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Rationale & Objective: Pathogenic variants in type
IV collagen have been reported to account for a
significant proportion of chronic kidney disease.
Accordingly, genetic testing is increasingly used to
diagnose kidney diseases, but testing also may
reveal rare missense variants that are of uncertain
clinical significance. To aid in interpretation,
computational prediction (called in silico) programs
may be used to predict whether a variant is clini-
cally important. We evaluate the performance of in
silico programs for COL4A3/A4/A5 variants.

Study Design, Setting, & Participants: Rare
missense variants in COL4A3/A4/A5 were identi-
fied in disease cohorts, including a local focal
segmental glomerulosclerosis (FSGS) cohort and
publicly available disease databases, in which they
are categorized as pathogenic or benign based on
clinical criteria.

Tests Compared & Outcomes: All rare missense
variants identified in the 4 disease cohorts were
subjected to in silico predictions using 12 different
programs. Comparisons between the predictions
were compared with: (1) variant classification
(pathogenic or benign) in the cohorts and (2)
functional characterization in a randomly selected
smaller number (17) of pathogenic or uncertain
significance variants obtained from the local FSGS
cohort.

Results: In silico predictions correctly classified
75% to 97% of pathogenic and 57% to 100% of
benign COL4A3/A4/A5 variants in public disease
databases. The congruency of in silico predictions
was similar for variants categorized as pathogenic
and benign, with the exception of benign COL4A5
variants, in which disease effects were over-
estimated. By contrast, in silico predictions and
functional characterization classified all 9 patho-
genic COL4A3/A4/A5 variants correctly that were
obtained from a local FSGS cohort. However,
these programs also overestimated the effects of
genomic variants of uncertain significance when
compared with functional characterization. Each of
the 12 in silico programs used yielded similar
results.

Limitations: Overestimation of in silico program
sensitivity given that they may have been used in
the categorization of variants labeled as patho-
genic in disease repositories.

Conclusions: Our results suggest that in silico
predictions are sensitive but not specific to assign
COL4A3/A4/A5 variant pathogenicity, with
misclassification of benign variants and variants of
uncertain significance. Thus, we do not recom-
mend in silico programs but instead recommend
pursuing more objective levels of evidence sug-
gested by medical genetics guidelines.
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hronic kidney disease (CKD) represents a heteroge-

neous group of disorders that result in irreversible
fibrosis over time. Current diagnostic methods often fail to
distinguish molecular mechanisms or predict disease
course. CKD affects more than 750 million people globally
and results in more than 1 million deaths annually. As
such, kidney disease is a major health burden with sub-
stantive costs.'*

Genomics is emerging as one tool to identify mecha-
nistically relevant CKD subtypes. Using whole-exome
sequencing, we have recently reported that pathogenic
variants in the COL4A3/A4/AS genes are the leading single
gene causes (~5%) of focal and segmental glomerulo-
sclerosis  (FSGS), a histopathologic entity representing
diverse causes.” Similarly, pathogenic variants in the
COL4A3/A4/AS genes have also been reported to account for
a significant proportion of CKD." Pathogenic variants in type
IV collagen are well known to cause Alport syndrome.” '’
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The human genome has tremendous sequence variation
and the effect of rare nonsynonymous single-nucleotide
variants (SNVs) in a disease-associated gene can be un-
clear. The American College of Medical Genetics (ACMG)
has standards based on expert consensus for declaring the
pathogenicity of rare variants that are organized into
supporting, moderate, strong, and very strong levels of
evidence.'' Some of these criteria include assessment of
frequency in population data, type of variant change (eg,
null variant), identification of familial cosegregation,
presence in clinically ascertained mutation databases,
bioinformatics, and functional data.'” Well-established
functional studies that show a deleterious effect are
considered strong levels of evidence.'’

Computational predictions, also known as in silico
programs, are one part of clinical variant classification in
the diagnostic setting but are considered supportive
compared with stronger lines of evidence. These programs
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PLAIN-LANGUAGE SUMMARY

Type IV collagen mutations have been reported to ac-
count for a significant proportion of chronic kidney
disease. As a result, genetic testing is increasingly being
used for diagnosis but can uncover DNA changes that
are of uncertain clinical significance. To determine
whether causative for disease (called pathogenic), DNA
changes can be tested with cell and animal models, an
approach that is limited by the absence of well-
established models for most genes, expense, and time-
consuming nature. Alternatively, computational pro-
grams can be used to make predictions for pathoge-
nicity. In this report, we begin to define the test
characteristics for these computational predictions using
bioinformatic and experimental approaches, with re-
sults suggesting that programs tend to overestimate the
effects of DNA changes.

have been developed to predict the functional effects of
rare missense variants. Broadly, the algorithms use
different types of variant information, including sequence
conservation, protein structure analysis, and meta predic-
tion (using results from multiple programs) for pre-
dictions.'*'®

The predictive performance of in silico programs has
been evaluated with computational methods against data
sets that contain pathogenic and benign variants ob-
tained from public resources (eg, Universal Protein
Resource [Uniprot]), literature, and curated disease
databases in which variants in kidney disease genes are
not highly represented.'” *® We evaluate the predictive
performance of in silico programs for COL4A3/A4/A5
missense variants by first comparing with clinically
categorized variants deposited in 3 public disease data-
bases and a local FSGS cohort. As a second approach,
in silico predictions are compared with functionally
characterized missense variants identified in the local
FSGS cohort.

METHODS

Whole-Exome Sequencing Analysis

Details on how patients were recruited and exome data
analyzed have been previously described.” Study par-
ticipants gave their written informed consent and the
study protocol was approved by the Toronto General
Hospital’s committee on human research (98-UO13).
Whole-exome sequencing and data processing were
performed by The Centre for Applied Genomics, The
Hospital for Sick Children, Toronto, Canada. Exomic
capture was achieved with Agilent SureSelect Human All
Exon V5. Reads were mapped to the hgl9 reference
sequence.
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Variant Calling From FSGS Whole-Exome
Sequencing Data

Variants were identified using GATK (version 4.0.5.1).”’
Gene-based annotation features of ANNOVAR were
applied (access date, April 16, 2018).”® The frequency of
variants was determined using Genome Aggregation
Database (gnomAD; version 2.1.1; access date, March 18,
2019).7%?7" Variants in COL4A3/A4/AS were categorized
as rare if having a minor allele frequency <0.005 in the
ethnically matched population within gnomAD. This cut-
off was selected in consideration of the low prevalence of
FSGS, estimated at 7 per million for the general popula-
tion, 20 per million for Africans, and 5 per million for
Europeans.””” It was also selected in consideration of
inheritance patterns: COL4A3/A4/AS5 is associated with
autosomal recessive, dominant, or X-linked recessive dis-
ease. Rare missense variants in COL4A3/A4/A5 were
designated as pathogenic if reported in other cases of
kidney disease after searching the literature and disease
databases ClinVar, ARUP, and LOVD.>**

In Silico Predictions Programs

Rare COL4A3/A4/AS missense variants from our FSGS
whole-exome sequencing data and disease databases
ClinVar, ARUP, and LOVD (accessed October 22, 2019,
September 13, 2019, and August 28, 2019, respectively)
were identified. All rare SNVs reported in these sources
have already been categorized. We in turn submitted the
missense variants to 12 in silico programs for predictions
(Table S1).'>7*2°3220745%¢ A variant was categorized as
pathogenic if the majority, selected as 10 or more of 12
programs, categorized the variant as pathogenic using the
program’s recommended scoring cutoffs.

COL4A Split Luciferase Assay

From our FSGS cohort with whole-exome sequencing data,
9 pathogenic variants and 8 variants of uncertain signifi-
cance in COL4A3 and COL4A5 were randomly selected. We
defined pathogenic variants as rare (minor allele fre-
quency < 0.005) and reported in other cases with kidney
disease, whereas variants of uncertain signiﬁcance were
defined as any other rare missense variant. To assess het-
erotrimer formation ability of these missense variants, we
used the split complementation Nano-luciferase assay
system that we have previously developed.”” Tagged
plasmid constructs of COL4A4-FLAG, wild-type or mutant
COL4A3-SmBiT, and COL4A5-LgBiT were generated as
described previously.”” Corresponding SmBiT and LgBiT
tags were attached at either the N-terminal or C-terminal
of COL4A3 and COL4AS. After mutagenesis, sequences were
verified. The COL4A3/A4/AS5 tagged constructs were sub-
sequently cotransfected into human embryonic kidney 293
(HEK293T) cells. Twenty-four hours posttransfection, cells
were replated in LumiNunc 96-well white plates (Thermo
Fisher Scientific) and cultured in phenol red-free Dulbec-
co’s Modified Eagle Medium (DMEM) containing 10%

Kidney Med Vol 3 | Iss 2 | March/April 2021



Shulman et al

fetal bovine serum, 100 U of penicillin and streptomycin,
2 mmol/L of glutamine, and 200 pmol/L of r-ascorbic
acid 2-phosphate trisodium salt. After 24 hours, cells
(intracellular heterotrimer) and media (secreted hetero-
trimer) were assayed using Nano-Glo Live Cell Assay re-
agent and GloMax Navigator system (Promega).

RESULTS

Computational Validation

We identified 70 SNVs in COL4A3 (29), COL4A4 (26), and
COL4A5 (15) across 186 adults with FSGS with whole-
exome sequencing. Of these, 31 were rare (minor allele
frequency < 0.005), of which 30 were missense (14 in
COL4A3, 10 in COL4A4, and 6 in COL4A5) and 1 was a stop-
gain in COL4A4. Characteristics of the sequenced cohort
have been published previously.”

In parallel, 2,803 nonsynonymous COL4A3/A4/AS5 var-
iants were identified in 125,748 unscreened participants
with whole-exome data in gnomAD, a public database of
genomic variation. Of these, 2,307 were rare and 2,279
were missense variants.

Rare missense variants in our local FSGS cohort, gno-
mAD, and Alport databases were each interrogated using
12 in silico programs for predictions (Table S1; Item S1).
In the FSGS cohort, for rare missense variants in COL4A3,
COL4A4, and COL4AS, 43% (6/14), 40% (4/10), and 33%
(2/6) were predicted to be deleterious by at least 10 of 12
programs, respectively (Fig 1; Item S1).

By comparison, for rare missense variants in COL4A3,
COL4A4, and COL4AS identified in gnomAD, 35% (301/
851), 32% (306/949), and 41% (197/483) were pre-
dicted to be deleterious by at least 10 of 12 programs,
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respectively (Fig 1). gnomAD is a database in which some
rare diseases would be even less represented than popu-
lation estimates given that severe pediatric cases are not
included.*® However, the lack of clinical data to correlate
rare variants in gnomAD controls does not enable us to
draw conclusions as to the accuracy of these predictions.

We also accessed disease databases in which COL4A3,
COL4A4, and COL4A5 variants would be deposited, which
included ARUP, ClinVar, and LOVD (accessed October 22,
2019, September 13, 2019, and August 28, 2019,
respectively; Fig 2). ARUP documented 346 SNVs in
COL4AS5. Three hundred twenty-seven were categorized as
pathogenic, with 97% (317/327) concordance to in silico
predictions. ARUP does not document SNVs in COL4A3 or
COL4A4. In ClinVar, 120 COL4A3 SNVs were documented.
Sixteen were categorized as pathogenic and 75% were
assigned (12/16) correctly by in silico programs. For
COL4A4, 55 SNVs were reported. Nine were classified as
pathogenic, with 100% assigned correctly by in silico
programs. For COL4AS, there were 367 SNVs. Two hun-
dred eighty-seven were categorized as pathogenic, with
90% (258/287) concordance to in silico predictions. In
LOVD, 412 COL4A3 SNVs were catalogued. Of these, 34
were pathogenic and 82% (28/34) were predicted accu-
rately. For COL4A4, there were 306 SNVs, of which 49
were classified as pathogenic, with 86% (42/49) concor-
dance to in silico predictions. For COL4AS5, there were 987
SNVs. Six hundred ninety-nine were classified as patho-
genic, with 94% (650/699) concordant in silico pre-
dictions. In silico program sensitivity could be
overestimated given that they may have been used in the
categorization of variants labeled as pathogenic in these
disease databases.
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Figure 1. Number of rare missense variants predicted to be pathogenic in: (A) the focal segmental glomerulosclerosis (FSGS) study
cohort and (B) Genome Aggregation Database (gnomAD). For rare missense COL4A3, COL4A4, and COL4AS5 variants in our
FSGS cohort, 43% (6/14), 40% (4/10), and 33% (2/6) were predicted to be deleterious by at least 10 of 12 programs, respectively.
For rare missense COL4A3, COL4A4, and COL4AS5 variants identified in gnomAD, 35% (301/851), 32% (306/949), and 41%
(197/483) were predicted to be deleterious by at least 10 of 12 programs, respectively.
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Figure 2. Comparison of COL4A3, COL4A4, and COL4AS5 in silico predictions with disease database categorization. For ARUP
COL4A5 pathogenic variants, there was 97% (317/327) concordance with in silico predictions. For ClinVar COL4A3/A4/A5 path-
ogenic variants, there was 75% (12/16), 100% (9/9), and 89% (258/287) concordance with in silico predictions, respectively. For
LOVD COL4A3/A4/A5 pathogenic variants, there was 82% (28/34), 86% (42/49), and 94% (650/699) concordance. Congruency
of in silico predictions was similar for variants categorized as benign, with the exception of COL4A5 variants documented in ARUP
and ClinVar, in which the effects were overestimated by in silico programs, though there were fewer variants to interrogate. In ARUP,
57% (4/7) of COL4AS5 variants were classified correctly by in silico predictions. In ClinVar, 100% (6/6), 100% (9/9), and 71% (5/7) of
COL4A3/A4/A5 variants, respectively, were correctly assigned. Finally, for LOVD, 100% (2/2), 85% (23/37), and 100% (6/6) of

COL4A3/A4/A5 variants were correctly classified.

The congruency of in silico predictions was similar for
variants categorized as benign, with the exception of
COL4AS5 variants documented in ARUP and ClinVar, in
which the effects were overestimated by in silico pro-
grams, though there were fewer variants to interrogate
(Fig 2). In ARUP, 7 COL4AS variants were classified as
benign, 57% (4/7) of which were assigned as such by in
silico predictions. In ClinVar, 6 COL4A3, 7 COL4A4, and 7
COL4AS5 variants were classified as benign, with 100%,
100%, and 71% (5/7) concordance with predictions,
respectively. In LOVD, 2 COL4A3 and 6 COL4AS variants
were classified as benign, with 100% concordance for
both. For COL4A4, there were 27 benign variants, with
85% (23/27) concordance with predictions.

A report suggests that one in silico classifier called M-
CAP outperforms popular scores such as SIFT, PolyPhen-2,
and CADD in its ability to separate pathogenic from benign
variants.”” As a result, analysis of variants from disease
databases was performed using M-CAP only. None of the
benign variants in the disease databases were correctly
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classified, either as a result of incorrect categorization as
pathogenic or by not generating an output (Fig S1). The
accuracy for classification of pathogenic variants was much
better, ranging from 89% to 96%. Additionally, a receiver
operating curve for each of the 12 in silico programs was
generated using the disease database type IV collagen
variants and their in silico scores (Fig S2). When each
curve is examined, we find that the score cutoff that
maximizes the true-positive rate while minimizing the
false-positive rate does not coincide with the in silico
programs’ recommendations. For instance, we find that
the cutoff for SIFT should be approximately less than
0.004, whereas the recommended cutoff is less than 0.05
(Fig S2). As a result, variants with scores between 0.004
and 0.05 are being predicted as pathogenic, leading to
false positives.

Congruency in classification between in silico programs
was also explored (Fig 3). Most programs had similar
prediction scores when comparing with each other except
for FATHMM and M-CAP.
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Figure 3. Spearman correlation coefficient heatmap comparing results of various prediction models. Most programs had similar pre-
diction scores when comparing with each other except for FATHMM and M-CAP. Dark blue signifies a strong direct correlation while
dark red signifies a strong indirect correlation. Squares that are lighter in color signify a weak correlation between the results of the 2
prediction models. Figure created using the corrplot package available in Rstudio.

Functional Validation

We evaluated 9 pathogenic missense variants in COL4A3
and the X-linked COL4AS5 identified in the local FSGS
cohort. For COL4A3 and COL4A4, the mode of inheritance
has traditionally been reported as recessive, but next-
generation sequencing studies have reported about 20%
to 30% of patients with dominant disease.”” ** Of 3
pathogenic heterozygous missense variants in COL4A3 (ie,
rare variant reported in other individuals with kidney
disease), all were predicted to be deleterious by at least
10 of 12 in silico programs (Table 1; Item S2). Of 6
pathogenic variants in COL4AS5, all were predicted to be
deleterious by at least 10 of 12 in silico programs
(Table 1). Under normal conditions, COL4A3, COL4A4,
and COL4A5 each encodes a protein that heterotrimerizes
and is secreted into the glomerular basement membrane.
To determine the secretory behavior of the COL4A3 and
COL4AS mutants, we used an assay system that quantified
the intracellular trimerization and trimer secretion of
COL4A3/4/5."” Using this split luciferase complementa-
tion assay, all COL4A3 and COL4A5 pathogenic variants
were found to have secretory defect with the N-terminal
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tagged versions of COL4A3 and COL4A5 (Fig 4A and C).
The pathogenic variants could form trimers intracellularly
but could not be efficiently secreted. By contrast, this was
not always observed for C-terminal tagged versions of
COL4A3 and COL4AS (Fig 4B and D). We speculate that
this could be due to heterotrimer formation being initi-
ated at the noncollagenous (NC1) domain of the C-ter-
minal region of collagen and terminates at the N-terminal
region. The fusion of the monomers initially at the C-
terminal region brings the reporter tags closer together to
produce luminesce regardless of whether the trimer is
completely formed.

Similarly, 8 variants of uncertain significance in COL4A3
and COL4A5 identified in our FSGS cohort were selected,
comparing in silico predictions with functional charac-
terization. Of 4 variants of uncertain significance in
COL4A3, 3 were predicted to be deleterious by at least 10
of 12 in silico programs (Table 1). Of 4 variants of un-
certain significance in COL4AS5, 2 were predicted to be
deleterious by at least 10 of 12 in silico programs
(Table 1). Using the split luciferase complementation
assay, only 1 variant of uncertain significance in COL4A5
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Table 1. Comparison of Functional Annotation With In Silico Predictions for Pathogenic COL4A3 and COL4A5 Variants Identified
in the FSGS Cohort

No. of Pathogenic No. Predicted Deleterious No. of Variants With
Gene Variants by 10/12 Programs Secretory Defect Congruence
COL4A3 3 3 3 100%
COL4A5 6 6 6 100%

Note: All pathogenic COL4A3 and COL4A5 variants were categorized as such as a result of being identified in other kidney disease cases. All pathogenic variants
demonstrated a secretory defect with functional characterization and were correctly assigned by in silico predictions.
Abbreviation: FSGS, focal segmental glomerulosclerosis.

was found to have a secretory defect using N-terminal secretory defect. Thus, there was poor concordance be-
tagged proteins, though not to the degree observed for the tween in silico predictions and functional characterization,
definitely pathogenic variants (Fig 4C). Any data point with the former potentially overestimating the functional
under the —50 line was considered as a significant characteristics of missense variants (Table 2).
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Figure 4. Functional characterization of COL4A3 and COL4A5 using the split-luciferase assay. Scatterplots of the intracellular/
secreted relative light unit (RLU) ratio from human embryonic kidney 293 (HEK293T) cells expressing (A, B) mutant a3 chain or
(C, D) mutant a5 chain compared to wild type (WT) using N-terminal and C-terminal split-luciferase tagged constructs. Pathogenic
a3 and a5 chain mutants showed clearer secretory defect with N-terminal tagged constructs. Solid line: Y =X, dotted line:
Y =X+50,Y=X- 50. Square, WT; red circles are pathogenic variants and grey circles are variants of uncertain significance.
Any data point under the —50 line was considered as a significant secretory defect. Experiments were performed in triplicate.
Data presented are representative of 2 independent experiments.
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Table 2. Comparison of Functional Annotation With In Silico Predictions for Variants of Uncertain Significance in COL4A3 and

COL4A5 ldentified in the FSGS Cohort

No. of Variants of

No. Predicted Deleterious

No. of Variants With

Gene Uncertain Significance by 10/12 Programs Secretory Defect Congruence
COL4A3 4 3 0 0%
COL4A5 4 2 1 50%

Note: Only 1 variant of uncertain significance in COL4A5 was found to have a secretory defect, which was accurately predicted by in silico predictions. However, 1
variant of uncertain significance without evidence of a secretory defect was also predicted to be deleterious.

Abbreviation: FSGS, focal segmental glomerulosclerosis.

To further determine the functional nature of 8 variants
of uncertain significance in COL4A3 and COL4AS5, clinical
characteristics for these patients were obtained (Tables S2
and S3). Many individuals with Alport syndrome have
hematuria and basement membrane abnormalities. In our
cohort, microscopic hematuria data were reported for 9
patients with pathogenic variants and 8 patients with a
variant of uncertain significance in COL4A3 and COL4AS.
Microscopic hematuria was observed in 4 of 9 patients
with pathogenic variants and 2 of 8 patients with a variant
of uncertain significance (Tables S2 and S3). For the 2
patients with variants of uncertain significance (COL4A3
p-G1595R and COL4A5 p.P589Q) and hematuria, neither
variant was characterized as functionally deleterious (Fig 4).

DISCUSSION

Our results demonstrate that in silico predictions correctly
classified most pathogenic COL4A3/A4/A5 variants cata-
logued in ClinVar, ARUP, and LOVD. In silico predictions
performed similarly for benign variants with the exception
of COL4AS5 (concordance in ARUP and ClinVar with pre-
dictions and classification was 57% [4/7] and 71% [5/7],
respectively) but there were also far fewer benign variants
to interrogate in these disease databases. Our second
approach of correlating in silico predictions with func-
tional testing showed that both accurately classified all
pathogenic COL4A3/A4/AS missense variants in the FSGS
cohort. These variants were labeled as pathogenic because
they are rare and already reported as disease-causing in
other individuals with kidney disease, which are consid-
ered strong lines of evidence (ACMG criteria PS1 and
PS4; Ttem S2).'' By contrast, in silico predictions over-
estimated the effects of COL4A3/AS variants of uncertain
significance when compared with functional characteriza-
tion. A variant of uncertain significance was defined as a
rare variant that did not satisfy ACMG criteria for definite
pathogenicity. Interestingly, interrogation of COL4A3/A4/
AS variants found in gnomAD predicted a high percentage
to be deleterious, but the lack of clinical data for correla-
tion prevents us from making any conclusion with these
data.

Genomics facilitates clinically meaningful classification
of CKD but sequencing can reveal rare SNVs for which the
relationship to disease is unclear. The ACMG has standards
based on expert consensus for declaring pathogenicity
wherein in silico predictions are considered only
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supporting compared with higher levels of evidence that
are deemed moderate, strong, or very strong.II Well-
established functional studies that show deleterious effect
is an example of one criterion considered strong level of
evidence. Against this background, we provide an assess-
ment of in silico programs using both computational and
experimental approaches.

Using the Nano-luciferase complementation system, we
have recently quantified trimerization of 9 typical glycine
substitutions in COL4AS that differ in disease progression,
finding a correlation between in vitro results and pheno-
type.”” In the data presented here, we observe that the
pattern of heterotrimer formation and secretion for path-
ogenic mutants differed slightly between N-terminal and
C-terminal tagged constructs. The N-terminal tagged
pathogenic mutants showed clearer secretory defect. We
postulate that this could be as a result of heterotrimer
formation initiating at the NC1 domain at the C-terminal
region of collagen and terminates at the N-terminal region.
The fusion of the monomers initially at the C-terminal
region could bring the reporter tags closer together to
produce luminesce regardless of whether the heterotrimer
is completely formed. Therefore, the luciferase reporter
attached at the N-terminal region, that is, the N-tagged
constructs, may better reflect the state of trimer folding.

The 12 prediction models used in this study can be
categorized as solely conservation based: (SIFT Polyphen2-
HVAR, Polyphen2-HDIV, MutationAssessor, PROVEAN,
and LRT) and multifeatured algorithms (FATHMM, M-
CAP, MetalR, MetaSVM, FATHMM-MKL, MutationTaster;
Table S1). Conservation-based models select homologous
sequences to create multiple sequence alignments across
species (MSA) and wuse the sequence and predicted
structure-based features of the MSA to predict pathoge-
nicity with variants in more conserved areas predicted to
be deleterious. The multifeatured algorithms integrate
other information, such as epigenomic signals (FATHMM-
MKL and MutationTaster), allele frequencies (FATHMM,
MetalR, and MetaSVM), or the results of other prediction
algorithms (M-CAP, MetalR, and MetaSVM). Eleven of
the 12 prediction models are trained using databases
including UniProt”* (PolyPhen2-HDIV, PolyPhen2-HVAR,
FATHMM, PROVEAN, MetalR, and MetaSVM), Human
Gene Mutation Database’” (FATHMM, FATHMM-MKL,
MutationTaster, and M-CAP), ExAC’® (M-CAP), Ensembl”’
(LRT), 1000 Genomes Project58 (MutationTaster and
FATHMM-MKL), and COSMIC® (MutationAssessor). SIFT
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was trained using known variants of the E coli Lacl gene that
have been individually mutated and functionally tested.®”"'

M-CAP has been previously reported to outperform
popular pathogenicity classifiers but our results demon-
strate that it unreliably categorizes the small number of
benign type IV collagen variants in disease databases by
incorrectly assigning pathogenicity or not generating an
output. M-CAP already uses 9 established pathogenicity
likelihood scores included in our scoring system:
SIFT13, PolyPhen-2, CADDI15, MutationTaster20, Muta-
tionAssessor21, FATHMM?22, LRT23, MetalR16, and
MetaSVM16." Tt incorporates 7 established measures of
base pair, amino acid, genomic region, and gene conser-
vation: RVIS24, PhyloP25, PhastCons26, PAM250, BLO-
SUM62, SIPHY28, and GERP29. Additionally, M-CAP
introduces 298 new features derived from multiple-
sequence alignment of 99 primate, mammalian, and
vertebrate genomes to the human genome30. However,
previous reports seeking to demonstrate superiority of one
classifier over others are all limited by the veracity of
variant assignment in test databases and in which kidney
gene variants contribute a small proportion.

Our study highlights several limitations and opportu-
nities for future investigation. Estimating in silico program
accuracy using disease databases relies on robust catego-
rization and underscores a need for consistency in variant
annotation. The sensitivity of in silico programs could be
overestimated given that they may have been used in the
categorization of variants labeled as pathogenic. In disease
databases, there were far fewer variants classified as benign
compared with pathogenic. However, to address these
limitations, we have pursued more laborious functional
characterization on randomly selected type IV collagen
variants from the FSGS cohort as an additional line of
evidence.

With respect to functional characterization, we include
data to support our conclusions, but only a small number
of missense variants were characterized. We use the arbi-
trary cutoff of +£50 from wild-type data, but characterizing
more pathogenic and benign variants would better define a
threshold. As per standard convention throughout the
literature, we characterize the effects of single variants on
the reference haplotype, but there are several common
haplotypes documented in the 1000 Genomes Project
(Table S4). Studying the effects of single variants on
different haplotype backgrounds could provide important
information regarding interaction effect between haplo-
type and mutation. Second, our assay will identify muta-
tions that are associated with secretory defects, but this is a
simplification of disease pathogenesis that does not ac-
count for the complexities involving extracellular type IV
collagen network formation. For instance, a previous
report suggests that ~20% of COL4A5 mutations have
detectable heterotrimers in the glomerular basement
membrane, suggesting alternate disease mechanisms.®’

Recent reports demonstrate that pathogenic variants in
COL4A3/A4/ A5 account for a significant and unappreciated
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3,5-

proportion of patients with Alport syndrome in CKD.
19:% Sequencing is increasingly being used to obtain
mechanistically relevant diagnoses but often generates rare
missense variants that remain of uncertain clinical signifi-
cance. In silico predictions have been developed to aid in
categorizing variants. We show here that computational
approaches including M-CAP, which was reported to
outperform other classifiers, are sensitive but not suffi-
ciently specific to confidently assign COL4A3/A4/AS variant
pathogenicity. Thus, we do not recommend any in silico
program in the consideration of type IV collagen variant
categorization, but instead pursuing more objective levels
of evidence suggested by medical genetic guidelines.
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