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A b s t r a c t

Matrix metalloproteinases (MMPs) have been identified as agents that disintegrate the collagen structures of dental hybrid layers, 
resulting in reduced restorative bond strength. Multiple MMP inhibitors (MMPIs) are known to counteract this degenerative 
mechanism, thereby preserving bond strength and promoting the longevity of resin-based restorations. Additionally, literature 
suggests that certain MMPI materials possess antimicrobial/anticariogenic properties, potentially reducing the risk of secondary 
caries development. Therefore, this review article aims to narrate on the integration of matrix metalloproteinase inhibitors into 
adhesive systems and their impact on bond strength.

Keywords: Matrix metalloproteinase inhibitors and bond strength; matrix metalloproteinases; matrix metalloproteinase 
inhibitors

INTRODUCTION

Dentistry, particularly restorative dentistry, has undergone 
multidimensional changes over the last 100  years. It 
has become apparent that the esthetic concerns within 
the patient community have increased significantly.[1,2] 
Tooth‑colored restorations, coupled with modern adhesive 
strategies, have transfigured our perspectives on dental 
restorations. Introduction of acid‑etching technique by 
Michael Buonocore in 1955 marked the embarkation 
of a new era of restorative dentistry. Subsequently, 
Masuhara et al. reported a major breakthrough in research. 
They discovered that when tri‑n‑butylborane was used along 
with methyl methacrylate, it produced a commendable 
bond in a collagen‑added wet ivory model. Later, in 1969, 
the very first dental adhesive was made available in the 
commercial market by the name “direct bonding system,” 
which was used for orthodontic bonding procedures.[3]

Dental composites are among the most commonly used 
restorative materials for their biomimetic capacity. A resin 
adhesive is used to achieve adequate bonding of composite 
resins to the tooth structure.

Matrix metalloproteinases (MMPs), a set of closely related 
extracellular proteolytic enzymes, are crucial for diverse 
physiological functions such as embryonic development, 
tissue repair, and bone restructuring. In addition, they 
contribute significantly to pathological situations such as 
inflammation and arthritis.[4] Many cell types are known to 
produce MMPs. These include fibroblasts, endothelial cells, 
cementoblast‑like cells, and epithelial cells.[5]

Ensuing the formation and mineralization of the collagen 
matrix during tooth development, MMPs enter an inactive 
state and become trapped within the calcified matrix. There 
is the potential for these dormant MMPs to be reactivated 
when exposed to an acidic environment.[6] This rise in acidity 
is attributed to the increased activity of caries causing 
bacteria or through the application of acidic agents during 
dental procedures. In case of etch‑and‑rinse adhesive, an 
acid etchant is utilized [Figure 1].[7] In Nakabayashi’s own 
words, who proposed the concept of the hybrid layer, 
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“the dentinal peptides  (including collagen) must not be 
denatured when the dentin is decalcified. Furthermore, if 
the acid is too aggressive, it may expose collagen below 
the hybrid layer leaving a zone of weak dentin that is 
susceptible to long‑term degradation.”[8] Thus, this signifies 
the need to prevent collagen degradation to preserve 
adequate bond strength. Recent studies have pointed out 
that the degradation of collagen fibers within the hybrid 
layer and the consequential compromise of bond strength 
and integrity at the tooth–restoration interface are 
attributed to the activity of MMPs as a significant factor.[9] 
This suggests that the inhibition of MMPs is advantageous 
for the resin–hybrid layer complex, ultimately enhancing 
bond stability. Various materials have been shown to hinder 
or decrease the activity of MMPs.

Chlorhexidine (CHX) is one of the most commonly studied 
MMP inhibitors  (MMPIs) in dentistry.[10] Other than the 
effects caused by the MMPs at the hybrid layer, it is also 
noteworthy to mention that MMPs play a key role in the 
progression of periodontal diseases. Numerous studies 
have been carried out so far to identify modalities to 
inhibit this pathological process.[11]

The aim of this article was to perform a literature review on 
the integration of MMPIs into adhesive systems and their 
impact on bond strength.

MATERIALS AND METHODS

The review article conducted a comprehensive evaluation of the 

existing literature concerning various MMPs and their intricate 
roles in dental adhesive bonding mechanisms. Scientific databases 
such as PubMed and Google Scholar were used to pool relevant 
articles. Terms such as “MMP,” “Matrix metalloproteinase,” “MMP 
inhibitor,” “MMP inhibitor and dental,” and “MMP inhibitor and 
bond strength” were used to retrieve articles from the databases. 
We included studies that addressed the mechanism of MMP 
and MMPIs, their uses in dental restorations, advantages, 
and limitations. Studies with insufficient data were excluded. 
Ultimately, this review focused on 63 articles concerning MMPIs 
and their applications in dentistry.

LITERATURE REVIEW

The discovery of MMPs can be traced back to the early 1960s. 
The initial breakthrough occurred when collagenase activity 
was observed in an enzyme found in amphibian species.[12] 
Subsequently, this group of collagenases was termed “Matrix 
Metalloproteinase” by Harris et al.[13] Since then, the scientific 
literature has been filled with a vast array of studies on 
MMPs and their inhibitors. It is now well established that 
MMPs are involved in a multitude of metabolic processes, 
including tissue repair, bone remodeling, cell proliferation, 
wound healing, programmed cell death, and gonadal tissue 
reproduction. MMPs are classified broadly into six major 
groups that include  (a) collagenases,  (b) gelatinases,  (c) 
stromelysins,  (d) matrilysins,  (e) membrane‑bound MMPs, 
and  (f) other MMPs or miscellaneous MMPs  [Figure  2].[14] 
The relevance of MMPs in dentistry is manifold. Numerous 
MMPs are identified to be of dental tissue origin. In this 
regard, odontoblasts are known to produce MMP‑2, MMP‑9 
belonging to the gelatinases,[15] MMP‑3  (stromelysin),[16] 
MMP‑8 (collagenase),[17] and membrane type 1 MMP.[17] The 
exact role of MMPs in dental odontoblasts is well known 
to none, but it has been suggested that these MMPs might 
play a role in organization of the dentinal organic matrix 
ahead of the mineralization process.[18] As previously 
mentioned in the introduction section, MMPs undergo a 
process where they become inactive and are then trapped 
within the calcified matrix following tooth development. 
Caron et al.[19] pointed to the presence of MMP‑2 in secretory 
odontoblastic cells which are involved in dentin formation 
during tooth development. Later, Martin De Las Heras et al.[20] 
discovered the presence of MMP‑2, a gelatinase, in human 
dentin. Sulkala et al.[21] proved the presence of MMP‑20 in 

Figure 1: Mechanism of activation of matrix metalloproteinases 
in human tooth

Figure 2: Classification of matrix metalloproteinases ‑ the six 
major groups
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the dentinal complex. Given this brief outlook on MMPs and 
its dental presence, it is crucial to understand its effects in 
dental restorations and the subsequent bond strength.

All MMP gene family members have a common characteristic: 
they are initially synthesized in an inert (latent), inactive form. 
At the molecular level, all MMPs possess just two domains: the 
propeptide domain, containing an essential cysteine residue, 
and the catalytic domain, which encompasses the zinc‑binding 
site. Earlier studies on the latency in human fibroblast 
collagenase (HFC) stem from the creation of an intramolecular 
complex. This complex forms between a cysteine residue 
within its propeptide domain and the vital zinc ion located 
in the catalytic domain, effectively obstructing the active site. 
The activation of latent HFC can be induced through a variety 
of methods, all of which lead to the separation of the cysteine 
residue from the complex. This process is commonly referred 
to as the “cysteine switch” mechanism.[22]

The activation of MMP occurs in an acidic, low pH 
environment by triggering the cysteine switch. It has also 
been observed that MMPs activated by acids released by 
bacteria play a critical role in dentin destruction in caries.[23] 
The activity of endogenous collagenolytic and gelatinolytic 
enzymes in phosphoric acid‑treated dentin can be regained 
through the use of etch‑and‑rinse adhesives. Furthermore, 
it was observed that the amount of regaining proteolytic 
activity in the tooth was proportional to the extent of 
acidity offered by the adhesive systems.[7]  Lehmann et al. 
demonstrated that self‑etching adhesives stimulate the 
release of MMP‑2 from odontoblast cells.[24]

It is of no surprise that the scientific fraternity was 
intrigued to inhibit this mechanism, thus favoring better 
bond strength. Substances or materials that inhibit MMPs 
are termed as MMPIs. MMPIs can be broadly classified 
into two categories: endogenous inhibitors and synthetic 
inhibitors. Endogenous inhibitors are further subdivided 
into specific endogenous inhibitors and nonspecific 
endogenous inhibitors.[25] These endogenous inhibitors 
provide the necessary physiological counter balance 
between the extracellular matrix and MMPs. Tissue 
inhibitors of metalloproteinase are examples for specific 
endogenous inhibitors. Certain proteins have been 
identified as nonspecific endogenous inhibitors such 
as α2‑macroglobulin and membrane‑bound β‑amyloid 
precursor protein.

It is, therefore, apparent that compounds studied for their 
MMP‑inhibiting properties from the perspective of adhesive 
dentistry belong to the category of synthetic inhibitors.

Chlorhexidine
CHX is the most widely studied material for its MMP 
inhibition properties. In general, MMPIs are incorporated 
into adhesive, etchant, or primer. The proposed inhibitory 

mechanism involves cation chelation of calcium and zinc 
ions found in MMPs.[26] The bonding between CHX and the 
dentinal surfaces occurs due to electrostatic bonding.[27]

Distilled water or artificial saliva is the preferred aging 
solution.[10] The addition of 2% CHX to acid‑etched dentin 
or its incorporation into the phosphoric acid conditioner 
reduces collagen degradation,[4,28] thus enhancing 
immediate bond strength. Long‑term preservation of bond 
strength is noted in multiple studies.[29,30]

Studies have also pointed out that when CHX was 
incorporated into the etchant, the decrease in microtensile 
bond strength (μTBS) was less significant compared to the 
control group.[29] Loguercio et al.[29] observed the persistence 
of CHX molecules within the hybrid layer, as revealed by 
Raman spectroscopy, even after a span of 5 years.

Gendron et  al. have pointed out that CHX has direct 
inhibition effects on MMP‑2, MMP‑9, and MMP‑8, of which 
the former two belong to the gelatinase group, while the 
latter is of collagenase group.[26]

A study evaluated the effect of CHX in the prevention of 
secondary caries in experimental models and concluded 
that pretreatment of dentin with CHX slowed down the 
development of secondary caries.[31]

A study asserted that the considerable water solubility of 
large CHX molecules facilitates their leaching, resulting in a 
reduction of bond strength between interfaces.[32]

Literature lacks sufficient information to arrive at 
a conclusive decision on minimum MMP inhibition 
concentration.

Benzalkonium chloride
Benzalkonium chloride  (BAC) is categorized within the 
quaternary ammonium compound group. BAC is a cationic 
compound  (positively charged) and thus exhibits affinity 
toward negative carboxylic groups in collagen.[33] According 
to Sabatini et  al., specific experimental groups with BAC 
exhibited increased μTBS when compared to the control 
group at both the 24‑h and 6‑month time points. In 
addition, dentin matrices treated with BAC showed reduced 
mass loss and lower release of hydroxyproline (parameter 
used for the assessment of collagen solubilization) 
compared to the control.[31] Comba et al. conducted gelatin 
zymography assays and in  situ zymography quantification 
analyses, revealing that formulations containing BAC led to 
a reduction in the expression of MMPs.[34]

Immediate micro‑TBS (μTBS) values increased significantly 
at 24  h in an experimental BAC group,[35] whereas μTBS 
performance of 1% BAC experimental group was inferior 
than the control according to Comba et al.[34]
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Sabatini et  al. showed that BAC effectively deactivates 
dentin proteinases attached to the matrix in demineralized 
dentin structures, and this deactivation follows a 
dosage‑dependent pattern. When BAC was applied at 
concentrations of 0.5% and 1.0% for a duration of 60 s, it 
resulted in a 31% and 54% reduction in total MMP activity, 
respectively.[36]

Adhesives containing BAC decrease endogenous enzymatic 
activity both immediately and over an extended period. 
Nevertheless, in certain experimental conditions with BAC, 
there was an observed rise in gelatinolytic activity over 
time, coupled with a decline in bond strength, irrespective 
of the adhesive employed.

Epigallocatechin‑3‑gallate (EGCG)
Epigallocatechin gallate  (EGCG)  is a polyphenolic 
compound abundantly found in tea leaves. It is also the 
major catechin found in green tea.[37] A previous research 
has noted that catechins found in green tea can impede 
the activities of MMPs and the activation of proMMP‑2.[38] 
As per Gerhardt et al., the use of epigallocatechin gallate at 
a 2% concentration on dentin resulted in an enhancement 
of the bond strength of a self‑etching adhesive to regular 
dentin.[39] Several research studies indicate that the 
addition of epigallocatechin gallate into the adhesive 
system resulted in consistent and stable bond strength 
over an extended period.[28,40,41] Yet, according to Amaral FL 
et al., there was a reduction in bond strength values after 
a 6‑month duration, regardless of the dentin treatment.[42]

Proanthocyanidin
Proanthocyanidin  (PA), a flavonoid classified among 
polyphenolic compounds, offers notable health advantages 
for humans. Typically derived from sources such as grape 
seeds and blueberries, this compound is commonly 
extracted.[43] PA is known to reduce oxidative stress.[44] 
Its antimicrobial potential is also widely studied.[45‑47] The 
antimicrobial and anti‑inflammatory properties of PA have 
attracted attention from the dental fraternity. Dias et  al. 
ascertained the μTBS immediately and after a 12‑month 
storage duration, along with the antimicrobial effectiveness 
of an adhesive containing various concentrations  (%) 
of PA: 0%, 1%, 2%, 4.5%, and 6%. The incorporation of 
2%, 4.5%, and 6% PA maintained the dentin μTBS even 
after a 12‑month storage period, without affecting the 
solubility (Sp), sorption (Sl), or degree of conversion (DC%) 
of the adhesives.[48] Treating demineralized dentin with 
nanohydroxyapatite PA might serve as an alternative 
approach to enhance its strength by enhancing collagen 
stability and providing reinforcement.[49]

Zinc salts
Zinc ions act as competitive inhibitors for MMPs. This is 
due to the fact that the collagen contains four Zn binding 

sites located at the exact positions as the cleavage sites 
that collagenases target, thus preventing the action of 
collagenases and protects collagen degeneration.[50] Various 
salts of zinc were studied for its effects on dentin bonding, 
which includes zinc oxide  (ZnO), Zn‑methacrylate, ZnN3, 
and zinc chloride  (ZnCl2). Of which, ZnCl2 demonstrated 
better inhibition properties.[51]

Barcellos et al. conducted a study about the lasting bond 
strength and cytotoxic impact of dentin adhesive infused 
with zinc over a 6‑month period. The incorporation of 
zinc oxide nanoparticles (ZnO‑n) effectively decreased the 
cytotoxicity associated with the adhesive. Furthermore, 
ZnO‑n preserved the μTBS even after a 6‑month storage 
period, preventing any decline.[52] These results align with 
the previous investigation conducted by Toledano et al.[53]

Incorporation of zinc ions either into experimental 
adhesive systems or commercially available adhesive 
systems had no notable distinctions in the tensile strength, 
flexural modulus, flexural strength compressive strength, 
and water sorption.[52]

The addition of 2 wt% of ZnCl2 was observed to inhibit 
both the reduction in resin–dentin bond and the increase 
in nanoleakage after 1 year of storage in water. According 
to Almeida et al., due to its high solubility, zinc chloride 
may undergo considerable leaching in the oral cavity, 
potentially influencing its efficacy over an extended period. 
It was further noted that additional studies would be 
required to investigate this issue.[51]

GM1489
GM1489 is a human‑made synthetic inhibitor of MMPs, 
meticulously designed to target MMP 1, 2, 3, 8, and 9.[15] Our 
literature search revealed limited studies available in dental 
literature on GM1489. Adhesive systems incorporating 
GM1489 exhibited superior material properties and 
maintained bond strength stability, even under certain 
experimental conditions which involved storage of samples 
in water for 12 months.[30] da Silva et al. also proposed that 
GM1489 could function as an MMPI in etchant and adhesive 
systems, with the potential to preserve bonding stability 
over an extended duration.[30]

Sodium fluoride
The positive effects of sodium fluoride (NaF) in preserving and 
sustaining adhesive dentin interface bond strength have been 
demonstrated in studies. Kato et al. reported a reduction in 
dentin degradation by MMPs when NaF gel was incorporated 
into demineralized dental matrices.[54] Furthermore, 
investigations have explored NaF’s impact on the intrinsic 
activity of MMPs within dentin matrices.[55] An in vitro study 
by Alaghehmand et al., where fluoride was integrated into 
the adhesive system, concluded that fluoride‑containing 
adhesive enhances the durability of resin–dentin bonds.[56]



Perarivalan, et al.: Matrix metalloproteinase inhibitors

Journal of Conservative Dentistry and Endodontics | Volume 27 | Issue 6 | June 2024570

Other matrix metalloproteinase inhibitors
Hesperidin  (HPN), a citrus extract, is a natural flavonoid 
with various advantages, including antioxidant and 
anti‑inflammatory properties, collagen cross‑linking abilities, 
caries protection, remineralization, and antimicrobial 
effects.[57] Dental adhesive systems containing 0.5 wt% HPN 
demonstrated a favorable antibacterial property without 
adversely affecting adhesive properties. However, the μTBS 
was notably diminished after thermocycling.[57] In a research 
conducted by Islam et al., the introduction of HPN into the 
self‑etching primer demonstrated a beneficial impact on both 
the immediate μTBS and the mechanical characteristics of the 
bonded interface.[58] Islam et al. noted that the inclusion of 2% 
HPN in the self‑etching primer had a positive influence on 
both the immediate μTBS and the mechanical properties of 
the resin–dentin interfaces. In addition, in the 5% HPN group, 
the structure of collagen in the hybrid layer remained intact 
even after a storage period of 1 year in artificial saliva.[59]

Batimastat, a synthetic analog of the collagen substrate, 
functions as a zinc ion chelator. Initially, it was investigated for 
its ability to impede tumor progression and metastasis.[60] In a 
study by Almahdy et al., which infused two MMPIs (batimastat 
BB94 and galardin GM6001), it was found that the μTBSs of 
all adhesive systems remained unchanged compared to their 
respective control groups without MMPIs.[61]

Ilomastat, which is well known by its proprietary name 
galardin, is a broad‑spectrum MMPI. In experimental models, 
galardin completely inhibited MMP‑2 and MMP‑9; however, 
incorporation of galardin as an added primer produced 
no effect on immediate bond strength. Nevertheless, it 
significantly decreased bond degradation after 1  year 
when stored in artificial saliva aging solution.[62] In a study 
conducted with galardin and its solvents in extracted third 
molars, significant results were observed, with no decrease 
in immediate bond strength.[63]

Limitations
1.	 The research studies found in literature search are 

limited to in vitro/experimental studies
2.	 In long‑term studies, the study samples were primarily 

aged using distilled water or artificial saliva; thus, the 
oral environment could not be reproduced

3.	 The majority of the studies focused on noncarious 
dentin.

CONCLUSION

The incorporation of MMPIs yields a significant 
enhancement in dentin bond strength, with no discernible 
regression observed. This indicates promising prospects 
for advancing dental bonding procedures. However, 
further investigations are warranted to evaluate the 
biocompatibility of MMPI‑incorporated dental adhesive 

systems and to conduct clinical trials to ascertain their 
ultimate effectiveness in clinical practice.

Clinical significance
Incorporation of MMPI at any step of the dental adhesive 
system reduces the rate of bond strength degradation. This 
enhancement contributes to the longevity of dental resin‑based 
restorations. Some materials used as matrix metalloproteinase 
inhibitors also exhibited antimicrobial/anticariogenic 
properties. Thus, incorporation of matrix metalloproteinase 
inhibitors in adhesive systems could be a viable option, as the 
incidence of secondary caries development shall be reduced 
considerably. This underscores a compelling direction for the 
advancement of dental adhesive technologies.
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