of 1.5% (1 RSD)
for 206Pb/238U measurements of the standard zircon was propagated to the
unknowns, despite that the measured 206Pb/238U error in a specific session is
generally around 1% (1 RSD) or less. U and Th concentrations of unknowns were
also calibrated relative to the standard zircon Plešovice, with Th and U
concentrations of 78 and 755 ppm, respectively30. Measured compositions were
corrected for common Pb using non-radiogenic 204Pb. A secondary standard
zircon Qinghu32 was analyzed as unknown to monitor the reliability of the whole
procedure. Data reduction was carried out using the Isoplot/Ex 3 software33. Eleven
measurements of the Qinghu zircon standard during the course of the study
yielded a weighted mean 238U/206Pb age of 159 ± 2Ma (MSWD= 0.72), consistent
with its recommended value of 159 ± 0.2 Ma (ref. 32).

After U–Pb dating, the sample mount was re-ground for ~5 µm to ensure any
oxygen implanted in zircon surface from the O2

– beam used for U–Pb analysis is
completely removed. Zircon oxygen isotope analyses were also conducted using
SIMS at SKLabBIG GIG CAS. The 133Cs+ primary ion beam was accelerated at 10
kV, with an intensity of ~2 nA and focused to an area of ɸ 10 μm on the sample
surface and the size of analytical spots is about 20 μm in diameter (10 μm beam
diameter +10 μm raster). Oxygen isotopes were measured in multi-collector mode
using two off-axis Faraday cups. The measured oxygen isotopic data were corrected
for instrumental mass fractionation (IMF) using the Penglai zircon standard34

(δ18OVSMOW= 5.31 ± 0.1‰), which was analyzed once every four unknowns,
using sample-standard bracketing method. The internal precision of a single
analysis generally was better than 0.1‰ (1σ) for the 18O/16O ratio. As discussed by
Kita et al.35 and Valley and Kita36, internal precision for a single spot (commonly <
0.1‰, 1σ) is not a good index of analytical quality for stable isotope ratios
measured by SIMS. Therefore, the external precision, measured by the spot-to-spot
reproducibility of repeated analyses of the Penglai standard, 0.30‰ (2σ, n= 24) is
adopted for data evaluation. The Qinghu zircon was used as secondary zircon
standard, and seventeen measurements of the standard yielded a weighted mean
value of δ18O= 5.39 ± 0.08‰ (2σ; MSWD= 1.3), consistent with the reported
value of 5.4 ± 0.2‰ (2σ)32.

Zircon Lu–Hf isotopic analyses were conducted using a GeoLas 193 nm laser‐
ablation system attached to a Neptune (Plus) MC‐ICP‐MS at MiDeR-NJU. Beam
diameter of ~44 μm was preferentially adopted to zircon domain with large size,
while ~32 μm beam diameters was adopted to zircon domain with its size < 44 μm.
Each diameter-change operation will be followed by analysis of zircon standard to
ensure the stability of the experiment. Ablation pulse rate and energy density are
10 Hz and 10.5 J/cm2 respectively. The ablation times were 60 s. Helium carrier gas
transported the ablated sample from the laser-ablation cell via a mixing chamber to
the ICPMS torch. Masses 172Yb, 173Yb, 175Lu, 176Hf+ Yb+Lu, 177Hf, 178Hf, 179Hf,
and 180Hf were measured in Faraday cups; all analyses were carried out in static-
collection mode. Hf reference solution JMC475 was analyzed during analytical
session to allow normalization of the fundamental mass spectrometer performance.
Interference of 176Yb on 176Hf has been corrected by measuring the 172Yb isotope
and using 176Yb/172Yb to calculate 176Yb/177Hf. The appropriate value of 176Yb/
172Yb was determined by spiking the JMC475 Hf standard with Yb and a 176Yb/
172Yb= 0.588596 was used for this correction. Interference of 176Lu on 176Hf is
corrected by measuring the 175Lu isotope and using 176Lu/175Lu= 0.02658 to
calculate 176Lu/177Hf. The interference corrected 176Hf/177Hf was normalized
assuming 179Hf/177Hf= 0.7325 for mass bias correction. Reference zircon
Mudtank and 91500 were used to monitor accuracy and precision of Hf
isotope ratios and instrumental drift with respect to the Lu/Hf ratios. The obtained
176Hf/177Hf ratios were 0.282295 ± 0.000009 (n= 15; MSWD= 2.9) for 91500, and
0.282487 ± 0.00008 (n= 14; MSWD= 3.6) for Mudtank, and were consistent with

Crust

Lithospheric mantle

Magma

Asthenosphere

Forearc 
sediments

Retroarc 
sedimentsErosion

ab

Fig. 4 Cartoon showing rapid endogenic recycling of arc magmatic rocks
through thrust channels in continental arcs (not to scale). a Thrust-driven
rock recycling in this study: from arc magmatism, to erosion and
weathering at the surface, to forearc sedimentation, then to burial and
remelting. b Sketch diagram illustrating the self-recycling process in arc
system.
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the recommended values37,38. The obtained 178Hf/177Hf and 180Hf/177Hf ratios
were 1.467207 ± 0.000017 (n= 13; MSWD= 1.6) and1.886870 ± 0.000049 (n= 14;
MSWD= 2.8) for zircon 91500, 1.467216 ± 0.000023 (n= 13; MSWD= 4) and
1.886871 ± 0.000038 (n= 13; MSWD= 2.1) for zircon Mudtank. The stable 178Hf/
177Hf and 180Hf/177Hf ratios overlap at 2σ with recommended values reported by
Thirlwall and Anczkiewicz39.

Whole-rock geochemistry. Major elements were analyzed using a Thermo
ARL9900XP X–ray fluorescence spectrometer (XRF) at the MiDeR-NJU. The
analytical precision is generally better than 2% for all elements. Whole-rock rare
earth and other trace elements were analyzed using an ICP-MS (Finnigan
MAT–Element II) instrument at MiDeR-NJU. Each sample was precisely weighted
30 mg and then was put into a 15 ml Savillex digestion vessel. After being dissolved
by HNO3 and the injection of 1 ml 500 ng/ml internal standard Rh solutions, the
samples are ready for analyzing. Analytical precision for most elements by ICP- MS
is better than 5%. Major and trace element composition data of the migmatite and
leucosome samples are provided in Supplementary Data 1.

Mineral composition. The mineral major element compositions were determined
using a JEOL 53 JXA-8100 electron probe microanalysis (EPMA) at the MiDeR-
NJU. The instrument was operated in wavelength-dispersion mode with a beam
diameter of 1–2 µm, a 15 kV accelerating voltage, and a 20 nA beam current.
Element peaks and backgrounds were measured for all elements with counting
times of 10 and 5. Natural and synthetic standards were used. Detection limits were
better than 0.02 wt % for the oxides of most elements. All EPMA data were
automatically reduced using the ZAF correction program. Mineral major content
results are provided in Supplementary Data 4.

Data availability
Major and trace element composition data of the migmatite and leucosome samples are
provided in Supplementary Data 1. Summary and details of Age-δ18O-εHf(t) results from
core and rim zircon of the migmatites are provided in Supplementary Data 2 and 3,
respectively. Mineral major content results are provided in Supplementary Data 4.
Analytical method and results for zircon trace element are provided in Supplementary
Data 5.
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