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Abstract 
In order to achieve better performance, artificial intelligence is used in breast cancer diagnosis. In this study, we evaluated 
the efficacy of different fine-tuning strategies of deep transfer learning (DTL) based on the DenseNet201 model to differentiate 
malignant from benign lesions on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We collected 4260 
images of benign lesions and 4140 images of malignant lesions of the breast pertaining to pathologically confirmed cases. The 
benign and malignant groups was randomly divided into a training set and a testing set at a ratio of 9:1. A DTL model based on the 
DenseNet201 model was established, and the effectiveness of 4 fine-tuning strategies (S0: strategy 0, S1: strategy; S2: strategy; 
and S3: strategy) was compared. Additionally, DCE-MRI images of 48 breast lesions were selected to verify the robustness of the 
model. Ten images were obtained for each lesion. The classification was considered correct if more than 5 images were correctly 
classified. The metrics for model performance evaluation included accuracy (Ac) in the training and testing sets, precision (Pr), 
recall rate (Rc), f1 score (f1), and area under the receiver operating characteristic curve (AUROC) in the validation set. The Ac of 
the 4 fine-tuning strategies reached 100.00% in the training set. The S2 strategy exhibited good convergence in the testing set. 
The Ac of S2 was 98.01% in the testing set, which was higher than those of S0 (93.10%), S1 (90.45%), and S3 (93.90%). The 
average classification Pr, Rc, f1, and AUROC of S2 in the validation set were (89.00%, 80.00%, 0.81, and 0.79, respectively) 
higher than those of S0 (76.00%, 67.00%, 0.69, and 0.65, respectively), S1 (60.00%, 60.00%, 0.60, 0.66, and respectively), and 
S3 (77.00%, 73.00%, 0.74, 0.72, respectively). The degree of coincidence between S2 and the histopathological method for 
differentiating between benign and malignant breast lesions was high (κ = 0.749). The S2 strategy can improve the robustness 
of the DenseNet201 model in relatively small breast DCE-MRI datasets, and this is a reliable method to increase the Ac of 
discriminating benign from malignant breast lesions on DCE-MRI.

Abbreviations:  Ac = accuracy, AI = artificial intelligence, AUROC = area under the receiver operating characteristic curve, CT 
= computed tomography, DCE-MRI = dynamic contrast enhanced magnetic resonance imaging, DTL = deep transfer learning, f1 
= f1 score, Pr = precision, Rc = recall rate.
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1. Introduction

With the continuous development of artificial intelligence (AI), 
its application in medical imaging has become increasingly 
widespread, particularly in the extraction and analysis of med-
ical image data. Due to this, medical imaging has transformed 
from a modality relying on subjective perception skills to an 
objective science. Current research on AI in breast imaging is 
mainly focused on detecting[1] and identifying benign and malig-
nant lesions,[2,3] predicting molecular typing,[4] assessing risks, 

segmenting images,[5] formulating radiotherapy plans, and mon-
itoring efficacy.[6,7] However, the impact of these AI technolo-
gies on the classification of benign and malignant breast lesions 
using dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) is still limited, and this area needs to be explored 
further. Currently, no large-scale open-source datasets pertain-
ing to DCE-MRI are available for such studies. DenseNet is 
a technological innovation that involves introducing shortcut 
connections to overcome the training problems of deeper net-
works.[8] In this model, all previous layers are concatenated to 
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form the input for each layer and to connect each layer to all 
the previous layers.[9] This design can alleviate the problem of 
gradient disappearance in deep neural networks.[10] However, 
another issue that must be addressed is the overfitting problem. 
Deep learning is a subfield of machine learning, and deep trans-
fer learning (DTL) is the process of transferring knowledge from 
a task that was already learned to a new task (usually on a large 
dataset). According to the literature, DTL based on DenseNet 
has achieved good success in the classification of lung diseases 
on computed tomography (CT)[11–16] [such as the diagnosis of 
coronavirus disease (COVID-19) on chest CT images]; how-
ever, overfitting is often related to a small sample size.[11] The 
computing cost required to achieve reliable and state-of-the-art 
performance is high for vision-based models, and the datasets 
used must be robust.[17] In other words, deep supervised models 
are prone to over-fitting because they contain a large number of 
parameters, particularly in the absence of large training sets.[18]

In this study, different strategies for fine-tuning DenseNet201 
were used to explore the identification efficiency of this model 
with respect to differentiating between benign and malignant 
breast lesions on DCE-MRI. The aim was to find a more pre-
cise DTL model for the classification and diagnosis of breast 
lesions.

2. Materials and methods

2.1. Database and patient population

This study was a retrospective analysis and was approved 
by the Second Hospital of Changzhou Affiliated to Nanjing 
Medical University of Chinese Medicine Ethics Review 
Committee. The requirement for obtaining informed consent 
from the patients was waived (Ethics Number: [2020]KY234-
01). Data pertaining to a total of 310 patients with complete 
breast DCE-MRI and pathological data were collected between 
January 2017 and December 2020; 17 patients with bilateral 
lesions were included. The primary lesions were pathologi-
cally confirmed in all patients. Lesions were categorized into 
benign and malignant groups. The patient age, pathological 
type, and lesion diameter are presented in Table 1. There were 
significant differences in age and lesion diameter between the 2 
groups (P = .029 and .000, respectively). The inclusion criteria 
were as follows; patients who did not receive any preopera-
tive chemotherapy or chemoradiotherapy before the MRI; No 

puncture or surgical procedure was performed before the MRI 
examination.

2.2. DCE-MRI acquisition

DCE-MRI scans were performed on 2 3T MRI scanners using 
a dedicated breast coil, with the patient in a prone position. 
Gadolinium diethylenetriaminepentaacetic acid (0.1 mmol/
kg, 2.50 mL/s) was administered via elbow vein injection. The 
detailed scan parameters are listed in Table 2.

2.3. Data preparation

The images were obtained at 6 phases (1 pre-contrast phase 
and 5 post-contrast phases), and a series of 12 to 54 images 
were selected for each lesion. To eliminate interference signals 
pertaining to other tissues (such as the aorta), the images were 
cropped (using Photoshop) and the image fragments containing 
the breast tissue (effort was made to ensure the inclusion of the 
axillary) were retained. In total, 8400 breast DCE-MRI images 
were collected (on average, 27 images per patient), including 
4260 images of benign lesions (benign group) and 4140 images 
of malignant lesions (malignant group). Each group was ran-
domly divided into a training set (benign group, 3840 images; 
malignant group, 3726 images) and a testing set (benign group, 
420 images; malignant group, 414 images) using self-pro-
grammed instructions in a 9:1 ratio. A further 48 unilateral 
lesions (25 benign and 23 malignant) were included in a vali-
dation set that was used to estimate the robustness of the DTL 
model. Ten DCE-MRI images were selected for each lesion, and 
the classification was categorized as correct if > 5 images were 
correctly classified.

2.4. Computer configuration

The configuration of the computer that was used for the analy-
sis was as following: 64-bit versions of the Windows operating 
system (Windows 10), Intel Core i7-10700F processor, NVIDIA 
GeForce GTX 2060 GPU, and 6 GB. Python programming lan-
guage (Python Software Foundation, version 3.6, https://www.
python.org/) was used for analysis, and Keras (version 2.2.4, 
https://github.com/keras-team/keras) with TensorFlow (version 
2.0, www.tensorflow.org) was used in the backend. All other 

Table 1

Clinical data of the patients in the training and testing sets.

Pathological diagnosis Cases Percentage (%) Age (yr) Lesion diameter (mm) 

Malignant lesions   48.2 ± 11.4  24.00 ± 11.09
Invasive ductal carcinoma 124 80.52   
Intraductal carcinoma 19 12.34   
Invasive lobular carcinoma 4 2.60   
Mucinous carcinoma 4 2.60   
Lymphoma 1 0.65   
Papillary carcinoma 2 1.30   
Total 154 100.00   
Benign lesions   45.0 ± 10.5 32.89 ± 16.45
Cyst 17 9.83   
Adenosis 26 15.03   
Fibroadenoma 111 64.16   
Chronic inflammation 4 2.31   
Intraductal papilloma 13 7.51   
Lobular tumor 2 1.16   
Total 173 100.00   
F*   4.807 32.068
P*   .029 .000

* P < .05 was considered to be statistically significant.

https://www.python.org/
https://www.python.org/
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processes were turned off while running the analysis program. 
The training and testing processes of the DTL model were 
recorded by a computer.

2.5. DTL diagram

First, the images were randomly shuffled using a set program. 
Data augmentation was performed before model training; the 
relevant parameters and values are listed in Table 3.

2.6. Densely connected convolutional networks

DenseNet consists of a dense block, transition layer, and bottle-
neck layer.[19] The DenseNet block shown in Figure 1 revises the 
sequential concatenation of all the feature maps [x0, x1, . . . , xl−1] 
in the model, instead of connecting the output feature maps 
from all previous layers[20]; it can be expressed as formula 1:

DenseNet : xl = Nl (concat [x0, x1, . . . xl−1])(1)

where l is the layer index and N is the nonlinear operation. xl 
represents the feature of the lth layer. DenseNet confers several 
advantages such as the ability to reuse features, reduce explod-
ing features; this model is also associated with fewer gradient 
disappearance problems.[8]

In this study, we chose DenseNet201 as the backbone for 
developing a breast lesion diagnosis system because it provides 
the best performance based on the ImageNet classification task. 
We used binary cross entropy as our loss function and a sto-
chastic gradient descent optimizer to minimize the loss. The 
loss function of the binary cross-entropy can be expressed as 
follows:

loss = −
∑n

i=1
ŷ
i
log yi + (1− ŷi) log (1− ŷi)(2)

where y is the classification label (0 or 1), the term yi is the pre-
dictive probability of the model output, and n is the number of 
images per batch.

Binary cross-entropy is a loss function and is a measure of 
the accuracy with which a prediction model can predict the 
expected outcome. Expressed in simpler terms, in the case of 
y = 1, if yi is close to 1, then the loss value will be close to 0. 
Conversely, if yi is close to 0 at this time, then the loss value will 
be remarkably large, which is very much in line with the nature 
of the log (complex) function.

The DTL model architecture is divided into 3 parts: feature 
extraction, data training and testing, and model validation. The 
main hyperparameters were set as follows: binary cross-entropy 
was used as the loss function, optimization was based on the 
Adam optimizer, learning rate was set to 0.0001, dropout (neu-
ron random loss function) was set to 0.5, the number of Epochs 
was set to 40, ReLu was used as the activation function, and 
the Sigmoid function was used as the classification function (as 
shown in formulas 3 and 4, respectively).

Relu (x) = f (x) =

®
max (0, x) ,x ≥ 0
0, x < 0(3)

Sigmoid (x) = f (x) =
1

1+ e−x (4)

The DTL model based on DenseNet201 is shown in Figure 2.

2.7. Fine-tuning strategies

There has been widespread use of the pre-trained DenseNet201 
model in medical image analysis because of its high discrim-
ination power derived from millions of natural (non-medi-
cal) images. However, this model is very time-consuming, and 
high-performance computers are required for model training. 
It has been reported in the literature that the performance of 
DenseNet can be improved through fine-tuning.[21,22] In this study, 
we sought to improve the performance of the DenseNet201 
model by devising 4 fine-tuning strategies, as follows: Strategy 
0 (S0), Strategy 1 (S1), Strategy 2 (S2), and Strategy 3 (S3). The 
parameters of the neural network were activated and used in 
the model training process, whereas the parameters of the layers 
that were kept frozen were not involved in training the model 
(Fig. 3). The feature extraction network was not altered in the 
freezing layers, but the number of parameters that were required 
to be trained was reduced; this feature can save training time 
and space resources.

2.8. Statistical analysis

Statistical analysis was performed using SPSS 23.0 statistical 
software (IBM, Chicago). The age of the patients and the diam-
eters of the lesions are represented as mean ± standard devia-
tion ( x̄± s). One-way analysis of variance (ANOVA) was used to 
analyze the variance between the 2 groups. The kappa test was 
used to determine the degree of agreement between methods. 
Statistical significance was set at P < .05.

2.9. Performance evaluation of the networks

Four performance indices were calculated and used to com-
pared the performance of the models. These included accuracy 
(Ac), precision (Pr), recall rate (Rc), f1 score (f1), and the area 
under the receiver operating characteristic curve (AUROC). The 
calculations are presented in the following equations:

Ac =
TP+ TN

TP+ TN+ FP+ FN(5)

Table 2

Dynamic contrast-enhanced magnetic resonance imaging 
acquisition parameters.

Parameter 
Philips 
Achieva GE Healthcare 

Field strength 3.0T 3.0T
No. of coil 

channels
8 8

Acquisition plane Axial Axial
Pulse sequence 3D gradient 

echo (Thrive) 
Enhanced fastgradient 

echo 3D
Repetition time 

(ms)
5.5 9.6

Echo time (ms) 2.7 2.1
Flip angle 10° 10°
No. of post-

contrast images
5 5

Fat suppression Yes Yes
Scan time 9 min 30 s 8 min 20 s

3D = three dimensional, ms = millisecond, No = number, s = second.

Table 3

Parameters pertaining to data augmentation.

Parameter Value 

Rotation range 60
Shear range 0.2
Zoom range 0.2
Horizontal flip True
Fill mode Nearest
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Pr =
TP

TP+ FP(6)

Rc =
TP

TP+ FN(7)

f1 =
2 × Ac × Rc

Ac+ Rc (8)

In our study, the positive and negative cases were assigned to 
the malignant and benign groups, respectively. TP, TN, FP, and 

Figure 2. Illustration of the deep transfer learning (DTL) architecture. The input images were supplied in the BMP format. The process is divided into 3 parts: 
image neural network feature extraction, model training and testing, and model validation; the results are output after this process. DTL = deep transfer learning.

Figure 1. A 5-layer dense block with a growth rate of k = 4. Each layer takes all the preceding feature-maps as input.



5

Meng et al. • Medicine (2022) 101:45 www.md-journal.com

FN represent the true positives, true negatives, false positives, 
and false negatives, respectively.

Recall (also known as sensitivity) refers to the ratio of the 
correctly predicted positive observations to all the positive 
observations. f1 is a measure of classification accuracy in statis-
tics, it provides a reliable measure of the relationship between 
precision and recall. Therefore, a high score signifies an equilib-
rium between precision and recall.

3. Results

3.1. The results for the training and testing sets

The analysis results showed that the accuracy of the training 
set reached 100.00% for all fine-tuning strategies after 17 
epochs, while S2 achieved the best test accuracy at 98.01%. 
With increasing epochs in the training set, the train loss value 
decreased for all the fine-tuning strategies. During the testing 
process, the test loss tended to increase for all the fine-tuning 
strategies, except for S2 (Fig.  4). This implies that among all 
the fine-tuned models, only S2 achieved convergence. These data 
suggest that the S2 model was a better fit than the other strate-
gies. The time consumed for the training using S3 was 12.93% 
higher than that using S2; all the saved models were identical in 
size at 84.30 MB (Fig. 5).

3.2. Cross validation

By comparing the results of the 4 fine-tuned models in the 
training and testing sets, we determined that the S2 model was 
the best candidate model. Next, the S2 model was evaluated 
through 10-fold cross-validation (Fig. 6) using the dataset. The 
results are summarized in Table 4.

3.3. Visualization of the activated breast MRI images of the 
DTL model

A class activation map was composited by combining the input 
image and heat map (Fig. 7). Such a map can help in identifying 
the parts of the image on which the model was focusing while 
making the final prediction and hence can provide insights into 
the working of the model. The heat map is a coarse localization 
map that highlights the import regions for the classification tar-
get. Such an analysis can further help in hyperparameter tuning 
and aids in gaining an understanding of the reason underlying 
the failure of a model.

3.4. Validation results of the fine-tuning strategies

The classification report of the 4 strategies in the benign 
(250 images) and malignant (230 images) groups can be 
summarized as follows: overall Pr, Rc, f1, and AUROC of 
the S2 model in the validation set were 89.00%, 80.00%, 
0.81, and 0.79, respectively, and were higher than those 
of the S0 (76.00%, 67.00%, 0.69, and 0.65), S1(60.00%, 
60.00%, 0.60, and 0.66, respectively), and S3 (77.00%, 
73.00%, 0.74, and 0.72) models. The accuracy for discrim-
inating between benign and malignant breast lesions was 
as follows: S0, 60.41% (29/48); S1, 54.17% (26/48); S2, 
75.00% (36/48), and S3, 70.83% (34/48). The degree of 
coincidence between the S2 model and the histopathology 
method for differentiating between benign and malignant 
breast lesions was high (κ = 0.749). Further details are pro-
vided in Tables 5 and 6. The AUROC of the S0, S1, S2, and 
S3 strategies in the validation set were 0.65, 0.66, 0.79, and 
0.72, respectively (Fig. 8).

Figure 3. Schematic diagram of the 4 pre-set fine-tuning strategies param: the trainable parameters of the activation layers.
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4. Discussion
AI has shown advantages in diagnosing breast lesions, and has 
been used for the detection of calcification on mammography 
and classification of breast masses. However, there is signifi-
cant intra-and inter-class heterogeneity owing to the diversity 
of imaging modes and clinicopathological characteristics.[23] 
Choosing a proper model to start a specific learning task for 
breast DCE-MRI remains a challenge.

DenseNet201 is an intensive convolutional neural network 
that connects each layer to every other layer in a feed-forward 
fashion. Foreach layer, the feature maps of all the preceding lay-
ers are used as inputs, and their own feature maps are used as 
inputs for all the subsequent layers.[8] In a study by Jaiswal et al, 
DenseNet201 was used to identify COVID-19 on chest CT.[11] 

Their data revealed that the DenseNet201 model achieved accu-
racies of 99.82%, 96.25%, and 97.4% for the training, testing, 
and validation sets, respectively. The Pr was 0.9629 in the test-
ing set, which was higher than that of the other models such as 
VGG16 (0.9574), Inception ResNet (0.9015), and Resnet152V2 
(0.9212). Using a densely connected convolutional neural net-
work truncated with partial layer freezing and feature fusion, 
Montalbo et al[17] developed a method for diagnosing COVID-
19 from chest X-rays using partial layer freezing. Their study 
showed that the performance-to-parameter size ratio of this 
method demonstrates its effectiveness in training DenseNet with 
fewer parameters compared to traditional deep convolutional 
neural networks; the results obtained with this method were 
promising.

Figure 4. Learning curves of the fine-tuning strategies. As is evident from the figure, the accuracy of S2 was higher than that of the other strategies in the testing 
set, and this strategy was associated with a relatively lower loss value. train_loss: loss of the training set; train_acc: accuracy of the training set; test_loss: loss 
of the testing set; test_acc: accuracy of the testing set; S0-S3: strategy 0-3.

Figure 5. Comparison of the training results of the fine-tuning strategies train_acc: accuracy of the training set; val_acc: accuracy of the testing set. S0-S3: 
strategy 0-3.
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There have been no literature reports on the ability of 
DenseNet201 to differentiate between benign and malignant 
breast lesions on DCE-MRI. In this study, 4 fine-tuning strat-
egies were applied to improve the accuracy of DenseNet201. 
The fine-tuned S2 model was evaluated using the 10-fold 
cross-validation method, and its performance was found to be 
stable. The average classification Ac, Rc, f1, and AUROC of 

S2 in the validation set were higher than those of the other 
strategies. Rc (also known as sensitivity) is the ratio of the cor-
rectly predicted positive observations to the total number of 
observations in a class. f1 is a measure of classification accu-
racy, with a maximum value of 1 and a minimum value of 0. 
It is a robust metric that calculates the relationship between 
Pr and Rc; hence, a high f1score indicates a balance between 
Pr and Rc.

Theoretically, Ac increases as the training parameters increase 
in the network for the same dataset and computer environment, 
and the same is true for the training time. Surprisingly, our 
results only validated the former theoretical contention. Our 
data show that S2 has the most parameters and achieved the 
highest Ac; however, the time consumed was 12.93% higher for 
S3 compared to that for S2. This may be because the principal 
function of the third convolution layer (conv3 layer) which was 
activated by S3 was feature extraction, and a longer time period 
was required than that for the 4th convolution layer activated 
by S2 (conv4 layer).

Two major factors influence the use of deep learning technol-
ogy in the medical imaging field. First, a significant limitation 
is the lack of medical image datasets that are publicly available 
for training. Because of the emphasis on privacy and confiden-
tiality, medical images are difficult to obtain from the inter-
net, even with advanced web crawler techniques. The dataset 

Figure 6. Ten-fold cross-validation of the S2 model. We split our dataset into 10 parts. Then, 1 part was selected for each test, and the remaining 9 parts were 
used for training.

Table 4

The results of the 10-fold cross-validation.

Folds Ac1 (%) Loss1 (×10–5) Ac2 (%) Loss2 (10–2) 

Fold1 100.00 2.12 98.01 11.16
Fold2 100.00 2.23 97.93 11.09
Fold3 100.00 2.31 97.88 12.44
Fold4 100.00 2.30 97.88 11.59
Fold5 100.00 2.12 98.03 11.16
Fold6 100.00 1.91 98.14 13.80
Fold7 100.00 2.04 98.08 11.61
Fold8 100.00 2.21 97.75 10.84
Fold9 100.00 2.18 97.92 11.70
Fold10 100.00 2.15 97.99 12.99

Ac1 = accuracy of the training set; loss1: loss value of the training set, Ac2: accuracy of the testing 
set; loss2: loss value of the testing set.

Figure 7. Class activation map (CAM) of a breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) image in DenseNet201. A: input DCE-
MRI image, white arrow shows the benign breast lesion; B: heat map of the image. The yellow square is the most sensitive region of the input image found 
by the convolutional neural network; C: composite image obtained by fusing images A and B, which is easier to analyze visually. The lesion was pathologically 
confirmed as a fibroadenoma. CAM = class activation map, DCE-MRI = dynamic contrast enhanced magnetic resonance imaging.
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used in this study was from a single center and was relatively 
small. Thus, the robustness of the prediction model was poor. 
As our data shows, although 8400 images were included in the 
study, there were only 310 patients (27 images per patient). 
Multicenter studies should be conducted in the future to resolve 
this issue. Second, there is no widely applicable deep-learning 
algorithm. Depending on the dataset, different hyperparameters 
and optimizers may be required for the optimal performance 
of a deep learning algorithm. If a DTL model is proposed with-
out fine-tuning, the results may not be ideal, as demonstrated 
by our results. In this study, we designed 4 fine-tuning strate-
gies to improve the accuracy of DenseNet201. We found that 
the S2 strategy performed better than the other strategies in 

differentiating benign lesions from malignant lesions on breast 
DCE-MRI. This capability will be of value and will be of interest 
as a topic for future studies.

However, this study has several limitations. First, the sam-
ple size was relatively small due to the small number of images 
included in our study, particularly there was a lack of rare breast 
lesions for training; this dataset may not sufficiently represent 
the full class of breast lesions, significantly reducing the reliabil-
ity of the prediction results of the DTL models. Therefore, multi-
center large-sample studies are required. Second, routine breast 
DCE-MRI diagnostics require a combination of history findings, 
breast ultrasound, or mammography, while our study was based 
on simple breast DCE-MRI images only. Third, the input data in 

Table 5

Classification report of the 4 strategies in the validation set.

Group 

Support images S0 S1 S2 S3

S0 S1 S2 S3 Pr Rc f1 Pr Rc f1 Pr Rc f1 Pr Rc f1 

Group 1 352 256 352 320 88.00 64.00 0.74 62.00 62.00 0.62 100.00 73.00 0.84 88.00 70.00 0.78
Group 2 128 224 128 160 43.00 75.00 0.55 57.00 57.00 0.57 57.00 100.00 0.73 57.00 80.00 0.67
Avg/total 480 480 480 480 76.00 67.00 0.69 60.00 60.00 0.60 89.00 80.00 0.81 77.00 73.00 0.74

1: = f1 score, avg = average, Group 2 = malignant group, Group1 = benign group, Pr = precision, Rc = recall rate.

Table 6

Comparison of the different fine-tuning strategies and histopathological diagnosis in the validation set.

  S0 S1 S2 S3

His B M T κ P* B M T κ P* B M T κ P* B M T κ P* 

B 20 5 25   16 9 25   23 2 25   20 5 25   
M  14 9 23   13 10 23   4 19 23   9 14 23   
T 34 14 48 0.194 .145 29 19 48 0.059 .683 27 21 48 0.749 .000 29 19 48 0.417 .003

B = benign, His = histopathological diagnosis, M = malignant, T = total.
*, kappa test κ ≥ 0.7 indicated a strong correlation; 0.7 > κ ≥ 0.4 indicated a relatively strong correlation; κ < 0.4 indicated a poorer correlation.

Figure 8. The receiver operator characteristic (ROC) curve and area under the receiver operator characteristic curve (AUROC) pertaining to the performance 
of the 4 strategies in the validation set. We can see that the AUROC of S2 (0.79) was higher than that of S0 (0.65), S1 (0.66), and S3 (0.72). ROC = receiver 
operator characteristic, AUROC = area under the receiver operator characteristic curve.
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our study were 2D cropped images; it remains to be investigated 
whether 3D imagery can increase the performance of the DTL 
model. There has been considerable debate over 2D and 3D 
representation learning for 3D medical images. 2D approaches 
could benefit from large-scale 2D pretraining; however, they are 
generally weak in capturing large 3D contexts. 3D approaches 
are natively strong in 3D contexts; however, few publicly avail-
able 3D medical datasets are large and sufficiently diverse for 
universal 3D pretraining.[24] Finally, there are other classification 
convolutional neural networks that are suitable for the analysis 
of breast DCE-MRI images such as VGG19 and MobileNetV2. 
Thus, a DTL model that is more accurate and robust for the 
classification of breast DCE-MRI images is needed, which is the 
goal of our further research.

5. Conclusions
Our study further demonstrates that the performance of 
DenseNet201 can be improved through fine-tuning in transfer 
learning. We identified an optimal fine-tuning strategy (S2) to 
improve the robustness of the DenseNet201 model in analyzing 
relatively small breast DCE-MRI datasets. The study findings 
have important implications for future research, and thus it is 
necessary to conduct a multicenter study with a large sample 
size in the near future.
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