
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19326  | https://doi.org/10.1038/s41598-022-20966-2

www.nature.com/scientificreports

The role of a second diffusing 
component on the Gill–Rees 
stability problem
B. M. Shankar1*, K. V. Nagamani1 & I. S. Shivakumara2

The stability of natural convection in a vertical porous layer using a local thermal nonequilibrium 
model was first studied by Rees (Transp Porous Med 87:459–464, 2011) following the proof of Gill (J 
Fluid Mech 35:545–547, 1969), called the Gill–Rees stability problem. The aim of the present study is 
to investigate the implication of an additional solute concentration field on the Gill–Rees problem. 
The stability eigenvalue problem is solved numerically and some novel results not observed in the 
studies of double-diffusive natural convection in vertical porous (local thermal equilibrium case) 
and non-porous layers are disclosed. The possibility of natural convection parallel flow in the basic 
state becoming unstable due to the addition of an extra diffusing component is established. In some 
cases, the neutral stability curves of stationary and travelling-wave modes are connected to form 
a loop within which the flow is unstable indicating the requirement of two thermal Darcy–Rayleigh 
numbers to specify the stability/instability criteria. Moreover, the change in the mode of instability is 
recognized in some parametric space. The results for the extreme cases of the scaled interphase heat 
transfer coefficient are discussed.

The stability of natural convection arising due to thermal buoyancy in a porous medium has received considerable 
attention because of its relevance in various applications such as geophysics, building industry, post-accident heat 
removal from pebble-bed reactors, modelling of convection in the underground storage of CO2, the intensifica-
tion of heat transfer in compact heat exchangers where metal foams are used. The study has remained a subject 
of active research and the growing volume of work in this area is amply documented in the books by Straughan1, 
Nield and Bejan2 and Barletta3.

In his seminal paper, Gill4 proposed rigorous mathematical proof to establish the absence of thermoconvective 
instability in a differentially heated vertical layer of Darcy porous medium. Other authors further enriched Gill’s 
results by taking into account several aspects such as the inclusion of time derivative term in the momentum 
equation5, non-Newtonian fluid behavior6,7, permeable boundaries8, Brinkman term9,10 and the horizontal hetero-
geneity in permeability11. Among these authors, Rees5, and Barletta and Alves6 showed that the natural convection 
parallel flow in the basic state remains stable as propounded by Gill4. Whereas, Shankar and Shivakumara7,11, 
Barletta8 and Shankar et al.9,10 established that the instability of base flow emerges at sufficiently large Darcy–Ray-
leigh numbers. The usual assumption made in all these studies is that the local thermal equilibrium (LTE) prevails 
between the solid and fluid phases of the porous medium.

It is expected that LTE will be broken down and the temperatures of solid as well as fluid phases may be no 
longer identical under highly unsteady conditions, or when the differences between the thermal conductivities of 
the two phases exist2. In such circumstances, one has to utilize the local thermal nonequilibrium (LTNE) model 
in which two temperature equations, one for the fluid phase and another for the solid phase, are considered with 
a coupling term in both the equations describing the interphase heat transfer. One of the key issues in dealing 
with LTNE model is the estimation of the interphase heat transfer coefficient and Rees12,13 has scrutinized this 
problem for various classes of materials. The condition of LTE is approached when the coefficient of interphase 
heat transfer assumes large values. From an application point of view, LTNE model is playing an important role 
in porous media, such as computer chips via the use of porous metal foams14,15, drying/freezing of foods16,17, 
microwave heating18 etc. Rees19 was the first to extend the work of Gill4 to account LTNE effects and showed that 
the flow remains stable for all infinitesimal perturbations (hereafter we refer to it as the Gill–Rees stability prob-
lem). Scott and Straughan20 were able to prove that a nonlinear stability analysis, based on the energy method, 
leads to the same response declared by Gill1. Later, Celli et al.21 reconsidered the analysis carried out by Rees19 
on altering the velocity boundary conditions from the impermeable to permeable and showed numerically the 
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possibility of base flow becoming unstable. Further developments on the Gill–Rees problem were taken up by 
considering viscoelastic effects22, uniform internal heat generation in both the phases of the porous medium23 
and the combined effects of Darcy–Prandtl number as well as the density maximum property24. It was established 
that instability occurs in all these cases under certain conditions.

In some practical problems encountered in nature and in the industry, such as in devising an effective method 
of disposing of waste material and extraction of energy, some dissolved substance may exist in addition to tem-
perature contributing in opposite senses to the buoyancy gradient.The instability occurring due to this process 
is known as thermosolutal convection or double-diffusive convection. The comprehensive literature existing on 
double-diffusive convection in porous media is well documented in the books by Straughan25 and Nield and 
Bejan2. Nonetheless, the stability of double-diffusive natural convection in a vertical porous layer has not received 
due attention in the literature and it is in the much-to-be desired state. Inspired by the pioneering paper by Ger-
shuni et al.26, a few authors have analyzed the stability of convective flow of a binary mixture in a vertical porous 
layer and, in particular, this work was examined for all values of the Darcy–salinity Rayleigh number by Khan 
and Zebib27. It was found that for salinity Rayleigh number RS < 7.901 there are no two-dimensional instabilities, 
however, instability sets in via stationary mode for RS ≥ 7.901 . The stability of natural convection induced by 
buoyancy due to temperature and solute concentration fields in a vertical porous layer was investigated in detail 
by Shankar et al.28. It was observed that there exists a solute Darcy–Rayleigh number space within which the flow 
gets destabilized and beyond which it stabilizes reversely depending on the values of the Lewis number. The above 
studies were mainly based on the assumption that the fluid and porous-medium phases are everywhere in LTE.

As propounded by the previous studies, the consideration of LTNE model in the study of heat and mass 
transfer in a porous medium is of paramount importance. In a porous medium, heat is shared between the fluid 
and the solid skeleton and thus the process is double-advective while the solute concentration is confined only 
to the pore space. Moreover, the thermal signals are advected more slowly than solute concentration signals, and 
this difference in advection rates may be crucial to the stability aspects of the system29. The aim of this paper is to 
explore the influence of an additional diffusing component on the Gill–Rees stability problem. More precisely, the 
stability of thermosolutal convection in a vertical porous layer is studied numerically using a LTNE model. The 
two end vertical boundaries are assumed to be impermeable and maintained at unequal uniform temperatures 
and solute concentrations. Within this more general scheme, the prediction of instability is validated through 
a stability eigenvalue problem derived by adopting a modal analysis. The effect of additional diffusing compo-
nent is discussed for the neutral stability curves and the critical values of the wavenumber and of the thermal 
Darcy–Rayleigh number.

Statement of the problem and governing equations
A vertical porous layer of thickness 2L is considered wherein the two end vertical impermeable walls are main-
tained at uniform but different temperatures T1 and T2 , with T2 > T1 and solute concentrations C1 and C2 , with 
C2 > C1 . A Cartesian reference frame (x∗, y∗, z∗) is chosen so that the x∗-axis is horizontal and perpendicular, 
y∗-axis is horizontal and parallel, while the z∗-axis is vertical and parallel to the porous channel. The origin of 
the axes is in the middle of the porous layer and the acceleration due to gravity �g = −gk̂ , where k̂ is the unit 
vector in the vertical z∗-direction. A sketch of the porous channel cross-section in the x∗z∗-plane is shown in 
Fig. 1. The porous medium is considered to be homogeneous, isotropic and the LTNE model is invoked with two 
temperature equations, one for the fluid phase and another for the solid phase. The fluid density ρf  varies linearly 
with fluid temperature T∗

f  and the solute concentration C∗ of the dissolved species in the form

where βT is the volumetric thermal expansion coefficient, βS is the solute expansion coefficient, T0 = (T1 + T2)/2 
is the reference temperature, C0 = (C1 + C2)/2 is the reference solute concentration and ρ0 = ρf (T0,C0) . The 
starred symbols denote the dimensional variables. The dimensionless dependent variables 

(

�q,Tf ,Ts ,C, P
)

 , space 
coordinates (x, y, z) and time t  are defined as follows:

where κf = kf
/

(ρc)f  , kf  , (ρc)f  , �q = (u, v,w), P, ε, K , µ and Ts are the effective thermal diffusivity of the fluid, 
thermal conductivity of the fluid, heat capacity of the fluid, seepage velocity vector, dynamic pressure, porosity, 
permeability, fluid viscosity and temperature of the solid phase, respectively. Since two-dimensional motion is 
more unstable than three-dimensional, the stream function ψ(x, z, t) is introduced through u = −∂ψ/∂z and 
w = ∂ψ/∂x . Thus, the dimensionless governing equations under the Oberbeck–Boussinesq approximation and 
the relevant boundary conditions are Rees19 and Shankar et al.28
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In the above equations, RD = ρ0gβT (T2 − T1)KL
/

εµκf  is the thermal Darcy–Rayleigh number, 
RS = ρ0gβs(C2 − C1)KL

/

εµκf  is the solutal Darcy–Rayleigh number, H = hL2
/

εkf  is the scaled inter-
phase heat transfer coefficient, γ = εkf

/

(1−ε)ks is the ratio of porosity-modified thermal conductivities, 
α = (ρc)skf

/

(ρc)f ks = κf /κs is the ratio of thermal to solid diffusivities and  Le = κf
/

κc is the Lewis number, 
while h is the interphase heat transfer coefficient, ks is the thermal conductivity of the solid, (ρc)s is the heat 
capacity of the solid and κc is the solute concentration diffusivity.

Base flow
A basic flow solution driven by both thermal and solutal buoyancy forces is obtained in a stationary regime with 
ψ = ψb(x) , Tf = Tfb(x) , Ts = Tsb(x) and C = Cb(x) in the form

Linear stability analysis
Following the usual approach of the linearized theory of hydrodynamic stability, perturbations are introduced 
on the basic state in the form

where the hat above a quantity designates the perturbation field. Substituting Eq. (9) into the above governing 
equations, neglecting the nonlinear terms and seeking the solution via the standard Fourier decomposition

where the quantities � , �,� and Ŵ are the complex amplitude functions of x , a is the wave number in the z
-direction and c(= cr + ici) is the complex wave speed, we obtain the disturbance stability equations in the form
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Figure 1.   A sketch of the vertical porous layer.
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where D denotes differentiation with respect to x . We note that the flow is stable or unstable for ci < 0 or ci > 0 
and neutrally stable for ci = 0.

The associated boundary conditions are

Gill–Rees growth rate analysis
In this section, we attempt to determine the sign of the growth rate ci using the integral method employed by Gill4 
and Rees19. First, we operate (D2 − a2) on Eqs. (12), (13) and (14) and make use of Eq. (11) to eliminate � , and get

We multiply Eq. (16) by γ � , Eq. (17) by � and Eq. (18) by Ŵ , where the bar over the symbol denotes complex 
conjugate. Then, we integrate over −1 ≤ x ≤ 1 and add the resulting equations to get

We now manipulate Eq. (19) by performing the integration by parts and using the boundary conditions. 
This procedure gives
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where

The fourth and fifth terms on the left-hand side of Eq. (20) discard the possibility of arriving at any definite 
conclusion in deciding the sign of ci as it may be positive or negative. This is another instance wherein the 
Gill–Rees method of proving the stability of fluid flow becomes ineffective. For a single component system 
( RS = 0 ), however, the above equation simply reduces to

Equating the real part on both sides of the above equation allows one to conclude that ci is always strictly 
negative for all infinitesimal perturbations. Hence, the basic state is asymptotically stable and this conclusion 
is in conformity with Rees’s proof of stability19. The lack of formal proof of stability due to the presence of an 
additional diffusing component leaves an open possibility to investigate the stability or instability of the basic 
flow through a numerical solution.

Numerical procedure
The Chebyshev collocation method is used to solve the eigenvalue problem constituted by Eqs. (11)–(15). The 
Chebyshev polynomial of kth order is given by

with collocation points

where N  is the number of Chebyshev polynomials. Here, j = 0 and N  correspond to the right and left wall 
boundaries, respectively. The field variables � , �, � and Ŵ are approximated in terms of the Chebyshev vari-
able as follows

where �j , �j , �j and Ŵj are constants. Equations (11)-(15) are discretized in terms of Chebyshev polynomials 
to get
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where

with

Equations (26)–(30) lead to a generalized eigenvalue problem of the form

where A and B are square complex matrices of order 4(N + 1) , c is the eigenvalue and X is the eigenfunction. 
For fixed values of governing parameters RS, H , γ ,α, Le and a the value of cr at which ci = 0 is found by varying 
RD , which is accomplished by the secant method for a fixed point determination. In accomplishing this we have 
selected the eigenvalue having the largest imaginary part. Repeating this procedure for different values of a , the 
marginal stability curve is obtained, say R∗

D(a,RS, H , γ ,α, Le) and the corresponding frequency 
c∗r (a,RS , H , γ ,α, Le) . The critical values RDc(ac ,RS , H , γ ,α, Le) = min

a
R∗
D(a,RS , H , γ ,α, Le) and cc(ac ,RS, H ,

γ ,α, Le) are then obtained for specified values of RS, H , γ ,α and Le30,31. If cc = 0 then the critical disturbance 
modes are stationary otherwise they are travelling-waves. It should be noted that RDc = min

(
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Dc ,R

T
Dc

)

 if both 
the modes exist, where RS

Dc and RT
Dc are the critical thermal Darcy–Rayleigh numbers for the stationary and the 

travelling-wave modes, respectively.
The convergence of the numerical scheme used is tested by evaluating the response of the number of col-

location points N on the critical stability parameters for different sets of governing parameters. The computed 
values so obtained are tabulated in Table 1 and it is seen that the accuracy improves as N increases. Regardless 
of the values of the governing parameters, the critical values for distinct values of N exceeding 14 are identical 
up to 5 decimal places. Therefore, all of the computations are reported by taking N = 15.

Results and discussion
The Gill–Rees stability problem is extended to capture the influence of a second diffusing component which 
has precluded the possibility of proving the stability of base flow analytically. The eigenvalue problem is solved 
numerically using the Chebyshev collocation method. The present problem contains six parameters such as the 
Darcy–Rayleigh number RD , the solutal Darcy–Rayleigh number RS , the Lewis number Le , the scaled interphase 
heat transfer coefficient H, the porosity modified thermal conductivities ratio γ and the ratio of thermal diffusivi-
ties α . The results are presented in terms of critical values of RD computed with respect to the wave number a for 
various values of RS , Le , H and γ assuming α to be unity. To explore the several limiting cases, the parameters 
are considered in the ranges, H ∈

[

10−5, 104
]

, γ ∈
[

10−2, 10
]

 , RS ∈ [0, 2000] and the Lewis number is chosen 
in the range 0.1–1032.

Growth rate analysis.  The growth rate of normal modes is pursued by computing the complex eigenvalue  
cr + ici for the assigned governing parameters. The most essential information regarding the stable/unstable 
behavior of the basic flow comes from the sign of the growth rate ci . Plots of ci versus the wave number a for dif-
ferent values of H , RD and γ when RS = 0 are reported in Fig. 2a–c. The numerical data reported in these figures 
support the conclusion that ci is negative in every case suggesting that no instability is possible. This result agrees 
with the analytical proof presented by Rees19. Nonetheless, the results portrayed for RS  = 0 in Fig. 3a–e dem-
onstrate the possibility of ci undergoing a transition from negative to positive with increasing a . This indicates 
the chances of base flow becoming unstable in the presence of a second diffusing component depending on the 
values of governing parameters. A closer look at these figures also reveals that larger values of RD (Fig. 3a), RS 
(Fig. 3b) and Le (Fig. 3c), while smaller values of H(Fig. 3d) and γ (Fig. 3e) are necessary for ci to be positive.
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(32)cj =
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1 1 ≤ j ≤ N − 1

2 j = 0,N
.

(33)AX = cBX,
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Neutral stability curves.  A systematic study on the topology of neutral stability curves is carried out. The 
neutral stability curve which delimits the boundary between the regions of parametric stability and instability 
is generated by specifying a vanishing growth rate (ci = 0) of the perturbation modes. Figure 4a–d display the 
neutral stability curves for different values of RS , H , Le and γ . Some novel consequences not perceived either 
in double-diffusive vertical porous (LTE model) or non-porous domains are found for certain choices of para-
metric values. The neutral stability curves form a loop comprising both stationary and travelling-wave modes, 
in some cases, exhibiting a local minimum of their own and the least among the two determines the nature 
of instability mode. The region inside the loop corresponds to instability ( ci > 0 ) and the outside defines the 
parametric conditions of linear stability (ci < 0) . This indicates the requirement of two values of the thermal 
Darcy–Rayleigh number to specify the linear instability criteria.

Figure 4a shows the evolution of neutral stability curves for different values of RS when γ = 1, Le = 2 and 
H = 100 . For RS = 1000, it is seen that the closed neutral curve consists of travelling-wave mode, which is con-
nected on either side by those of stationary mode; an unusual phenomenon not observed in the earlier studies 
of double-diffusive convection28,33. While both the modes exhibit local minimum, the least among the two cor-
responds to the travelling-wave mode which dominates the mode of instability. Although a similar trend exists 
for RS = 300 , the instability region gets reduced and the mode of instability turns out to be stationary in this case. 
At RS = 100 , the instability region gets further diminished. Moreover, the neutral curve of travelling-wave mode 
appears only in the upper portion of the loop confining to a smaller range of wave number a and the preferred 
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Figure 2.   Growth rate ci versus a for different values of (a) H , (b) RD and (c) Le , in the absence of a second-
diffusing component ( RS = 0).
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mode of instability remains to be stationary. The region of instability continues to diminish for RS = 89 and 33 
and now the closed loop consists only of the neutral curve of stationary mode. The region of instability eventually 
disappears with a further decrease in the value of RS because the perturbations exhibit a negative growth rate.

Figure  4b–d exhibit the way in which the neutral curves evolve for different values of H  (with 
γ = 1, Le = 2,RS = 400 ), Le (with γ = 1, H = 100, RS = 400 ) and γ (with H = 100, Le = 2,RS = 400 ), respec-
tively. The outline of neutral curves is akin to those identified in Fig. 4a. It is seen that the effect of increasing 
H and Le as well as decreasing γ is to enlarge the size of the instability region. For H = 0.1 and 20, the instability 
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occurs through the stationary mode, while for H = 100 it switches over to the travelling-wave mode (Fig. 4b). 
The pattern of instability keeps shifting between the stationary and travelling-wave modes with increasing Le 
(Fig. 4c) and γ (Fig. 4d). The sensitivity of governing parameters on the progression of neutral curves is examined 
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and displayed in Fig. 5 for various values of H when γ = 1, Le = 0.5 and RS = 500 . The neutral curve loop 
includes both stationary and travelling-wave modes for H = 1 as noted earlier, while for H = 10 it consists of 
only stationary mode but for H = 100 and 1000 it consists of only travelling-wave mode. Thus, increase in H is 
to alter the mode of instability from the stationary to the travelling-wave mode. In addition, the instability region 
corresponding to the travelling-wave mode gets elongated vertically with increasing H.

Stability boundaries.  The critical thermal Darcy–Rayleigh number RDc , the corresponding critical wave 
number ac and the critical wave speed cc , are computed for different values of governing parameters to know 
their impact on the stability of fluid flow. The trend of RDc with H for different values of  RS is shown in Fig. 6a–d 
for Le = 10, 2, 0.5 and 0.1, respectively. These figures show that the effect of increasing RS is to increase RDc 
and stabilize the fluid flow. The critical thermal Darcy–Rayleigh number, existing for those values of RS and 
Le throughout the range of H , is found to be invariant and approaches different limits at the extreme values of 
H << 1 and H >> 1 . It is worth mentioning here that the definition of thermal Darcy–Rayleigh number is not 
the one usually employed when dealing with the LTE situation ( H → ∞ ). In this limit, the LTE definition of 
thermal Darcy–Rayleigh number is R̃D = γRD/(1+ γ ) . The limit H → 0 yields a regime utterly opposite to 
that of LTE due to the temperature fields of solid and fluid phases being completely independent of this limit. In 
fact, in the limit of vanishingly small H , the critical thermal Darcy–Rayleigh number attains the lowest (highest) 
possible values for the onset of instability when the Lewis number Le < 1(Le > 1 ). Though Fig. 6a, b exhibit the 
instability to initiate as the stationary mode for RS = 300 and 500, it switches over to the travelling-wave mode 
as the value of H reaches some transition value HT , which gets decreased with increasing RS . To the contrary, 
the instability occurs only through the stationary mode for other values of RS(= 100, 200) throughout the range 
of H . Figure 6c shows an altogether different behavior. For each value of RS considered, the RDc curves of the 
stationary mode end at some value of H indicating the base flow is asymptotically stable thereafter but with an 
exception when RS = 500 in which case the instability ensues again via travelling-wave mode after a certain 
value of H . In other words, there exists a finite range of H in which the flow will be stable for RS = 500 . Another 
point to be noted from this figure is that the flow remains stable for RS < 103.45 and becomes unstable for 
RS ≥ 103.45 . This shows that instability exists for a certain parametric space of RS which prominently depends 
on Le as observed in the LTE case28. Figure 6d exemplifies that the instability appears only in the form of sta-
tionary mode for all values of RS and H considered, while for RS = 100 the curve ceases at some value of H as 
observed in Fig. 6c. From the figures, it is also obvious that the effect of increasing Le(> 1) is to hasten and on the 
contrary increase in Le(< 1) is to delay the onset of instability for a fixed value of RS . One common feature that 
emanates from these outcomes is that there exists a threshold value of RS exceeding which only the base flow 
becomes unstable and below which the flow remains to be stable as observed in the single diffusive component 
case19. The threshold value of RS is found to depend strongly on the values of other governing parameters. Alter-
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natively, we also considered the plots of critical solute Darcy–Rayleigh number RSc versus H for different values 
of RD for a fixed value of Le (Figures are not shown) to get an insight into the problem. We witnessed that the 
overall behavior perceived was akin to that of Fig. 6, except the difference in the values of RSc and RDc.

The variation of critical wave number ac with H is presented in Fig. 7a–d for the corresponding parametric 
values considered in Fig. 6a–d. The figures show that increasing RS is to decrease ac in both stationary and 
travelling-wave modes for all values of Le considered and hence its effect is to enlarge the size of convection 
cells. Even though the critical wave number of stationary mode increases with H for Le = 10 , the insignificant 
variation in its value is apparent from Fig. 7a. However, ac of travelling-wave mode instability for RS = 300 and 
500 initially increases slightly and remains to be constant with H . An opposite trend follows for Le = 2 and the 
changes in ac with H are somewhat noticeable in the stationary mode (Fig. 7b). Figure 7c displays the results 
for Le = 0.5 and observes a steep increase in ac of the stationary mode with increasing H except for RS = 103.45. 
However, ac increases slightly before attaining a constant value at higher values of H when the instability changes 
to the travelling-wave mode for RS = 500. The plots of ac for Le = 0.1 increase at the intermediate values of H 
for all values of RS but end at some value of H for RS = 100 (Fig. 7d). The figures further disclose that the critical 
wave number decreases (increases) with increasing Le > 1 ( Le < 1) for each value of RS . Figure 8a–c show the 
corresponding change of critical wave speed cc as a function of H for Le = 10 , 2 and 0.5, respectively since the 
instability occurs through the stationary mode for Le = 0.1 . These figures show an interruption in the curves of 
cc with H due to a change in the mode of instability from the stationary mode (cc = 0) to the traveling-wave mode 
(cc  = 0) . It is also noted that cc increases with increasing RS , H and Le , and attains a constant value as H → ∞.
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Figure 9a–d demonstrate the impact of porosity modified conductivities ratio γ on the variation of RDc as a 
function of H for different values of RS . For γ = 0.01, it is observed that the instability sets in always via stationary 
mode throughout the range of H for the values of RS considered (Fig. 9d). However, depending on the value of 
RS , the shifting of instability from the stationary to the travelling-wave mode emerges after certain values of H 
for γ = 0.1 (Fig. 9c), 1 (Fig. 9b) and 10 (Fig. 9a). Despite the critical thermal Darcy–Rayleigh number assuming 
different values at extreme values of H → 0 and H → ∞ for smaller and moderate values of γ (Fig. 9b–d), it 
becomes independent of H at sufficiently large values of γ (Fig. 9a). This is because, R̃D = RD as γ → ∞ and 
this describes a fluid with an extremely high thermal conductivity. This explains why the temperature of the 
fluid is not influenced by that of the solid, while the temperature of the solid is locally coincident with that of the 
fluid. As a result, interphase convection is prevented at the pore level, but extremely efficient heat conduction 
in the fluid creates a perfect thermal link between the phases. Moreover, both RDc and ac become independent 
of γ at lower values of H as the solid phase does not affect the onset criterion. On the other hand, RDc and ac 
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varies significantly with γ at higher values of H since the stability criterion depends on the mean properties of 
the medium. Also, an increase in the value of γ is to increase RDc indicating its effect is to stabilize the fluid flow 
(Fig. 9a–d). Whereas, the critical wave number increases with increasing γ at the travelling-wave mode while 
a mixed behavior could be seen at the stationary mode (Fig. 10a–d). The above observed phenomena are true 
for all the considered values of RS . The critical wave speed shows both increasing and decreasing trends with 
increasing γ (Fig. 11a–d).

Conclusions
The implication of a solute concentration field on the stability of thermal convection in a vertical porous layer 
subject to different constant temperatures and solute concentrations at the impermeable boundaries is investi-
gated. The Darcy law has been employed in a framework based on the Oberbeck–Boussinesq approximation and 
the LTNE model has been exploited by assuming two different local temperatures for the fluid and solid phases 
of the porous medium. To study the stability of the basic flow, a linear stability analysis has been performed by 
employing a normal mode analysis of the eigenvalue problem. It is observed that the Gill–Rees proof turns out 
to be ineffective in deciding the stability of the base flow. A numerical analysis has been carried out to extract the 
critical value of the thermal Darcy–Rayleigh number RD that identifies the threshold for the onset of instability. It 
has been established that the second diffusing component evidences a dramatic effect on the stability of the basic 
flow. A systematic study on the topology of neutral stability curves has been carried out and some remarkable 
departures from those of LTE regime are observed.

The principal results of the foregoing linear stability analysis can be outlined as follows:
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Figure 8.   The variation of cc versus H for different values of RS relative to the cases (a) Le = 10 , (b) Le = 2 and 
(c) Le = 0.5 when γ = 1.
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•	 In contrast to the Gill–Rees stability problem, the presence of a solute concentration field initiates the pos-
sibility of base flow becoming unstable under certain parametric conditions.

•	 Closed neutral stability curves comprising stationary and/or travelling-wave modes exist depending on the 
choices of governing parameters indicating the requirement of two thermal Darcy–Rayleigh numbers to 
specify the linear instability criteria instead of the usual single value.

•	 The mode of instability switches over from the stationary mode to the travelling-wave mode as the local 
minimum of the neutral stability curve loop formed by these two modes gets interchanged for certain choices 
of parameters. In particular, the changing over of the preferred mode of instability depends prominently on 
the value of the scaled interphase heat transfer coefficient H which increases with the decrease in the solutal 
Darcy–Rayleigh number RS and an increase in the Lewis number Le . However, a mixed behavior is noticed 
with an increase in the ratio of porosity-modified thermal conductivities γ.

•	 The instability of fluid flow is independent of H at its extreme values for all the governing parameters. While 
the departure from the LTE regime leads to stabilization of the base flow when Le > 1 (i.e. thermal diffusivity 
of the fluid is greater than the thermal diffusivity of the solid), the trend gets reversed when Le < 1.

•	 Increase in RS , γ and Le(< 1) is to abet the stability of fluid flow and exactly an opposite behavior manifests 
with increasing Le(> 1).

•	 The size of the convection cells increases with increasing RS and Le(> 1) , while it decreases with increasing 
Le(< 1) . A mixed behavior is noticed with increasing γ.
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We have explored the essence of thermosolutal natural convection through linear stability analysis in a 
broader context but it also requires further investigation through a weakly nonlinear stability analysis and direct 
numerical simulation. These analyses give more details about the flow instabilities beyond the small-amplitude 
stage. Also, one may consider the implications of partially permeable boundary conditions. With such a model, 
one can investigate the gradual transition from permeable to perfectly impermeable boundaries, and its effects 
on the onset conditions for the instability. These are left for future study.
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Figure 10.   The variation of ac versus H for different values of RS relative to the cases (a) γ = 10 , (b) γ = 1 , (c) 
γ = 0.1 and (d) γ = 0.01 when Le = 2.
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