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INTRODUCTION
Peripheral nerve injuries are relatively common, often 

occurring through diverse types of traumatic events, such 
as motor vehicle accidents, and can lead to long-term dis-
ability, pain, and financial burden, thereby contributing to 
an individual’s reduced quality of life.1-4 Although injured 
peripheral nerves can regenerate, axon regeneration pro-
ceeds slowly, at rates of only 1–3 mm/day.2,5,6 No definitive 
therapeutic methods have been devised to speed this rate 
of regeneration.7 The regenerative capacity of axons and 
the growth support of Schwann cells decline with time and 
distance from injury.2

Various modalities to facilitate nerve regeneration—
such as neurotrophic factors—have been described in the 
literature with limited success.7–26 There have been lim-
ited reports of applying electrical fields/gradients across 
a repaired peripheral nerve to speed up axonal regen-
eration.27-31 However, the mechanisms by which electrical 
stimulation enhances nerve regeneration remain relatively 
poorly understood, and the misdirection of regenerat-
ing axons after surgical repair remains a problem for the 
appropriate activation of re-innervated muscles.32
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Background: Various modalities to facilitate nerve regeneration have been 
described in the literature with limited success. We hypothesized that negative 
pressure applied to a sectioned peripheral nerve would enhance nerve regenera-
tion by promoting angiogenesis and axonal lengthening.
Methods: Wistar rats’ sciatic nerves were cut (creating ~7 mm nerve gap) and 
placed into a  silicone T-tube, to which negative pressure was applied. The rats 
were divided into 4 groups: control (no pressure), group A (low pressure: 10 mm 
Hg), group B (medium pressure: 20/30 mm Hg) and group C (high pressure: 
50/70 mm Hg). The nerve segments were retrieved after 7 days for gross and his-
tological analysis.
Results: In total, 22 rats completed the study. The control group showed insignifi-
cant nerve growth, whereas the 3 negative pressure groups showed nerve growth 
and nerve gap reduction. The true nerve growth was highest in group A (median: 
3.54 mm) compared to group B, C, and control (medians: 1.19 mm, 1.3 mm, and 
0.35 mm); however, only group A was found to be significantly different to the con-
trol group (**P < 0.01). Similarly, angiogenesis was observed to be significantly 
greater in group A (**P < 0.01) in comparison to the control.
Conclusions: Negative pressure stimulated nerve lengthening and angiogenesis 
within an in vivo rat model. Low negative pressure (10 mm Hg) provided supe-
rior results over the higher negative pressure groups and the control, favoring 
axonal growth. Further studies are required with greater number of rats and lon-
ger recovery time to assess the functional outcome. (Plast Reconstr Surg Glob Open 
2021;9:e3568; doi: 10.1097/GOX.0000000000003568; Published online 13 May 2021.)
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Nerve guidance conduits have drawn attention as an 
aid to promote the regeneration of injured axons across 
damaged peripheral nerves.33,34 Neuronal cells exposed to 
mechanical stretch stimulated by 10% equibiaxial strain 
at 0.25 Hz showed neurite outgrowth (both length and 
number).35 Distraction neurogenesis with an experimen-
tal nerve-lengthening device was successful for the recon-
struction of nerve defects of 10 mm in Sprague Dawley rats. 
However, the potential drawbacks would be the difficult 
therapeutic application and the device-related problems, 
like mechanical failure and infection.36 The possibility of 
axon stretching in vitro was explored, where rat dorsal root 
ganglia neurons were grown on 2 adjoining substrates. The 
bridging axons were allowed to grow across the interface 
and into the adjacent population of neurons.

Axons were stretched by displacing the 2 adjoining sub-
strates to achieve stretch growth rates up to 10 mm/day. This 
concept is significantly more challenging in vivo though, 
due to the technical difficulties of applying mechanical 
forces to the axons without inflicting wider tissue damage.37

Negative pressure therapy is an established method for 
promoting tissue healing. Multiple mechanisms are pos-
tulated to be responsible for this effect: removal of excess 
interstitial fluid decreases localized edema and increases 
local blood flow, which decreases bacteria levels in tis-
sue, while mechanical deformation of cells results in an 
increase of the rate of cell proliferation and in protein 
matrix synthesis.38 Based on the effect of negative pressure 
wound therapy, in vitro axonal stretching, the principle of 
nerve elongation during embryological development, and 
limb lengthening procedures, we hypothesized that by 
applying negative pressure to the proximal end of a newly 
transected peripheral nerve (in a rat model) that would 
enhance axonal elongation/regeneration compared with 
the control (no negative pressure).

MATERIALS AND METHODS
A total of 30 adult Wistar rats aged 3 months with an 

average weight 450 g, were approved by the university’s 
Ethical Committee (NRS/01/17/AEC) for the study to 
examine the effect of negative pressure on transected 
sciatic nerves. As the ethics committee considered this 
pilot study novel with potential for adverse outcomes on 
the animals, it approved only a small number of animals 
over a single time-point (1 week only). Figure 1 shows the 
flow chart study design. We started with the control (no 
negative pressure) and low-pressure groups to ensure the 
pressure was tolerated by the animal without distress. The 
subsequent groups were allocated to the 2 higher negative 
pressure groups. The sciatic nerve for an adult Wistar rat is 
approximately 1 mm in diameter. We used a custom-made 

transparent silicone T-tube with 1.5 mm inner diameter 
for our study. The left sciatic nerve of each rat was cut and 
placed into a silicone T-tube (with ~7 mm gap) to which 
negative pressure was applied using a customized por-
table suction device with digital pressure monitor.39 The 
rats were divided into 4 groups: control (no pressure), 
low (−10 mm Hg), medium (−20/30 mm Hg) and high 
(−50/70 mm Hg). The rats were monitored continuously 
via cameras to ensure their welfare while the negative pres-
sure was recorded to ensure stability with an allowed fluc-
tuation of ±2 mm Hg. After recovery from anesthesia, the 
rats were free to move within their cages and euthanized 
at 7 days post-surgery. On day 7, the nerve segments were 
retrieved for gross and histological analysis.

Surgical Procedure
Surgery was performed on the left sciatic nerve. The 

T-tube was sterilized with 100% ethanol and flushed with 
sterile normal saline. The rats were anaesthetized with 
O2/Isoflurane mixture (30%/1%–3%). Surgical sites 
were shaved away from the surgical field at both the left 
gluteal region (primary surgical site) and the back of the 
cervical region (the exit point for tubing; secondary sur-
gical site). Rats were placed prone over a heat blanket 
and limb stabilization was achieved via an adhesive tape. 
Buprenorphine (0.05 mg/kg subcutaneously) was admin-
istered intra-surgically and post-surgically. Both surgical 
sites were cleaned and treated with alcoholic iodine.

A skin incision was performed extending from a mid-
point (between the hip joint and ischial tuberosity) to the 
knee. Blunt dissection was carried out (muscle splitting 
approach) using Iris scissors between the gluteus maximus 
and biceps femoris muscle. The sciatic nerve was identi-
fied under the gluteus maximus muscles. The nerve was 
isolated from the surrounding connective tissues and fas-
cia using micro-scissors. The epineurium and its blood 
vessels were preserved. The position of the T-tube was 
checked for tunnel planning. Subcutaneous tunneling 
was performed in 2 steps with the use of a “passing probe.” 
Suspensory skin sutures were used (~5 cm proximal to the 
initial skin incision) to stabilize the tube.

Sciatic Nerve Transection and Implantation of T-tube
The nerve was transected with sharp micro-scissors 

(in the middle of the exposed length of the nerve). The 
T-tube was tunneled under the gluteal muscles in the pri-
mary surgical site and then subcutaneously superficial to 
the back muscles. The long limb of the T-tube emerged 
from a small skin portal behind the neck (secondary surgi-
cal site) to provide a safe portal away from the rat’s mouth 
with no restriction of mobility.

Fig. 1. Flow chart showing study design.
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The sectioned nerve ends were fed through the 2 
limbs of the T-tube using negative pressure to minimize 
nerve handling with surgical instruments. Once the nerve 
ends were fed into the tube, the negative pressure was 
removed, and two 8/0 nylon sutures were used to secure 
the nerve end to the silicone tube. We used surgical skin 
glue (HistoAcryl from B Braun) to secure the tube to the 
underlying muscles to restrict the rotational moment of 
the tube while the rat is moving and hence prevention of 
the nerve end dislodgement from the tube. The average 
proximal nerve end in the tube was 4.2 mm, whereas the 
distal nerve end was 3 mm. The nerve gap was measured in 
millimeters (average 7.1 ± 2.9 mm) between the proximal, 
and distal ends of the nerve inside the tube. The nerve 
end was well sealed and no additional sealant around the 
nerve was required.

The wound was flushed with sterile normal saline. 
The skin was sutured with 6/0 PDS (absorbable suture). 
Surgical Opsite spray (Smith & Nephew) was applied to 
the wound to keep wound sterility and prevent contami-
nation. The long limb of the T-tube was secured to the 
back of the rat with nylon suture and fed through the 
harness swivel system for extra security. The connector 
silicone tubing system from the harness to the upper 
cage was protected with an outer metal spring to pre-
vent the rat from biting the tube. The connector tube 
was connected to the top of the cage through a hollow 
swivel to transmit the negative pressure and permit rat 
mobility (Fig. 2).

Postoperative Care
Negative pressure was applied to the nerve ends con-

tinuously for 7 days and set to the respective group pres-
sure value.40 Postoperatively, the rats recovered in their 
cages. The rats were closely monitored after the proce-
dure for any adverse effects. Daily checks on the rats’ activ-
ity and wellbeing were carried out according to the ethics 
approved monitoring sheet.

Nerve Retrieval and Pathological Testing
At the seventh postsurgical day, the rats were anaesthe-

tized and the nerve ends within the T-tube were retrieved. 
The rat was euthanized by intra-peritoneal Lethabarb injec-
tion concurrent with isoflurane. Lengths of each end of 
the nerve within the tube were recorded before harvesting. 
The retrieved nerve ends were fixed in 4% paraformalde-
hyde for 2–4 hours then washed in 0.2% glycine in phos-
phate-buffered saline (PBS). Nerve ends were transferred 
in 70% EtOH. The nerve ends were treated with osmium 
tetroxide (OsO4) for myelin sheath visualization then pro-
cessed and embedded into paraffin wax for sectioning.

Six transverse sections (thickness: 5 µm) were collected 
at 250-µm intervals along the entire length of the nerve. 
These intervals ensured that different regions along the 
regenerating nerve were analyzed. One nerve slice per 
section was counter stained with Masson Trichrome to 
provide connective tissue and blood vessel analysis.

Statistical Analysis
The statistical analysis of the experimental data was 

performed either using parametric or nonparametric 
ANOVA (Kruskal-Wallis test also known as ANOVA by 
ranks) based on the outcome of normality test (Shapiro-
Wilk test) to observe the effect of negative pressure on 
length of nerve zones, gross and actual nerve length, 
and angiogenesis. This was followed by post hoc test 
(Dunnett’s or Tukey’s) to compare means or medians 
between 2 independent groups to ascertain which treat-
ment group was significantly different than the control. 
Statistical analyses were performed using GraphPad Prism 
8.4.0 (GraphPad Software, San Diego, Calif.). For every 
analysis, null and alternative hypotheses were tested. The 
null hypothesis (Ho) assumes that there is no difference 
between the observed value and the control, and the 
results are random due to chance. The alternate hypoth-
esis (Ha) says that the results are because of treatment 
(negative pressure effect) and are not due to chance. To 
reject a null hypothesis, differences among control and 
treatment groups were considered significant at *P < 0.05, 
**P < 0.01, and ***P < 0.001.

RESULTS AND ANALYSIS
All rats tolerated the surgical procedure and nega-

tive pressure well, except 1 animal, which did not recover 
from the anesthesia. No animals displayed any signs of dis-
tress after surgery. It was noted that the nerve stumps of 
7 rats were dislodged from their respective T-tubes, which 
was evident from the pressure graphs (these events were 
before using the surgical glue to stabilize the tube to the 

Fig. 2. Schematic diagram showing the design of the surgical pro-
cedure, red lines represent the 2 ends of the sciatic nerve after tran-
section and insertion into the transverse limb of the  T-tube. The 
longitudinal limb of the T-tube is tunneled subcutaneous to emerge 
behind the rat’s neck and is attached to the swivel harness system 
through which the negative pressure is introduced.
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surrounding tissues). These 7 rats were removed from fur-
ther analysis. The number of rats in each group that were 
included in analysis is provided in Table 1.

Measurement of Nerve Growth
No reduction in the nerve gap was found in the control 

group, whereas a variable gap reduction was noted in the 3 
treatment groups. This reduction in the nerve gap was due 
to the lengthening of the proximal nerve stump within the 
T-tube. Our findings coincided with previous understand-
ing that a nerve regenerates from the proximal stump. The 
apparent increase in the length of the proximal nerve end 
inside the tube was found to be (median with IQR) 3.9 
(1.175) mm for group A; 2.45 (0.45) mm for group B, 2.25 
(0.725) mm for group C, and 0.6 (0.3) mm for the control 
group (See Table 2). These results showed that the high-
est difference in the apparent length of the proximal nerve 
stump inside the tube was in group A followed by group B 
and then group C, whereas the control group showed the 
lowest difference. Statistical analysis of the data followed 
by Dunn’s multiple comparisons test confirmed that only 
groups A and B are statistically significantly different than 
the control group (***P < 0.001, *P = 0.032).

Division of the Proximal Nerve into Zones
The Masson Trichrome stained sections at 250 µm inter-

vals along the nerve were examined by a blinded medical 
pathologist who classified the retrieved nerve ends into 3 
regional zones—as described below—based on qualitative 
pathology and nerve anatomical morphology (Figs. 3–5). 
The morphology of the nerve in Zone 1 was interpreted 
to be granulation tissue, which was disparate to the other 
2 zones; hence, representative sections of Zone 1 were fur-
ther stained with Haematoxylin and Eosin for validation.

Zone 1 is the zone of transection. Microscopic analy-
sis of this region revealed the presence of cellular debris, 
neutrophils, lymphocytes as well as foamy macrophages. 

Some macrophages have myelin debris (stained black with 
Osmium). Vascular regeneration and fibroblasts with con-
nective tissue were observed. The length of this zone varied 
between controls and some of the pressure groups.

Zone 2 zone proximal to the transection. Fibrotic endo-
neurium, scarce epineurium, and perineurium were seen 
along with the presence of some intact myelinated axons.

Zone 3 is the zone proximal to Zone 2, which rep-
resents myelinated native nerve fibres and regenerat-
ing nerve. The number of myelinated axons gradually 
increased (qualitatively assessed) with increasing distance 
away from transection and intact endoneurium, epineu-
rium and perineurium were observed.

DISCUSSION

Length of Proximal Nerve Zones
The average length of each zone for each group was 

calculated from the histological analysis (Fig. 5). Zone 1 
(zone of granulation connective tissue) showed a positive 
correlation with pressure, as demonstrated by an increase 
in length relative to an increase in the negative pressure 
up to 30 mm Hg; however, none of the groups were found 
to be significantly different to the control, with median 
and interquartile range of 0.29 (2.09) mm, 1.11 (3.38) 
mm, 0.74 (1.06) mm, and 0.45 (0.4) mm for group A, B, 
C, and control respectively. Similarly, Zone 2 (degenera-
tion/regeneration zone) did not show any significant dif-
ference among the 4 groups (P > 0.05) with median and 
interquartile range of 1.65 (0.95) mm, 1.66 (0.485) mm, 
1.60 (0.38) mm, and 1.10 (0.98) mm, for group A, B, C, 
and control, respectively. In contrast, Zone 3 (myelinated 
growing nerve/native nerve zone) showed an increase in 
length in the 3 negative pressure groups when compared 
with the control. Median length of the zone 3 was found 
to be 5.38 mm (IQR: 2.56) in group A, 3.4 mm in group B 
(IQR: 2.86), 3.54 mm in group C (IQR: 1.16), and 2.8 mm 

Table 1. Total Rats Included in the Analysis

Groups
No. 
Rats

Control 4
Group A (low pressure: 10 mm Hg negative pressure) 4
Group B (medium pressure: 20/30 mm Hg negative  

pressure)
7

Group C (high pressure: 50/70 mm Hg negative pressure) 7
Totals rats included in results/analysis 22

Table 2. Measurement of the Length of Proximal Nerve End 
Inside the T-tube (in Millimeters)

Rat  
Groups

Length of  
Nerve Stump  
at the Day of  

Surgery— 
Day 0 (Li)*

Length of  
Nerve Stump 

at the day  
of retrieval — 

Day 7 (Lf)*

Lf – Li  
Apparent 
Increase  
in Nerve  
Lengths*

Median, 
IQR  

(Q3-Q1)

Control 3.8 ± 0.8 4.4 ± 1.4 0.6 ± 0.15 0.6, 0.3
Group A 3.75 ± 1.2 7.95 ± 2 4.2 ± 0.91 3.9, 1.175
Group B 4.7 ± 2.3 7.2 ± 1.5 2.5 ± 0.25 2.45, 0.45
Group C 4.1 ± 0.9 6.3 ± 1.1 2.2 ± 0.33 2.25, 0.725
*Measurements in millimeters (Mean ± SD) of proximal nerve end.

Fig. 3. Schematic diagram showing the 3 zones of the proximal 
nerve end inside the tube.
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(IQR: 1.8) in the control group. However, only group A 
was found to be  statistically significantly different to  the 
control group (P < 0.05). We also noted a negative correla-
tion in the length of zone 3 with increasing the negative 
pressure value.

Nerve Growth Metrics
On gross examination (day 7), there was no signifi-

cant nerve growth in the control group, whereas the 3 
treatment groups showed increased gross nerve growth, 
which reflected a reduction in the nerve gap within the 
tube. As the leading end of the proximal nerve rep-
resents connective tissue (zone 1) and not true nerve 
regeneration, we subtracted the length of nerve in zone 
1 to estimate the true length of nerve regeneration. 
Subtracting the connective tissue zone—determined by 
the histological analysis—we found that the true nerve 
growth (Fig.  6) was highest in the low- negative pres-
sure group (group A). The true growth was found to 
be (median length with IQR range) 3.54 (2.12) mm, 
1.19 (2.4) mm, 1.3 (0.682) mm, and 0.35 (0.4) mm for 
groups A, B, C, and control, respectively. Dunn’s mul-
tiple comparison test confirmed that only group A was 

statistically significantly different to the control group 
(**P < 0.01).

Angiogenesis Analysis
The number of blood vessels from the Masson 

Trichrome stained slides (using 100× magnification) 
was calculated in zone 2 of each group as representa-
tive of angiogenesis (Fig.  7). The data were analyzed 
using nonparametric analysis of variance (Kruskal-
Wallis Test), which indicated a significant variation 
among the medians of control and treatment groups  
(P = 0.0003). Angiogenesis was found to increase in all 3 
negative pressure groups in comparison with the control 
(Fig. 7B) with a median (+IQR) of 24.5 (4.5), 18 (6), 15 
(3.5), and 14 (3) blood vessels in group A, B, C, and control, 
respectively. Multiple comparison test (Dunnett’s post-hoc 
test) confirmed that only group A was significantly differ-
ent than the control (**P < 0.01). This analysis suggested 
that low level of negative pressure positively affects the for-
mation of vascular bundles during nerve growth than the 
control and other treatment groups (groups B and C). We 
also explored the distal stumps of the transected nerves but 
found no difference among the groups.

Fig. 4. Sample of a nerve fixed with Osmium and counter stained with Masson Trichrome, displaying the 3 distinct zones. Myelin sheath 
visualization (stained black) appears as black rings, whereas degenerating myelinated fibres appear disordered (black blobs). Mason 
Trichrome provides connective tissue visualization (collagenous tissue stained blue, while cellular nuclei stained dark red/purple, and the 
cytoplasm red/pink). The healthy myelin sheath was found in Zone 3 and, to a lesser extent, in Zone 2, whereas Zone 1 has myelin debris.
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Limitations and Conclusions
This novel study had a number of limitations. The study 

design was based on an anticipated effect size 1.5 greater 
than the control. No in vivo pressure guidance was avail-
able before our study and the possible deleterious effect 
was unknown. Therefore, small animal cohorts and a short 
experimental duration were specified from the University’s 
animal ethics committee. The number of rats was not equal 
in each group as 1 rat died during anesthesia, and seven 
rats were excluded from the study because of dislodgement 
of the nerve end from the tube. We modified our surgical 
technique to overcome the latter problem by using suspen-
sory skin sutures, Histacryl glue to secure the tube to the 
muscle and changing the position of the subcutaneous tun-
neling. It was not possible to predict an obstruction of the 
tube despite continuous monitoring due to the small size of 
the tube’s inner diameter (1.5 mm). Because our study was 
conducted for 7 days only, we could not follow the progres-
sion of the regenerating axons over a longer duration.

We conclude that low negative pressure (10 mm Hg) 
favored angiogenesis over the control group and pro-
vided superior axonal growth over the higher negative 
pressure groups and the control. This increase in the 
length of the proximal nerve ends in the low pressure 
group was represented by a significant growth through 
zone 3 (myelinated growing nerve/native zone). We 
believe that true regenerative growth occurred with 
early sprouting and macro deformation facilitated by 
the negative pressure effect. This growth could not 
reflect stretch of the nerve, as the growth was the high-
est in the low negative pressure group and the lowest in 

the high negative pressure group. Also, the proximal 
nerve end was secured with sutures (8/0 nylon) to the 
tube; this would make it very unlikely that the nerve end 
was drawn into the tube creating a false increase in its 
length.

We believe that Zone 1 represents the connective tis-
sue scaffold into which the sprouting axons will grow. We 
hypothesize that negative pressure applied to the proximal 

Fig. 5. Length of nerve zones.

Fig. 6. True nerve growth in millimeters (group A was statistically sig-
nificant **P < 0.01).
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end of a transected peripheral nerve would enhance nerve 
regeneration by different mechanisms (Table 3).

This pilot study has demonstrated that negative pres-
sure stimulated the nerve growth in a rat sciatic nerve gap 
model. This study is clinically translatable by combining 
the known beneficial effects of negative pressure on tissue 
regeneration and proven efficacy of conduit nerve repair. 
The technology would be useful for augmenting nerve 
regeneration in situations where primary nerve repair out-
comes are poor, such as proximal nerve injuries and nerve 
gap repair.

Tamer Mettyas, MBBCh, MSc, MRCS, FRACS 
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