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Background: Parkinson’s disease (PD) is the most common movement disorder

affecting up to 1% of the population above the age of 60 and 4–5% of those above

the age of 85. Little progress has been made on efforts to prevent disease development

or halt disease progression. Diet has emerged as a potential factor that may prevent the

development or slow the progression of PD. In this review, we discuss evidence for a role

for the intestinal microbiome in PD and how diet-associated changes in the microbiome

may be a viable approach to prevent or modify disease progression.

Methods: We reviewed studies demonstrating that dietary components/foods were

related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome

in PD patients including abnormal shifts in the intestinal microbiota composition (i.e.,

dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased

lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms

by which the microbiota can influence PD including the NLRP3 inflammasome, insulin

resistance, mitochondrial function, vagal nerve signaling.

Results: The PD-associated microbiome is associated with decreased production of

SCFA and increased LPS and it is believed that these changes may contribute to the

development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and

the Western diet is associated with increased risk for PD whereas the Mediterranean

diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may

be the consequence of changes in the relative abundance of SCFA-producing or

LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier

function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin

resistance, and mitochondrial dysfunction, and the production of factors such as

glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well

as intestinal gluconeogenesis.

Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation

of neuroinflammation in PD including several new mechanisms. We conclude with

the need for clinical trials in PD patients to test this model for beneficial effects of

Mediterranean based high fiber diets.
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INTRODUCTION

Parkinson’s disease (PD) is recognized as the second most
common neurodegenerative disease of aging after Alzheimer’s
disease (AD) and the most common movement disorder,
affecting up to 1% of the population above the age of 60 and
4–5% of those above the age of 85 (1, 2). While there are
treatments that minimize symptoms of PD, little progress has
been made on efforts to halt disease progression (3). Less than
10% of PD is associated with specific genetic changes, which
means that the search is on for environmental risk factors for PD
(3, 4). Diet is one such environmental factor that has emerged
as a potential factor that can promote the development or
exacerbate the progression of PD (5–7). In this review, we will
discuss evidence for the diet involvement in PD development,
discuss the mechanisms by which the diet-mediated effects on
the microbiome may influence PD, and also discuss how dietary
interventions may be used to prevent or treat PD.

DIET IN PARKINSON’S DISEASE

There is a growing body of epidemiological evidence to support
that diet impacts (positively or negatively) the development of
neurodegenerative diseases such as PD. The Western diet is
among the greatest risk factors for developing neurodegenerative
diseases such as PD (8, 9). The Western diet is characterized by
high caloric intake of energy dense foods, high in saturated and
omega-6 (ω6) fatty acids, refined sugars, excessive salt intake,
and low consumption of omega-3 (ω3) fatty acids and fiber
(10–12). Studies of PD patients support total caloric intake
of macronutrient and micronutrient correlate with symptom
severity, with higher caloric intake associated with worse PD-
related symptoms (13). Consumption of high quantities of
animal saturated fat has been widely reported to be associated
with increased risk of developing PD (14, 15). Foods associated
with more rapid PD progression include canned fruits and
vegetables, soda, fried foods, beef, ice cream, and cheese (all
characteristic of the Western diet) (Figure 1) (9).

On the flip side, a “healthy” diet is associated with beneficial
effects relative to PD (6). Adherence to the Mediterranean diet
is associated with lower probability of developing PD (16).
Specific components of the Mediterranean diet are particularly
associated with these beneficial effects such as fresh vegetables,
fresh fruit, nuts, seeds, non-fried fish, olive oil, wine, coconut
oil, fresh herbs, and spices. Consumption of flavonoid-rich foods
(tea, berry fruits, apples, red wine, and orange/orange juice)
are also associated with a lower risk of developing PD (17).
Polyunsaturated fatty acids (PUFA) are also inversely correlated
with PD development (higher consumption of ω3 fatty acids is
associated with reduced PD risk) demonstrating the influence of
dietary fat intake on the brain (18, 19).

Diet can impact the body through multiple different
mechanisms including direct effects of dietary components
(e.g., vitamins, fats) on the body, but diet may modulate the
development and/or progression of PD indirectly through effects
on the intestinal microbiome (6, 20, 21). Indeed, diet is perhaps

the single greatest factor determining the structure andmetabolic
function of the intestinal microbiota (22–25).

Coffee and caffeine in the diet have also been consistently
associated with decreased risk of PD. Several key early studies
showed a significant dose dependent decrease in risk for PD
with increasing coffee consumption and for smoking as well
(26–28). Recent studies have confirmed a decreased risk for
PD in men and women with increasing caffeine consumption
(29, 30). Both caffeine (coffee) and nicotine (smoking) have been
shown to ameliorate disease in MPTP rodent models of PD
(31, 32). In addition, coffee has recently been shown to contain
chlorogenic acid that inhibits the NLRP3 inflammasome (33)
and polyphenols that have been shown to be neuroprotective
(34, 35) as well as promote healthy microbiome metabolism (36).
Significantly, two recent reviews that discussed the beneficial
effects of caffeine in reduced PD risk both propose a role for the
microbiome (37, 38).

With regard to alcohol consumption and PD, there does not
seem to be a clear conclusion. Two early large prospective studies
showed no effect of moderate alcohol consumption and PD
incidence (39, 40). However, another systematic review found
a protective inverse relationship between alcohol use and PD
(41). Another study found that heavy alcohol use was associated
with decreased risk for PD (42). A recent review of all alcohol-
PD studies concluded that prospective studies tended to find no
association between alcohol use and PD with 2 studies finding an
increased risk with moderate alcohol use and PD (43). However,
the case-control studies were more likely to find a protective
effect (43). Alcohol has also been shown to promote intestinal
leakiness and microbiome effects (44–46). Thus, it appears there
is no definitive view for the effects of alcohol consumption and
risk for PD.

Consumption of dairy products is another area of diet that
has evidence related to PD risk. Several studies have supported
the view that high consumption of milk and possibly dairy
products in general are associated with increased risk for PD
(47–49). A diet study in Greece also found association of dairy
and milk consumption with PD (50). Other more recent studies
also supported association of dairy product consumption and
increased PD risk (51, 52). A study in Hawaii found greater than
two glasses of milk per day was associated with decreased neural
density in the SN at autopsy (53). One proposed cause for these
associations has been pesticides in themilk, but there is no data to
support this. An intriguing recent study implicates microbiome
bacteriophages, especially associated with Lactococcus bacteria in
dairy products, as possible negative modulators of the bacterial
gut microbiome in PD (54). However, a recent position paper on
dairy products and PD risk concluded that overall the evidence
did not warrant alarming the public to avoid dairy products (55).

There is considerable evidence that dietary or environmental
exposure to neurotoxins such as rotenone and paraquat, maneb,
and related neurotoxins such as MPTP can promote Parkinson’s-
like neurodegeneration (56, 57). All of these neurotoxins target
the mitochondria and there is longstanding evidence that
mitochondria dysfunction is critical in PD development (58, 59).
Dysfunctional mitochondria activate the NLRP3 inflammasome
(60). Both the herbicide paraquat and antifungal maneb have
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FIGURE 1 | Mechanisms of communication between the intestinal microbiota and the brain. Diet robustly impacts the intestinal microbiota. Consumption of a

Western diet (or components of the Western diet) promotes the growth of LPS-containing bacteria and reduces the abundance of SCFA-producing bacteria whereas

consumption of a Mediterranean diet (or components of the Mediterranean diet) promotes the growth of SCFA-producing bacteria and reduces LPS-containing

bacteria. This shift is highly significant because LPS-containing bacteria are pro-inflammatory, they disrupt intestinal barrier integrity and LPS binding to TLR4

stimulates a cascade of events including NLRP3 inflammasome activation, mitochondrial dysfunction, and insulin resistance culminating in neuroinflammation and

neurodegeneration. In contrast, increased production of SCFA due to consumption of the Mediterranean diet (or components of the Mediterranean diet) fortifies the

intestinal barrier, stimulates the intestinal L-cell production of GLP-1 and GIP which inhibits NLRP3 inflammasome activation and normalizes insulin resistance. SCFA

also stimulate intestinal epithelial cell IGN and together with GLP-1/GIP stimulate the vagus nerve and brain BDNF which has numerous beneficial effects on

the brain and which improves neuron insulin resistance all of which function to promote neuronal health. Characteristic features of the PD microbiome are similar to those

(Continued)
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FIGURE 1 | observed following consumption of the Western diet (low SCFA-producing bacteria, high LPS-containing bacteria); therefore, dietary interventions such

as the Mediterranean diet (or components of the Mediterranean diet) may be a viable approach to blunt neuroinflammation and improve neuronal function in PD.

BDNF, brain derived neurotrophic factor; GIP, gastrointestinal peptide; GLP-1, glucagon like peptide 1; IGN, intestinal gluconeogenesis; IL-1β, interleukin 1 beta; LPS,

lipopolysaccharide; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; ROS, reactive oxygen species; SCFA, short chain

fatty acids; TLR4, toll-like receptor 4.

been linked to PD (56). Rotenone, a broad based pesticide,
is currently used in animal models of PD (61, 62). MPTP,
which also targets the mitochondria like the other neurotoxins
listed, is also widely used as a model for PD (63, 64). There
is a large body of epidemiological and experimental evidence
for increased risk of PD due to environmental and dietary
exposure to these neurotoxins (63–66). An early study found that
exposure to pesticides resulted in a 70% increased risk for PD
(67). These neurotoxins have been shown to cause Parkinsonian
symptoms and SN neurodegeneration when injected systemically
or directly into the striatum (62, 64). However, the effects of these
environmental toxins on the microbiome has not been studied
in depth. Significantly, in a PD mouse model of oral gavage
administered rotenone, marked changes in the microbiome
correlated with disease markers and TLR4 expression in the
intestine and SN neuron loss (68, 69). Studies by this group
also showed that a uridine and fish oil diet could ameliorate
PD symptoms in these mice (61). In another rodent study using
rotenone IP injection, changes were also found in the intestinal
microbiome similar to those in PD patients (70). These studies
support the model that both oral and systemic injection of
these neurotoxins/pesticides can affect the microbiome. Another
recent study showed that the pesticide diazinon could modulate
the microbiome community in mice (71). Thus, the effects of
these neurotoxins on the intestinal microbiome appears to be an
important area for future study.

Recently the possibility of α-Syn in diet has become a focus
of potential causes of PD (72). α-Syn is a 140 AA protein found
in the brain as well as in lesser amounts in heart, muscle and
other tissues and dairy products (72, 73). The function of α-Syn is
unknown but hallmark inclusions known as Lewy pathology are
found in neurons of the SN in PD and it is believed to play a role
in PD (74). α-Syn aggregates can take many forms but it appears
as though the fibrillar (PFF) form may be the most pathogenic in
the brain because injection of this form can cause PD symptoms
and pathology (75–77). Several studies support a possible spread
of α-Syn with prion like properties and mutations in the α-Syn
gene are associated with familial PD (78, 79). Recent experiments
show injection of α-Syn PFF in the stomach or intestine traffic to
the brain via the vagus nerve in rodents (80, 81). If α-synuclein
spreads via a prion-like mechanism, then one question becomes,
what are the origins of this prion-like species? One source could
be meat products (72). First, it should be noted that no study
has quantified the amounts of intact α-Syn in the stool. It may
be that it is degraded by digestive functions and not available for
uptake or absorption by the intestines. If it does remain intact,
one possibility is α-Syn uptake by gut M cells. M cell depletion
prevents oral prion infectivity (82). Also T cells in the gut and
dendritic cells expressing LAG3 could bind α-Syn and promote
its spread (83). Leaky gut could also be a mechanism for α-Syn

translocation to the systemic circulation (84). Overall, research
to date has yet to directly test the contribution of dietary α-
synuclein to the mechanism of initiation and progression of PD
(72). However, α-Syn is found in beef, pork, chicken, and fish and
many people regularly consume these meat and dairy products,
but only a small fraction of the general population will develop
PD. Therefore, it is unlikely that eating meat products that
contain α-Syn is an independent cause of PD (72). Nonetheless,
future studies tracking α-Syn in the diet systemically as well as in
the intestinal tract could provide new insights to a role for this
key PD protein as a potential dietary risk factor.

DIET AND THE PD MICROBIOME

The human gastrointestinal tract (GIT) harbors trillions of
microorganisms collectively referred to as the microbiome (24,
85, 86). We have a symbiotic relationship with the microbiota
(the bacterial component of the microbiome). We provide them
with an environment (the GIT) and food and they provide us
with a myriad of benefits. The microbiota helps ward off harmful
microorganisms (competitive exclusion), regulate immunity, and
produce substances such as vitamins, secondary bile acids, and
short chain fatty acids (SCFA) (24). For example, dietary fiber is
used as a food source by the intestinal microbiota. Dietary fiber is
a general term for consumed plant-based complex carbohydrates
that are largely not digested by mammalian enzymes in the small
intestine and consequently cannot be absorbed. However, they
are available to be used as a food source by the intestinal (colonic)
microbiota (87). Colonic bacterial fermentation of these dietary
fibers generates metabolic byproducts and especially important
are SCFA (10, 87–89). In contrast to these beneficial commensal
bacteria, there are also pathogenic bacteria (pathobionts) that
can cause GIT dysfunction (intestinal barrier dysfunction) and
inflammation in the intestinal mucosa, systemic circulation, and
even in the brain (10, 90). Thus, the balance of microbiota
influences not only the GIT, but also organs throughout the body
including the brain (91).

Although no two human microbiota communities are
identical (influenced by lifestyle factors like diet, exercise, and
genetics), recent studies in the last 10 years have shown
people with certain diseases tend to share similar characteristic
microbiota features (24, 92). An abnormal microbiome (so called
“dysbiosis”) is associated with many human diseases such as
obesity/metabolic syndrome, inflammatory bowel disease (IBD)
and other chronic inflammatory diseases as well as in PD (90,
93, 94). The intestinal microbiota has become a major focus of
PD studies (95, 96). Initial studies by Scheperjans et al. (97) and
Keshavarzian et al. (98) reported abnormal intestinal microbiota
composition (dysbiosis) in PD patients. Subsequently, 15
additional studies from the USA, Europe and Asia have also
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demonstrated dysbiosis in PD patients (Supplementary Table 1)
(95, 96). As detailed in Supplementary Table 1, the PD patient’s
microbiota composition alterations are not identical in all of
these studies. This is not surprising and should be expected
because of the significant intra- and inter-individual variability
discovered in the microbiota composition of healthy control
subjects (99, 100) and other diseases, where intestinal dysbiosis
has been reported (90, 92). Environmental factors, especially
diet, can markedly affect microbiota community structure and
composition, and thus it is expected that the intestinal microbiota
in patients from the USA should be different from those living
in Europe or Asia (21, 101). In fact, the intestinal microbiota
was found to be significantly different in individuals living in
different communities in the city of Chicago, Illinois, USA (102).
The important key finding is that patients with PD have abnormal
intestinal microbiota communities (“dysbiosis”) regardless of
where they live and also the PD microbiota community appears
abnormal still after 2 years of follow up (103, 104). The majority
of PD human studies employed bacterial 16S ribosomal RNA
(rDNA amplicons) sequencing to different variable regions to
identify bacteria in feces (majority of studies), colonic sigmoid
mucosa (98), nasal wash (105) or nasal swab and oral (106, 107)
samples. Three studies used targeted quantitative PCR, while
one study utilized metagenomics shotgun sequencing. Regardless
of sequence technique or bioinformatics methodologies, the
overall common discovery indicated dysbiotic bacterial profiles,
which suggested putative pro-inflammatory bacteria were more
abundant and putative beneficial bacteria were less abundant in
PD patients.

Parkinson’s disease subjects demonstrated significantly altered
intestinal microbial compositions in comparison to healthy
controls with some overall trends worthy of comment.
Briefly these include PD subjects to exhibit: increased relative
abundance of genera Akkermansia (7 studies) (98, 105, 108–
112), Bifidobacterium (5 studies) (103, 108, 110, 113, 114), and
Lactobacillus (7 studies) (97, 103, 110, 111, 113, 115, 116);
decreased abundance of genus Prevotella (7 studies) (97, 103, 104,
108, 109, 113, 117) and the family Lachnospiraceae (6 studies)
(98, 103, 110, 111, 114, 117) along with its lower taxonomic
hierarchal putative SCFA-producing genera Faecalibacterium (5
studies) (98, 108, 110, 113, 117), Roseburia (4 studies) (98,
103, 110, 111), Blautia (5 studies) (98, 103, 110, 113, 117),
Coprococcus (2 studies) (98, 113), and Dorea (2 studies) (98, 113)
(Supplementary Table 1).

Significantly, a few of the studies evaluated predicted
functional gene content profiling (PICRUSt) (118) to infer
changes in microbiota function. Keshavarzian et al. discovered
PD subject’s fecal samples had significantly higher abundant
genes involved in lipopolysaccharide (LPS) biosynthesis, with a
large number of genes involved in metabolism were significantly
less abundant (98). Hill-Burns et al. indicated 17 upregulated
pathways and 9 downregulated pathways, including xenobiotics
degradation and metabolism of plant-derived compounds in
PD subjects (110). Barichella et al. revealed 11 upregulated
pathways and 15 downregulated pathways in de novo PD
subjects, compared to healthy controls (111). Qian et al.
predictive functional analysis indicated four metabolic pathways

upregulated and 3 pathways downregulated (119). Finally, Bedarf
et al. used the detailed metagenomics shotgun analysis to infer
functional analyses of the metagenomes that showed differences
in microbiota metabolism in PD subjects involving the β-
glucuronate and tryptophan metabolism (109).

The intestinal microbiota does not appear to be the only
microbiota that is disrupted in PD patients. To date, there are
two studies that interrogated the nasal and oral microbiota
community structure and composition in PD patients. Pereira
et al. interrogated both nasal and oral microbiota profiles between
PD patients and healthy controls (107). The oral microbiota
composition was significantly altered in PD patients, compared
to healthy controls, predominantly by higher relative abundance
of opportunistic pathogens. The nasal microbiota lacked strong
significant individual taxa differences, but trended toward an
overall difference in the microbial composition between groups.
In contrast, Mihaila et al. interrogated the oral microbiota using
saliva samples through shotgun metatranscriptomic profiling
and found significant changes in the microbiota community
structure, composition and function in PD patients (106).
The study found several similarities between dysbiotic oral
microbiota and dysbiotic fecal microbiota in PD patients,
when they compared their findings with previously published
human PD studies. Dysbiotic oral microbiota once again was
characterized by higher relative abundance of putative pro-
inflammatory bacteria. This finding is potentially important in
PD pathogenesis because one proposed site of initial injury in PD
is the olfactory bulb, which is in close proximity to the oronasal
space, as proposed by Braak et al. (120, 121).

However, the causal link between dysbiotic microbiota and
the development of PD is yet to be established. The debate is
whether these changes in microbiota community structure and
composition in PD starts the trigger for PD, or are a consequence
of PD. Indeed, several studies have shown a correlation between
changes in microbiota and duration of the disease and dysbiosis
is more pronounced in those with longer duration of PD (98,
104, 115, 117). This is not surprising because PD patients
commonly change their life habit to better cope with their
symptoms and this life style change can impact microbiota
composition. For example, GI symptoms are common in PD
patients (122, 123) and thus they typically change diet that
could affect their microbiota. Although several studies did not
find a correlation between diet and dysbiosis in PD patients
numerous studies support a role for Western diet and possibly
dairy products in PD risk (47, 51, 61, 124, 125). Constipation is
very common in PD patients and typically occurs years before
onset of CNS symptoms (123, 126, 127) and constipation can
impact the microbiota community (128). However, dysbiosis
was also found to occur in those PD patients who did not
suffer from constipation (98). Patients with PD have poor sleep
and reversal of sleep/wake cycles that can cause disruption of
circadian rhythms (129, 130) and both disrupted sleep and
circadian disruption can cause dysbiotic microbiota in both
humans and rodents (131, 132). Additionally, PD medication
correlates with dysbiosis (105, 110, 119). However, dysbiosis was
still present in early onset and naïve PD patients on no PD
medication (98). More importantly, dysbiosis has been reported
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in patients with idiopathic rapid eye movement sleep disorder
(iRBD) (prodromal PD) (105). Thus, even though life style
changes from PD symptoms and PD medication may contribute
to changes in microbiota composition, it does not appear to
explain the observed dysbiosis in PD patients. Taken together,
these findings support the hypothesis that abnormal microbiota
composition plays a critical role in the pathogenesis of PD and is
a major contributor of symptomatic PD development.

One key question is how does the intestinal microbiota
dysbiosis observed in multiple PD studies arise? The current
model for a role for the microbiome in PD is that dysbiosis
may be driving PD progression either via systemic inflammatory
factors and/or increased α-Syn misfolding in the gut that results
in aggregates of α-Syn being transported to the brain via the
vagus nerve as hypothesized by Braak (95, 120). However, there
is no establishedmechanism to explain the intestinal microbiome
dysbiosis or even to what extent it is a consequence or cause of PD
(95, 96, 133). Studies in which PD patient fecal transplant into
genetic PD mice worsened the PD phenotype support a role for
microbiome dysbiosis directly promoting PD progression (134).
One possibility is a genetic contribution considering that LRRK2
polymorphisms are associated with PD risk and IBD risk and
LRRK2 mediates microbial immune signaling. But the majority
of sporadic PD appears to be associated with environmental risk
factors that also affect the microbiome such as stress, diet, lack of
exercise, and disruption of circadian rhythms seen in REM sleep
behavior disorder (RBD) (4, 105, 135–137). Change in life style
with PD that helps patients to cope with symptoms can affect
microbiota-like lack of exercise and change in diet- these changes
can explain worsening of dysbiosis in those with a long duration
of PD but also in early onset PD (138). Gut dysfunction also can
affect microbiota and constipation (128) could be a contributing
factor and several studies link prodromal constipation with
PD (123, 126). However, constipation cannot explain dysbiosis
completely because PD patients without constipation still had
dysbiosis and leaky gut (84, 98). Also, PD patients with RBD
who had no constipation still exhibited dysbiosis (105). Thus,
while the search goes on for mechanisms for PD dysbiosis, the
most likely cause is Western lifestyle factors known to affect the
microbiome including stress, Western diet, lack of exercise, and
circadian disruption (4, 136).

MICROBIOTA-GUT-BRAIN AXIS IN PD

Recent models for PD pathogenesis have focused on the
important role of the microbiota-gut-brain axis (MGBA). One
school of thought, originally proposed by Braak et al. (120)
actually proposes that PD originates in the GIT or possibly the
nasal mucosa (121) and spreads to the brain (139, 140). In
support of this model several studies have shown α-Syn protein
exhibits prion-like properties and cell to cell transmission (141).
Key papers showed inter-neuronal trans-synaptic transport of
α-Syn in pathological studies in PD patients that had received
striatal transplants supporting the spread of misfolded α-Syn to
normal adjacent cells (142–144). Recent studies have now shown
EE cells of the gut can produce misfolded α-Syn and synapse

with enteric nerves to transmit α-Syn (14, 145). However, the
true role of α-Syn in PD is still debated (146). The role of α-
Syn in the intestine is discussed further below. The MGBA is the
two-way communication between the GIT and the CNS/brain
and consists of many mechanisms (6, 147, 148). The mechanisms
of communication used by the MGBA include responses to
bacterial components and bacterial metabolites (including pro-
inflammatory products like LPS that could activate microglia and
trigger neuro-inflammation) (149–151) and anti-inflammatory
products like SCFA, especially butyrate (152), peptides [including
neurotransmitters and neuromodulators such as g-aminobutyric
acid (GABA)], serotonin, dopamine (151, 153) and hormones
produced by cells of the GIT (154, 155). This interaction includes
bidirectional microbiota–immune interaction and microbiota-
nervous system interaction. In fact, a growing number of studies
support two-way interaction of the microbiota with virtually
every organ system (24). This bidirectional communication is
increasingly acknowledged as playing an important role in brain
function including in neurodegenerative diseases (147, 151).

Evidence supports that virtually every part of the GIT is
affected in PD (122, 123). A pathologic hallmark of PD are so
called Lewy bodies in the brain substantia nigra (SN) neurons
that are found post-mortem. Lewy bodies are largely composed
of the neuronal protein alpha synuclein (α-Syn). A key feature
in PD is that aggregated and phosphorylated forms of α-Syn
protein have also been observed in every major part of the
GIT and enteric nervous system in patients with PD (84, 123,
156–158). For example, Lewy bodies/Lewy neurites are present
in 72–100% of intestinal samples from PD subjects and 62%
have phosphorylated α-Syn which is markedly greater than
that observed in the healthy population (0–33% have α-Syn).
These data suggest that intestinal synucleinopathy may be a
relatively sensitive and reliable indicator of PD (123, 159).
Importantly, increased phosphorylated α-Syn is also found in
GIT tissues from prodromal PD patients suggesting that GIT
involvement occurs early in disease pathogenesis (159, 160). This
is supported by a recent study which reported that distinctive α-
Syn immunoreactivity observed in intestinal biopsies collected
from healthy individuals who would later go on to develop
PD (156, 157). Taken together, these data support the idea that
abnormal enteric α-Syn appears before neurodegeneration in
CNS advances to a point that is sufficient for motor symptoms
to emerge. Such data also support an intestinal origin for PD.

Motor impairments in PD are generally preceded by non-
motor symptoms such as depression, olfactory deficits, sleep
behavior disorder, and a number of GIT symptoms. The GIT
symptoms can precede motor symptoms by more than 10 years
and include GIT motility problems, colonic inflammation, and
constipation (50–80%) (123, 127, 161). In fact, constipation is
associated with a 2.7- to 4.5-fold increase in the risk of developing
PD (123).

In 2003, Braak et al. postulated that an unknown pathogen
(virus, bacterium) or toxin originating in the GIT or nasal
passage/olfactory nerve (two hit hypothesis) could be responsible
for the initiation of sporadic PD (120, 121). In this model
of disease progression, the pathology initiates in the GIT (or
nasal/olfactory) and propagates to the brain via the Vagus nerve
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or olfactory nerve (120, 162). Researchers have demonstrated
that α-Syn fibrils, injected into the GIT mucosa of rodents, can
propagate through the Vagus nerve and can be found in the
brain (81, 163). Another recent study injected pre-formed α-Syn
fibrils into the mouse stomach mucosa and found progressive PD
pathology including α-Syn misfolding in the Vagus nerve and
SN, an effect that was absent in vagotomized mice (80). With
regard to vagotomy and risk of PD, a study by Svensson et al.
found that full truncal vagotomy is associated with a decreased
risk for subsequent PD, supporting that the vagal nerve may
be critically involved in the pathogenesis of PD as proposed by
Braak et al. (120, 164). However, two subsequent studies have
disputed these findings. Tysnes et al. reanalyzed these data and
found no significant risk reduction for PD with vagotomy (165).
In addition, a second independent human study in Sweden found
no decreased risk for PD after vagotomy (166). Thus, vagal
involvement in PD disease development is still disputed (133).

However, even if the Vagus nerve isn’t critical in initiating
or promoting α-Syn PD pathology there are many other
mechanisms by which the GIT can impact the brain via the
vagus as we discuss below. The changes observed in the GIT in
humans and animal models of PD are intriguing and begs further
investigation into what is causing the GIT dysfunction and α-Syn
aggregation to occur (140). One possible factor is the intestinal
microbiota (95, 96).

A growing body of evidence now supports that the intestinal
microbiota modulates behavior and contributes to neurological
disorders and neurodegenerative diseases (151, 167–169). In
fact, data show that the intestinal microbiota is necessary
for the development of PD-like behavior and pathology in
rodent models. Specifically, germ-free mice and antibiotic-
treated mice have ameliorated PD-like behavior and pathology
compared to their specific pathogen free counterparts (134).
These data suggest that signaling between the microbiota
and the brain is critical for PD-like outcomes in rodent
models. It also appears that there is something remarkable
about the PD microbiome that triggers events leading to
neuroinflammation and neurodegeneration. Transfer of a
microbiome from an MPTP-treated mouse into a control
(non-MPTP) mouse is sufficient to induce motor impairment
and activation of microglia and astrocytes in the SN (170).
In addition, colonization of α-Syn-overexpressing (ASO) mice
with microbiota from human PD patients enhances motor
impairments compared to mice that received microbiota
transplants from healthy human donors (134). These findings
support that intestinal microbiome can regulate the development
of PD-like pathology and behavior inmice and thereforemay also
be important in contributing to disease development in humans
(95, 96). Perhaps PD should no longer be viewed solely as a
complex disorder of motor functions, but rather as a progressive
condition involving the GIT (6, 148, 171).

GIT-derived bacteria, bacterial components, and bacterial
metabolites can trigger neurodegeneration through multiple
pathways which are affected by diet and discussed below.
First, is the intestinal barrier mechanism. In this mechanism,
bacterial components (e.g., LPS) and bacterial metabolites (e.g.,
SCFA) produced by the microbiota influence intestinal barrier

integrity which directly contributes to inflammation in the
systemic circulation and in the brain (91, 137, 172). Second, is
the NLRP3 inflammasome activation mechanism. Endotoxemia
(i.e., LPS in the blood) resulting from barrier dysfunction
activates the NLRP3 inflammasome and results in mitochondrial
dysfunction and IL-1b production and insulin resistance with
important consequences for neuronal function (77). Finally, are
the intestinal peptide and intestinal gluconeogenesis mechanisms
(173, 174). Bacterial metabolites influence the production of
the GIT peptide production, insulin resistance, mitochondrial
function, and vagal stimulation of brain derived neurotrophic
factor (BDNF) production in the brain. This list of potential
mechanisms is by no way means exhaustive but reflects key
topics that are rapidly emerging as factors contributing to
diet-microbiome regulation of gut-derived inflammation in
neurodegeneration and PD.

INTESTINAL BARRIER MECHANISM

The intestinal epithelial barrier separates the pro-inflammatory
luminal contents (e.g., LPS) from reaching the intestinal and
systemic circulation, and the intestinal microbiota is a critical
regulator of intestinal barrier integrity (91, 175). Intestinal barrier
dysfunction (i.e., intestinal leakiness) has been observed in newly
diagnosed, untreated PD patients which is also associated with
increased LPS staining and α-Syn aggregates in the colonic
mucosa (84). GIT dysfunction has also been described in
animal models of PD including in both genetic and toxin-
induced models (122, 123) which occurs concurrently with α-
Syn aggregations in the GIT (123). These observations further
support the hypothesis that PD may originate in the GIT (139).

Indeed, intestinal microbiota dysbiosis (especially when
characterized by a reduction in SCFA-producing bacteria
that has been reported in PD patients) is associated with
intestinal barrier dysfunction and endotoxemia (i.e., LPS in
the blood) (91, 95). Specifically, bacterial production of SCFA
appear to be critically important in regulating the barrier
(87). The three principal colonic SCFA include acetate (2-
carbon), propionate (3-carbon), and butyrate (4-carbon). These
typically exist in the colon in a millimolar ratio of 60:20:20
(acetate:propionate:butyrate) (176). Two other important SCFA
receiving are lactate and succinate. SCFA exert beneficial
effects through multiple mechanisms (87). Previous reviews
of SCFA mechanisms have focused on SCFA specific GPCR
signaling via specific receptors: GPR41 (propionate/butyrate),
GPR43 (acetate/propionate), and GPR109a (butyrate) for acetate,
propionate, and butyrate (87, 177). Also GPR81 (lactate) and
GPR91 (succinate) have received recent attention (87). These
GPCR for SCFA are reviewed in detail elsewhere (87, 177).
Broadly speaking, SCFA GPCR positively modulate immunity
and anti-inflammatory signaling in immune and other cells as
well as mitochondrial cellular metabolism (178, 179). Butyrate
(and to a lesser extent propionate and acetate) also has
histone deacetylase inhibitor (HDACi) activity that can have
epigenetic effects on gene expression, and butyrate is used
by colonocytes as an energy source (10, 177). It is through
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these mechanisms that SCFA (especially butyrate) influences
intestinal barrier integrity. Indeed, a reduction in putative SCFA-
producing bacteria or a reduction in luminal SCFA (due to
intestinal microbiota dysbiosis) is associated with intestinal
barrier dysfunction (10, 87, 180).

Diet-induced dysbiosis or even age-associated dysbiosis (a
normal feature associated with aging) (91, 175), are characterized
by a loss of SCFA-producing bacteria and SCFA, these may
be able to trigger intestinal barrier dysfunction and subsequent
inflammatory events leading to systemic inflammation as well
as neuroinflammation and neurodegeneration (101, 175). Newly
diagnosed, treatment naive PD subjects have evidence of
intestinal barrier dysfunction compared to age matched controls
(84, 181). Specifically, PD subjects have elevated levels of
serum LPS binding protein (LBP, binds to LPS to elicit an
immune response), abnormal intestinal tight junction proteins,
fecal markers of leaky gut, serum zonulin, as well as E. coli
in the intestinal mucosa compared to age matched controls
(84, 181, 182). In support of intestinal barrier dysfunction
being a critical mechanism, diseases characterized by intestinal
microbiota dysbiosis and barrier dysfunction are a risk factor
for developing PD. Specifically, Four studies in patients with
inflammatory bowel disease (IBD), which is also characterized by
intestinal microbiota dysbiosis and barrier dysfunction, support
a significantly increased risk for developing PD compared
to people without IBD (183–186). Also, a recent systematic
review and meta-analysis of these four IBD-PD studies above
concluded that the overall risk of PD in IBD was significantly
higher than controls. Crohn’s disease had a 28% increased
risk of PD and ulcerative colitis had a 30% increased risk
of PD compared to controls (187). In support of these data
two studies using the DSS rodent model of ulcerative colitis
concluded that DSS in drinking water and the resulting intestinal
inflammation exacerbated symptoms of PD in both the LPS-
striatum injection PD model (188) and an α-Syn overexpressing
genetic PD model (189). However, in one recent US study
using a large Medicare database analysis and newly diagnosed
PD patients, IBD was associated with lower risk of PD as
were Crohn’s disease and Ulcerative colitis individually (190).
The reasons for these differences are not clear and the role
of IBD in PD risk remains to be defined. Studies have also
demonstrated that a genetic variant that is a risk factor for
IBD (leucine rich repeat kinase 2, LRRK2, important in the
response to microbial ligands), is also a risk factor for PD (191).
Furthermore, restraint stress (which caused intestinal barrier
leak) exacerbated PD-like symptoms and loss of dopaminergic
neurons in the striatum in the rotenone rodent model of
PD (137).

Endotoxin in the blood (as a consequence of intestinal barrier
dysfunction) can affect the brain directly (101, 149, 175). Like
PD, Alzheimer’s disease (AD) is a neurodegenerative disease
that is also characterized by intestinal microbiota dysbiosis and
barrier dysfunction (192, 193). Recent post mortem analysis of
AD patient brains reveals LPS staining in the hippocampus and
cortex of AD patients is 21-fold greater than that observed in
control brain tissue (150, 194). Like AD, PD is also characterized
by intestinal barrier dysfunction and endotoxemia (84), therefore

it is possible that intestinal barrier dysfunction may play a key
role in PD development and/or progression (95).

Mechanistically, Western diet dysbiosis, intestinal barrier
dysfunction and endotoxemia can lead to immune activation and
neuroinflammation (91, 101, 195–197). Toll like receptors (TLRs)
recognize pathogen associated molecular patterns (PAMPs)
located on the surface of bacteria (198). Among the most widely
studied is the interaction between TLR4 and LPS (199). TLRs
are located on a wide variety of cell types and are critical to
mount an appropriate immune response to bacteria. In fact,
administration of systemic LPS has been used as a model
for PD for many years (149, 197, 200). Mechanistically, this
appears to be the consequence of LPS-driven activation of
TLR4, especially on brain microglia (201). Specifically, TLR4
knock out mice are protected from the effects of oral low dose
rotenone as well as MPTP including less neuroinflammation
and neurodegeneration, compared to rotenone-treated, wild-
type mice (68, 202). These data support that TLR4 receptors are
important in the development of PD-like pathology.

Taken together, it appears that barrier dysfunction, leading
to endotoxemia, and TLR4 receptor activation may result in
a series of events culminating in systemic inflammation and
neuroinflammation and neurodegeneration (91, 101, 203–
205). Even if intestinal barrier dysfunction is a consequence
of PD (and not an initiating trigger/cause), intestinal barrier
dysfunction and the resulting endotoxemia may still produce
sustained neuroinflammation that promotes PD disease
progression (101, 203).

NLRP3 INFLAMMASOME ACTIVATION
MECHANISM

One of the consequences of TLR activation is microglial NLRP3
inflammasome activation (77, 206). In response to activation
of TLRs, the NLRP3 inflammasome assembles and produces
inflammatory cytokines (207, 208). Among the most widely
studied inflammasomes is the NLRP3 inflammasome which
produces pro-inflammatory cytokines especially IL-β as well as
IL-1α, IL-18, and IL-33 (209). Inflammasomes are present in
peripheral immune cells such as macrophages, as well as in
the brain and especially in microglia (206, 210, 211). A role
for microglial NLRP3 inflammasome in PD has recently been
proposed (77). The NLRP3 inflammasome has also emerged
as a potential driver of α-Syn neuroinflammation in PD (212).
The current model of NLRP3 activation proposes a “two signal”
model (213). In this model, TLR signaling is the first signal
which induces NF-kB-mediated expression of pro-IL-1β and pro-
IL-18. The second signal can be ATP, calcium or potassium
flux or mitochondrial reactive oxygen species (ROS) which can
occur as a consequence of a number of factors such as intestinal
microbiota dysbiosis, endotoxemia (11, 213–217) or other factors
that induce mitochondrial dysfunction such as aging (60, 218).
Another possible second signal is misfolded α-Syn (aggregated
α-Syn) that was induced by TLR/NF-kB mediated inflammation
(77, 212). The second signal induces NLRP3 assembly and
subsequent caspase-1 activation. The combination of the first
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and the second signals results in cleavage of pro-IL-1β to
its active form IL-1β (and other cytokines like IL-18) (213)
which has a wide range of biological consequences including
creation of sustained pro-inflammatory/oxidative stress in the
brain that would lead to more α-Syn aggregation, more neuro-
inflammation enough to cause DA loss and neurodegeneration
and symptoms of PD (77).

There is a substantial amount of data demonstrating the
importance of the NLRP3 inflammasome in PD. Recent
post mortem studies in PD patients show that the NLRP3
inflammasome is significantly upregulated in the SN of PD
patients (almost entirely localized to microglia) (77). This
upregulation in NLRP3 was also observed in mouse models of
PD and AD (77, 219) and it appears to be important in disease
pathogenesis. Specifically, inhibition of NLRP3 protects against
neurodegeneration in all rodent models of PD tested including
injection of pre-formed α-Syn fibrils (PFF), rotenone, and MPTP
models (77, 215, 220). Similarly, knocking out NLRP3 in an
AD animal model (another neurodegenerative disease) protects
mice from developing AD-like behavior and brain pathology
(219). Thus, activated NLRP3 inflammasome appears to be a
key driver of neuroinflammation in PD (77, 220). In addition,
NLRP3 levels also appear to increase with other factors such as
age and consumption of a Western diet, it could be that the
increase in NLRP3/IL-1b reduces the resiliency of the brain to
respond to a secondary insult such as gut-derived endotoxemia
from microbiota dysbiosis and/or intestinal barrier dysfunction
(11, 221, 222).

In addition to LPS activation of TLR4, the microbiota can
also influence theNLRP3 inflammasome by producing secondary
bile acids. Primary bile acids are produced in the liver and
are subsequently released into the GIT to aid in the digestion
and absorption of lipids. Most primary bile acids are absorbed
in the small intestine but those that reach the colon are
metabolized by the intestinal microbiota to form secondary bile
acids. Importantly, secondary bile acids can inhibit the NLRP3
inflammasome via the TGR5 receptor and are dysregulated in
Western diet induced dysbiosis (223, 224).

As alreadymentioned, NLRP3 activation results in production
of several cytokines but perhaps the one that may be most
relevant for PD is IL-1β. IL-1β is not only a potent pro-
inflammatory cytokine and thus a major player in neuro-
inflammation in PD, but also has many other biological effects.
Among the many consequences of IL-1β production is the
development of insulin resistance (218). Specifically, IL-1β
blocks signaling associated with insulin receptors. Activation
of NLRP3 and subsequent IL-1β production are the single
greatest factors that drive insulin resistance, and NLRP3 KO
mice are protected from developing insulin resistance (225, 226).
Specifically, cytokines, especially IL-1β, block insulin signaling
which has important detrimental consequences on neuronal
mitochondrial function and cellular health. In fact, insulin
resistance is characteristic of both the PD and AD brain (227–
229) and diabetes is a risk factor for development of PD (228).

Insulin resistance and type 2 diabetes mellitus
(T2DM, characterized by insulin resistance) may cause
neuroinflammation by driving mitochondrial dysfunction,

leading to excessive production of ROS, cellular stress, NLRP3
activation and neuroinflammation (especially via microglia),
ultimately culminating in neuronal dysfunction and death
(228, 229). Insulin resistance is commonly observed during
aging, but it may also be important in the pathogenesis of PD
(229). The incidence of both T2DM and PD are both increasing
in Western societies suggesting that these two diseases may be
related (230). In fact, as noted, T2DM is a risk factor for PD
and is characterized by intestinal microbiota dysbiosis similar to
that observed in PD (loss of SCFA-producing bacteria, increase
in LPS-containing bacteria) (231–236). Premature cognitive
decline is also a feature commonly observed in patients with
T2DM (231). Inhibition of NLRP3 (via glyburide or pioglitazone,
the SCFA butyrate, or MCC950) prevents the development of
insulin resistance and T2DM as well as PD (77, 211, 237–240).
Taken together, these data support a model for a cascade of
events culminating in intestine-derived neuroinflammation
and neurodegeneration. Specifically, LPS-TLR activation of the
NLRP3 inflammasome induces production of IL-1β resulting
in insulin resistance, mitochondrial dysfunction, and ROS
production, further NLRP3 activation and neuroinflammation
and neurodegeneration.

INTESTINAL PEPTIDE AND INTESTINAL
GLUCONEOGENESIS MECHANISMS

Influence of diet and the intestine on brain function (gut-brain
axis) is not necessarily limited through intestinal microbiota.
The intestine produces a number of substances that directly or
indirectly influence the brain. These substances are produced in
response to dietary components (e.g., fats) but also are produced
in response to bacterial metabolites. Bacterial products, SCFA
and secondary bile acids, can both promote the production of the
incretin hormones glucagon-like peptide-1 (GLP-1) and glucose
dependent insulinotropic polypeptide (GIP) by L-cells of the
GIT (87, 241–243). GLP-1 and GIP impact a number of cell
types that can directly or indirectly affect neuroinflammation and
neurodegeneration in PD.

GLP-1 has multiple mechanisms of action. One important
consequence of GLP-1 production is reduced inflammation.
For example, stimulation of the GLP-1 receptor (via GLP-1
or agonists) inhibits the NLRP3 inflammasome (244–246). In
so doing, GLP-1 prevents the cascade of events including IL-
1β production culminating in insulin resistance, mitochondrial
dysfunction and cellular stress. GLP-1 also corrects insulin
resistance by stimulating pancreatic cells to produce insulin and
normalizing insulin signaling and mitochondrial function in
brain neurons (247). Normalizing insulin resistance improves
mitochondrial function and reduces ROS production, which has
the net effect of blocking neuroinflammation and improving
neuronal health. GLP-1 can have effects within the brain itself
because it can cross the blood brain barrier and receptors
for GLP-1 are located on neurons, astrocytes, and microglia
(247–249). GLP-1R-deficient mice show impaired performance
in memory-related behavioral tasks (248). In addition, GLP-
1 is protective against neuronal apoptosis in the Alzheimer’s
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disease model (247). Finally, stimulation of GLP-1 receptors
induce production of BDNF in the brain and also stimulate vagal
signaling from the gut to further promote brain BDNF (247, 248).
BDNF is a critical factor for survival and health of dopaminergic
neurons in the SN (250). Indeed BDNF is dramatically decreased
in PD brain tissue, thus, the ability to increase BDNF is an
important consequence of GLP-1 production (250, 251).

Alterations in GLP-1 signaling are associated with many
features associated with PD or risk factors for developing PD. For
example, intestinal microbiota dysbiosis disrupts normal GLP-
1 signaling (252), reduced GLP-1 production is associated with
metabolic syndrome (insulin resistance) (253), and reduced GLP-
1 is associated with reduced BDNF in the brain (254). On the
flip side, GLP-1 agonists are protective in several rodent models
of PD (174, 247). Agonists of GLP-1 and dual treatment of
GLP-1/GIP demonstrate neuroprotection inMPTPmodels of PD
(255, 256). It is possible that these effects are mediated through a
mechanism involving both inhibition of NLRP3 and an increase
in the production of glial derived neurotrophic factor (GDNF)
and BDNF and may involve GLP-1 induced improvement in
insulin sensitivity as well as GLP-1 vagal stimulation (174).
Importantly, recent clinical trials show that GLP-1 agonists elicit
significant improvements in PD patient disease scores compared
to placebo (248, 257, 258).

Intestinal gluconeogenesis (IGN) is also a mechanism by
which the diet and microbiota can influence neuroinflammation
and neurodegeneration. Recent studies have shown that the
SCFA (butyrate, propionate) can regulate host metabolism by
stimulating IGN in intestinal epithelial cells that in turn promotes
vagal signaling (173). It should not be surprising then that a
healthy high fiber diet and increased gut SCFA can correct insulin
resistance via both IGN-vagal-BDNF signaling and by GLP-
1/GIP stimulation and preventing intestinal leakiness andNLRP3
activation (10, 87, 259). IGN vagal BDNF stimulation is a key
mechanism by which IGN may promote normal brain glucose
metabolism which is dysregulated in PD (173). Thus, IGN from
gut SCFA can also influence BDNF production in the brain via
the vagus (260). BDNF promotes neuronal cell health and normal
insulin signaling in the brain (261). It makes sense then that
impaired insulin sensitivity in the PD brain is associated with low
BDNF levels (250, 262–264).

There are multiple mechanisms by which GLP-1, GIP, and
IGN can influence the brain but it is interesting that they all share
the feature of being able to upregulate production of BDNF (262).
BDNF is also a key neurotrophic factor in CNS degeneration
and regeneration (262). Reduced levels of serum BDNF are
observed in PD patients compared to healthy controls, including
in the serum and in the brain (SN, caudate-putamen) (251,
265, 266). It is intriguing to think that Western diet intestinal
microbiota dysbiosis leading to low SCFA production might
blunt the expression of BDNF through a mechanism involving
gut leakiness and loss of GLP-1, GIP, and/or IGN. Western diet
dysbiosis also results in loss of (fewer) gut vagal afferents in
rats (267). Finally, it is noteworthy that GLP-1, GIP, and IGN
and other intestinal hormones are largely influenced by diet and
dietary intervention such as switching from primarily animal-
based Western diet to primarily plant-based diet can promote

normal homeostasis of these hormones. These data are yet
another scientific rationale for considering dietary intervention
to prevent/treat or at least modify disease course in PD.

DIET AS A PREVENTION OR TREATMENT
FOR PD

Based on these data it is clear that there are several
mechanisms by which intestinal bacteria, bacterial products,
or bacterial metabolites and intestinal hormones can influence
neuroinflammation and neurodegenerative processes. Therefore,
it seems logical that dietary interventions targeted at modifying
the intestinal microbiota structure and/or function and
intestinal peptides may modify PD disease pathogenesis. Indeed,
Hippocrates’ said: “Let food be thy medicine and medicine be thy
food” (10). Diet has recently gained importance as a risk factor
for developing PD and also as a potential therapeutic approach to
treat PD (6, 7, 268). Below is a summary of dietary interventions
that may be useful in the prevention and/or treatment of PD as
well as the mechanisms by which this benefit may be conferred
on the brain.

MEDITERRANEAN DIET AS A TREATMENT

The main components of the Mediterranean diet (MedD)
include: daily consumption of vegetables, fruits, nuts, whole
grains, and healthy fats; weekly consumption of fish, poultry,
beans, and eggs; moderate consumption of dairy products; and
limited intake of red meat (10, 124). Adherence to the MedD
is associated with decreased risk of PD (9, 269, 270). One of
the most dramatic differences between the traditional Western
diet and the MedD is dietary fiber intake. Consumption of
dietary fiber is typically very low (<10–15 g/day) in Western
societies, but high (>25–30 g/day) in those who consume a
Mediterranean diet (10, 87–89). It makes sense then that the
Mediterranean diet-associated microbiome is characterized by
a high relative abundance of bacteria that can utilize fiber as
an energy source such as SCFA-producing bacteria (10, 89).
Indeed, microbiota communities from subjects consuming a
Mediterranean diet are enriched in SCFA-producing bacteria
(10, 87, 89, 271). Fiber can also be administered experimentally to
alter the microbiota structure and function including an increase
in the relative abundance of fiber-fermenting (“good”) bacteria as
well as increased production of SCFA (10, 87).

These microbiome changes can elicit a myriad of effects
that are beneficial in blunting neuroinflammation and PD
pathogenesis. For example, consumption of a high fiber diet
improves intestinal barrier function and insulin resistance,
improves insulin sensitivity, increases GLP-1/GIP production,
stimulates IGN, and increases brain BDNF production (173,
259, 272, 273). Conversely, when fiber consumption is low, the
microbiota instead use protein as an energy source which favors
the growth of gram negative (LPS-producing, dysbiosis) bacteria
and the production of metabolites such as branched chain fatty
acids including isovalerate and 2-methyl butyrate that have been
associated with insulin resistance (a feature of PD) (274). Fiber
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consumption (and the consequent production of SCFA) is one
mechanism by which the Mediterranean diet may beneficially
impact PD development and progression.

In addition to fiber, the Mediterranean diet is also rich in
foods that contain anti-oxidant bioflavonoids and polyphenols,
which are associated with decreased risk of PD (9, 35, 270).
Flavonoids are typically found in fruits, vegetables, grains, and
tea. There are not a lot of data available, but it appears that
flavonoid consumption also may trigger an increase in SCFA
production (36) and several polyphenol bioflavonoids (including
in coffee) and fish oil are associated with inhibition of the NLRP3
inflammasome (33, 275). Also, nuts and olive oil stimulate GLP-1
secretion and the MedD after 28 days has been shown to increase
GLP-1 production (241).

Taken together there are multiple mechanisms by which the
Mediterranean diet can beneficially impact the brain. There is a
common theme that components of the Mediterranean diet are
especially able to alter the microbiota in a way that promotes
SCFA production. SCFA can influence so many PD relevant
mechanisms such as barrier function, mitochondrial function,
NLRP3, and intestinal peptide production (259, 272, 273) and
vagal stimulation of BDNF and thus might be beneficial in PD.
However, to date there is no high-quality clinical trial to test the
potential benefit of a high fiber Mediterranean diet in PD. These
data above provide a strong scientific rationale for conducting
randomized controlled dietary trials in PD to determine whether
Mediterranean diet can impact neuroinflammation and disease
course of PD patients.

KETOGENIC DIET AND FASTING AS A
TREATMENT

It is well-established that caloric restriction and/or intermittent
fasting are anti-inflammatory processes and can ameliorate
disease in a variety of experimental models, including PD (276,
277). Intermittent fasting is a feeding regimen that cycles between
periods of fasting (with either no food or significant caloric
restriction), and periods of unrestricted eating. Caloric restriction
can improve health, increase lifespan, and improve tolerance to
metabolic stresses (278, 279). Indeed, rodents on an intermittent
fasting diet exhibit less neuronal dysfunction/degeneration, and
fewer PD-like symptoms in models of PD compared to ad
libitum-fed controls (280). Similarly, caloric restriction increases
levels of neurotrophic factors such as BDNF and attenuates
PD-like pathology (including dopaminergic neuron loss) and
behavior in rodent and primate models of PD (281, 282) lifestyle
interventions such as caloric restriction/fasting and ketogenic
diets are currently used to treat epilepsy and other neurological
diseases (278, 279). These effects may be due to the fact that
ketosis (due to caloric restriction/intermittent fasting, ketogenic
diet) increase neurotrophic factors such as BDNF, increases
levels of antioxidants, and reduces pro-inflammatory cytokine
production (280, 282).

Both fasting and consumption of a ketogenic diet (55–
60% fat, 30–35% protein, 5–10% carbohydrate) result in the
production of ketone bodies (283). Two metabolic processes are

critical in producing energy: gluconeogenesis and ketogenesis.
Gluconeogenesis is the endogenous production of glucose in
the body primarily from lactic acid, glycerol, and the amino
acids alanine and glutamine. When glucose levels are low for
prolonged periods (as with fasting), the endogenous production
of glucose is not able to keep up with the needs of the body
and ketogenesis is primarily used to derive energy (8, 278).
Fatty acids and some amino acids are metabolized to form
basic ketone bodies which accumulate in the body including:
acetoacetate, beta-hydroxybutyrate (BHB), and acetone (8, 278).
Ketone bodies may play an important role in mediating the
beneficial effects of intermittent fasting and the ketogenic diet on
the brain (276).

Ketone bodies are beneficial in humans with PD and
animal models of PD. One early study found beneficial
effects of hyperketonemia on PD patients (284). Likewise,
in a rodent model of PD, BHB is associated with protection
against MPTP-induced damage to dopaminergic neurons
(285). Furthermore, BHB injection into the brain can
rescue mitochondrial function and ameliorate dopaminergic
neurodegeneration and motor deficits induced by MPTP in
mice (286).

The effects of ketone bodies may be the consequence of
a wide variety of mechanisms. For example, ketone bodies
can cross the blood brain barrier and may bypass the type 1
complex mitochondrial defect in PD to rescue mitochondrial
ATP function (8, 278). Another intriguing potential mechanism
is the effects of ketone bodies on the NLRP3 inflammasome
(287). For example, fasting can inhibit NLRP3 activation, which
is thought to be due to effects of BHB (288, 289). Indeed,
BHB directly inhibits the NLRP3 inflammasome and attenuates
NLRP3-mediated inflammatory disease (287, 290). Likewise,
fasting MPTP mice decreases IL-1β, a marker for NLRP3
activation (218).

In addition to ketone bodies, fasting and consumption of a
ketogenic diet can also impact PD pathogenesis by influencing
intestinal peptide production (i.e., GLP-1 and GIP) with
downstream effects on NLRP3 inflammasome, insulin resistance,
and BDNF production (276). Indeed, caloric restriction increases
brain BDNF in a primate model of PD (282). Recent studies in
MPTPmice shows that fasting increases BDNF in the brain (276).

Also, it appears that fasting impacts normal insulin signaling.
Every other day fasting also corrects insulin resistance/T2DM
in mice (291). This affect appears to be specific to changes
in the intestinal microbiome, including the production of
SCFA. Transfer of stool from mice fed every other day into
mice with T2DM was sufficient to improve insulin resistance
in the recipient mice similar to that observed due to every
other day fasting itself (291). Thus, microbiota SCFA, IGN,
and/or GLP-1 mediated mechanisms discussed above may play
a role in the fasting effects as well. Intermittent fasting also
promotes secondary bile acid production and improves intestinal
barrier function in mice by restructuring the microbiome
to produce more SCFA (292). Finally, ghrelin is another
intestinal peptide that is produced in response to fasting and
ghrelin is neuroprotective in the PD MPTP model (293). It
is thought that the ghrelin protective mechanism may be by
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promoting mitochondrial health and preventing NLRP3 IL-1β
production (293–295).

Collectively, there is evidence that fasting and a ketogenic diet
might be beneficial in PD and this effect may be mediated in
significant part by changes in the intestinal microbiota. However,
once again a well-designed trial is needed to show if the ketogenic
diet is beneficial in PD before any serious consideration of
fasting/ketogenic diet in the clinical care of PD patients.

OMEGA 3 POLYUNSATURATED FATTY
ACIDS

Consumption of PUFAs is also an element of the Mediterranean
diet and generally protective against neurodegeneration in AD or
PD (296). There are three principal types of omega-3 (ω3) PUFAs
including eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA, typically from fish oil), and alpha-linolenic acid (ALA)
(296). Dietary supplementation with PUFAs reduces depression
in PD patients, which is important because depressive symptoms
are common in PD patients and often impact other clinical
aspects of the disease (297). In addition, EPA are neuroprotective
in several neurodegenerative diseases including PD (6, 18,
298–300). Rodent models of PD also show benefit of PUFA
administration. Consumption of an EPA-enriched diet lessens
MPTP-induced movement dysfunction (i.e., hypokinesia) and
ameliorates memory deficits in mice (298, 301). Administration
of DHA reduces 6-OHDA-induced behavior deficits (i.e.,
ipsilateral rotations) and increases tyrosine hydroxylase (the
enzyme required to produce dopamine) levels in a PD rat model
(302). Experimentally, DHA is often combined with uridine
monophosphate (UMP, a dietary precursor for membrane
phospholipid synthesis), the DHA/UMP combination prevents
the development of PD-like behavior and pathology in oral and
striatal administration of rotenone models (61, 303). In addition,
DHA/UMP combination reduces parkinsonian-like behaviors
and elevates dopamine levels in 6-OHDA treated rodents (302).
There are many mechanisms by which ω3 fatty acids may impact
the brain and be beneficial in the prevention and/or treatment
of PD. GLP-1 stimulation: As noted above, fish oil and olive
oil can stimulate GLP-1/GIP production by the intestine (241).
Cell Death: Studies have revealed that supplementation with
EPA or DHA attenuates dopaminergic cell death induced by
MPTP administration (301, 304). DHA may protect neurons
against cytotoxicity through a variety of mechanisms such as
inhibition of nitric oxide production, inhibition of caspase
signaling pathways (305), inhibition of tau hyperphosphorylation
(306), as well as regulation of other signaling pathways (e.g.,
PI3K/Akt). Cell Function: In addition to inhibiting neuronal
cell death, DHA promotes optimal dopaminergic structure
and function including synaptic plasticity (synapse formation,
dendritic spine density) and dopaminergic neurotransmission
(303, 307). Inflammation: The protective effects of DHA may be
mediated by a metabolic derivative known as neuroprotectin D1
(NPD1) (308, 309) which is an inhibitor of NLRP3 (310). Indeed,
NPD1 protects neurons against oxidative stress, inflammation,

and from activation of apoptotic signaling pathways. Thus, while
Western diet saturated fats activate the NLRP3 inflammasome
(11), consumption of ω3 fatty acids inhibit the NLRP3
inflammasome (including in brain microglia) probably via
a mechanism involving reduced mitochondrial stress (311–
313). It should not be surprising then that ω3 fatty acids
prevent NLRP3 inflammasome-dependent inflammation and
insulin resistance in a T2DM rodent model (314). Other: DHA
may also protect the brain by increasing glutathione reductase
activity essentially preventing protein oxidation (315, 316),
lipid peroxidation, and the production of ROS (317). Other
potential mechanisms of action of DHA include regulation of
NF-κB activation, transcription modulation, and cell membrane
properties (318, 319). Again, these data provide a strong scientific
rationale for conducting randomized controlled dietary trials
in PD to determine whether PUFA supplements can impact
neuroinflammation and the disease course of PD patients before
recommending it to PD patients.

CONCLUSION

There is a growing body of experimental in vitro, in
vivo animal and epidemiological evidence strongly suggesting
that diet impacts the development/progression of multiple
neurodegenerative diseases including PD. This includes both
beneficial effects of diets rich in fiber, bioflavonoids, and ω3
fatty acids (e.g., the Mediterranean diet), and fasting and the
ketogenic diet due the production of ketone bodies as well as
the collective detrimental effects of the Western diet that include
gut leakiness, NLRP3 activation, insulin resistance, and lack of
beneficial SCFA/GLP-1 vagal signaling due to low fiber content.
As we have discussed many of these effects may be due in large
part to beneficial or negative effects on the intestinal microbiota.
Diet rapidly and robustly alters the intestinal microbiome; thus, it
is possible that these effects of diet are mediated (at least in part)
by changes in microbiota structure and or function.

We described a mechanism by which intestinal dysbiosis can
trigger intestinal barrier dysfunction leading to gut-derived LPS
with systemic and neuroinflammation. We also described how
bacterial components such as LPS can serve as a first signal in
NLRP3 inflammasome mediated production of IL-1β, insulin
resistance, and mitochondrial dysfunction. Finally, we described
how bacterial metabolites such as SCFA and secondary bile acids
can directly improve mitochondrial health as well as influence
the production of the intestinal peptides GLP-1 and GIP that can
directly promote brain health and stimulate IGN and together
also regulate vagal stimulation of BDNF in the brain as well.

These data suggest that consumption of a Mediterranean diet
might be a useful approach to prevent and possibly treat PD.
This is because the characteristic features of the Mediterranean
diet including high dietary fiber, bioflavonoids, and ω3 fatty
acids that will modulate the microbiome and intestinal cell
signaling and result in several alterations that confer benefits in
the brain such as improved intestinal and blood brain barrier
function, decreased NLRP3 inflammasome activation and IL-1β
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production, improved insulin sensitivity, increased GLP-1/GIP,
IGN vagal stimulation, and increased production of BDNF in
the brain. Even if not adhering to the Mediterranean diet,
including dietary supplements for dietary fiber, bioflavonoids,
or ω3 fatty acids may be beneficial. Similar benefits may be
obtained by following a diet involving intermittent fasting or a
ketogenic diet.

Further investigations into the mechanisms by which the
intestinal microbiota contributes to the development and
progression of PD are warranted. More importantly, there is a
major unmet need to determine whether dietary intervention
can prevent progression of PD from the prodromal phase to the
overt CNS/motor phase and whether dietary intervention can
modify disease course and disease progression (and response to
levodopa treatment) in those who suffer from motor symptoms.
We believe that the experimental data and epidemiological
findings discussed above provided a strong scientific rationale
to conduct well-designed dietary and intestinal microbiota-
directed randomized control trials (RCT) in both prodromal and
established PD patents.
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