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Integrated hybrid architecture 
of metal and biochar for high 
performance asymmetric 
supercapacitors
Omid Norouzi1,4, S. E. M. Pourhosseini2,3, Hamid Reza Naderi3, Francesco Di Maria4 & 
Animesh Dutta1*

Two state-of-the-art electrodes were successfully synthesized and used to assemble both symmetric 
and asymmetric type supercapacitors. 3DFAB was fabricated by direct pyrolysis of green macroalgae 
in the presence of NaOH. Possible NaOH activation mechanisms are proposed, which explains 
the formation of oxygen functional groups through quick penetration of OH- and NaOH into the 
vacancies. To obtain CoTLM, the tile-like architecture of cobalt oxides was introduced to the 3D 
interconnected functional algal biochar (3DFAB) by a simple one-pot hydrothermal method under mild 
conditions. For the symmetric supercapacitors, the maximum specific capacitance of RAB, 3DFAB, 
and CoTLM were 158, 296, and 445 F g−1 at the current density of 1 A g−1. Regarding cobalt-based 
asymmetric systems, the maximum capacitance for the 3DFAB//CoTLM was 411 F g−1. This asymmetric 
supercapacitor device also retained 100.9% of its initial capacitance after 4000 cycles at the current 
density of 4 A g−1. Unbuffered aqueous electrolyte and the unique morphological structure used in this 
study might catapult forward commercialization of such advanced energy storage devices.

Abbreviations
EDLC	� Electrical double-layer capacitance
ASC	� Asymmetric supercapacitor cell
RAB	� Raw algal biochar
CoTLM	� Tile-like microstructure containing cobalt oxides
3DFAB	� 3D interconnected mesopores network
SC	� Specific capacitances
AAEM	� Alkali and alkaline earth metals
EIS	� Electrochemical impedance spectroscopy
PTFE	� Polytetrafluoroethylene
CCV	� Continuous cyclic voltammetry
ASC	� Asymmetric supercapacitor cell
FTIR	� Fourier transform infrared
XPS	� X-ray photoelectron spectroscopy
FESEM	� Field emission scanning electron microscopy
BET	� Brunauer-Emmette-Teller
XRD	� X-ray diffraction
CV	� Cyclic voltammetry
GCD	� Galvanostatic charge/discharge

Industrial and agricultural pollutants have significantly changed the level of nutrients, primarily nitrogen and 
phosphorus, in oceans, seas, and rivers1. These changes, directly or indirectly, cause damage to the environment 
on a global scale. Eutrophication, the excessive blooming of macroalgae, is a visible, alarming, and devastating 
phenomenon occurring as a result of such human activities. To mitigate the issue of eutrophication, many types of 
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research have been conducted to evaluate the viability of using these harmful microalgae as a source of biofuel2,3. 
However, macroalgae biofuel production has not been fully commercialized due to the significant economic and 
technical challenges. To minimize waste and improve the circular economy’s efficiency, biochar obtained as a 
byproduct of the thermochemical conversion of macroalgae could be further processed for versatile applications 
in energy conversion and storage sectors4–8. The best-known example is the application of biochar as a promising 
alternative to its commercial competitors in supercapacitors due to their apparent advantages such as low cost, 
accessibility, reduced environmental impact, and good stability9,10.

Algal biochar has a unique advantage over agricultural wastes in the way that macroalgae undergoes self-
activation and nitrogen self-doping during the thermal process due to the abundanceof potassium (K), calcium 
(Ca), magnesium (Mg), sodium (Na), and nitrogen (N) that exist in the algae structure11. However, there is 
still much work to be done in reaching the desired electrochemical properties in supercapacitors by rationally 
integrating the physical and chemical modification methods. Algal biochar needs to be further be processed 
to achieve a highly improved EDLC and pesocapacitance performance. Most state-of-the-art modified biochar 
composites with excellent capacitive performance have been reviewed comprehensively by Norouzi et al.12. The 
simplest and most popular chemical surface modification is NaOH or/and KOH activators’ use before or after 
the thermal process. For example, Hu et al. successfully synthesized porous particulate activated carbons from 
low sulfonate content alkaline lignin by hydrothermal carbonization in the presence of NaOH and NaOH modi-
fiers. The synthesized material showed a hierarchical structure with improved SBET, functional groups, and EDLC 
performance13. In addition to chemical modification, it is beneficial to simultaneously enhance the sample’s peso-
capacitance by introducing pseudocapacitive materials into the biochar structure. To this end, transition metal 
oxides or hydroxides are usually embedded in the porous structure of the surface-modified biochar14–17. Among 
the available pseudocapacitive materials, cobalt hydroxides or oxides are favorable candidates for application in 
electrochemical capacitors due to their low cost, great reversibility, high conductivity, multiple oxidation states, 
and high specific capacitance. Cobalt oxide (Co3O4) has an extremely high theoretical specific capacitance of up 
3560 F g−1, which has been recently receiving more attention within the electrochemistry research groups18,19.

Apart from designing a hybrid biochar electrode, selecting two dissimilar electrode materials with well-
separated potential windows, called Asymmetric supercapacitors (ASCs), plays a vital role in reaching higher 
energy density, power density, and cycle life20,21. In this study, a cost-effective ACSs was fabricated using a new 
interconnected tile-like microstructure containing cobalt oxide particles, referred to as CoTLM, and functional 
algal biochar composed of a 3D interconnected mesopores network (3DFAB). The CoTLM composites were syn-
thesized by impregnation of Co(NO3)0.6H2O on the surface of algal biochar under hydrothermal carbonization. 
FAB was prepared by direct pyrolysis using green macroalgae as the carbon precursor and NaOH as the activator.

Results and discussions
FTIR analysis was carried out to indicate the rate and degree of decomposition during the synthesis based on 
functional groups. All three samples have similar FTIR spectra but at different intensities (Fig. 2a). The spectra 
of glycosyl-units of cellulose are detected in the range of 1150–1070 cm−1 due to the stretching vibrations of 
CH–, OH–, and CH2– groups22. The strongest peaks at these ranges are observed in the CoTLM spectrum, 
showing the more intense glycosidic bond-breaking reactions. The FT-IR spectrum of CoTLM exhibits a broader 
peak at 2000–3400 cm−1, which can be attributed to its higher hydrophilic and conductive nature. Peaks at 
1457, 1592, and 1710 cm−1 are assigned to the ester and carboxylic acid functional groups in cellulose-based 
polysaccharides6,22–25. These peaks have been pronounced in 3DFAB, as compared to the RAB, as the result of a 
series of reactions, which have been shown in Eqs. (1–6) and Fig. 1. During the pyrolysis process, NaOH vigor-
ously reacts with carbonyl, hydroxyl, carboxyl, ether, and ester functional groups to produce free radicals as well 
as a number of vacancies. At the same time, many vacancies are created due to the NaOH reaction with the C–C 
and C–H groups. Many oxygen functional groups are then formed by quick penetration of OH- and NaOH into 
the vacancies. Finally, NaOH reacts with oxygen functional groups over in carbon fragments at 400–700 °C, 
which can produce K2CO3 (Eqs. 1–6).

According to the literature, most of the acidic functional groups attached to the surface of 3DFAB should react 
with cobalt ions (CO2+ and CO3+) during HTC to produce water and cobalt nanoparticles (Eqs. 7 and 8). Thus, 
a lower intensity of -O containing groups was excepted but was not found. This could be due to the improved 
hydrolysis reactions in HTC by which polysaccharides as macro-intermediates are produced from the unreacted 
cellulose remaining after the pyrolysis.

(1)6NaOH + 2C → 2K2CO3 + 2Na + 3H2

(2)NaOH + (−COOH)/(−O− C = O) → Na2CO3 + Na + H2 + CO2

(3)NaOH + (−C = O)/(C−O− C) → Na2CO3 + Na + H2 + CO

(4)NaOH + (−O− CH3) → Na2CO3 + Na + H2 + CH4

(5)NaOH + (C−OH) → Na2CO3 + Na + H2O + H2

(6)NaOH + (C−H) → Na2CO3 + Na + H2
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Figure 2b shows XRD patterns of RAB, 3DFAB, and CoTLM. The crystalline region of cellulose found at 2θ 
about 22.45° and 34.25°26. Since the experiments were performed in a harsher synthetic condition for modi-
fied samples, strong peaks assigned to cellulose lost their intensity. In other words, for 3DFAB, and CoTLM, 
an amorphous structure, and disordered graphitic (002) plane was found at Bragg’s angle between 20° and 30° 
due to the crystalline-to-amorphous transformation of cellulose under intensive thermal conditions22. Other 
sharp peaks at 2θ = 30.34°, 32.4°, 36.99°, 40.41°, 44.00°, 48.47°, 49.43°, 58.38°, and 61.64° are related to one of 
the calcium-based crystalline structures. Three identified phases are CCaO3, Ca6.00C3.00O18.00, Ca6.00C6.00O18.00, 
and Ca6.00C6.00O18.00. In the case of CoTLM, peaks at 19.0°, 31.2°, 36.8°, 38.5°, 44.8°, 55.6°, 59.3°, 65.2°, and 77.3° 
confirm the crystalline structure of Co3O4, which is in accordance with the Joint Committee on Powder Diffrac-
tion Standard (JCPDS No. 00-042-1467)27–29.

Figure 3a shows that the raw biochar derived from green macroalgae has an olive-shaped morphology with 
hollow macropores, which are evenly spread with an average diameter of approximately 300 nm wide and 80 nm 
long. One interesting finding is that RAB’s olive-shaped morphology is completely transformed into the circular-
shaped structure in which pores are interconnected in the three-dimensional structure of 3DFAB (Fig. 3b). 
Figure 1 and Eqs. (1–6) explain the reason behind this morphology change through possible chemical reaction 
pathway of NaOH activation during biomass pyrolysis. These reactions resulted in an advanced morphology due 
to the release of large amounts of gaseous products. The 3D interconnected functionalized mesopores network 

(7)Co2+ − e → Co3+

(8)2Co3+ + Co2+ + 8OH1− + 3DFAB → CoTLM + 4H2O

Figure 1.   Possible mechanism of NaOH activation for the synthesis of 3FAB.

Figure 2.   FT-IR spectra (a) and XRD patterns (b) of RAB, 3DFAB, CoTLM.
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can improve the accessible inner/outer surfaces and facilitate the formation of Co3O4 via improved impregnation 
of cobalt salt solution using functional groups11. The synthesized CoTLM possesses multilayered structures made 
from hierarchical nanosheets, making it an advanced material with a tile-like microstructure (see Fig. 3c). This 
architecture has already been observed by Shurui Liu et al.30. The unique hierarchical architecture of CoTLM 
provides a continuous pathway for electrons and shorten diffusion pathways for ions, thereby making it a great 
candidate for charge storage purposes. We have provided our readers with some more FESEM images in sup-
porting information (Figure S1) to further analyze the morphological structure.

Furthermore, after applying chemical and/or physical modifications on the green algae, elemental surface 
distribution in 3DFAB and CoTLM was changed significantly, verified by EDS analyses. The quantitative results of 
the EDS are given in Table 1. Approximately 21% of the RAB’s surface is found to be covered by alkali and alkaline 
earth metals (AAEMs) such as sodium, potassium, calcium, and magnesium. These elements belong to the ash 
portion of the algae. The RAB contains 15% of sulfur and silica, which are considered essential micronutrients 
for the normal growth of algae31. Oxygen content in 3DFAB has more than doubled due to the elimination of 
AAEMs by NaOH treatment and acid reflux. However, improved oxygen contents in CoTLM are mostly related 
to the attachment of oxygen functional groups produced under the hydrothermal treatment. Based on surface 
oxygen contents, we conclude that part of the CoTLM surface was developed by oxygen functional groups, mak-
ing them more polar and hydrophilic than the original biochar derived from green algae. During the HTC in the 
presence of Co(NO3)0.6H2O, cobalt particles were efficiently dispersed over the surface and caused improved 
oxidation–reduction reactions (pseudocapacitance) and higher electrical conductivity of the sample.

Figure 4 displays the N2 adsorption–desorption isotherms and BJH pore diameters of RAB, 3DFAB, CoTLM 
samples. All the N2 adsorption–desorption isotherms exhibited the same kinetic reaction with a typical IV 
hysteresis loop at a relative pressure between 0.45 and 0.95, which confirms the hierarchical porous structure of 
samples32–34. The majority of RAB pore volume is in the range of 0.10 cm2 g−1 nm−1. However, the pore volume 
in 3DFAB and CoTLM samples fluctuates between 0.10 and 0.14 cm2 g−1 nm−1, owing to the 3D architecture that 
occurred after the treatment. BET surface area of RAB, 3DFAB, and CoTLM were 243, 1020, and 605 m2 g−1, 
respectively. The characterization results reveal that both 3DFAB and CoTLM have a higher surface area, larger 
pore volume, and smaller pore diameter compared to the original biochar. The higher surface area and intercon-
nected 3D pore network in the 3DFAB could be due to reaction 1 (Eq. 1) in which carbon reacts vigorously with 
sodium hydroxide to form Na2O(s) along with hydrogen and carbon dioxide gas. Considering the superior textural 
properties of 3DFAB, it might be a highly promising start material for accommodating conductive materials in 
nanoscale. Herein, CoTLM was obtained through the dispersion of cobalt oxide particles within the interior of 
the interconnected 3D pore network of 3DFAB. CoTLM can not only facilitate charge transfer and ion diffusion 
but also take advantage of the pseudocapacitive nature of Co3O4 nanoparticles35.

Raman spectroscopy was performed to analyze further the carbon structure of RAB, 3DFAB, and CoTLM. 
According to the Raman spectra of samples (Fig. 4b), two main peaks were recorded at around 1345 cm−1 (D 

Figure 3.   FESEM images of the RAB (a), 3DFAB (b), and CoTLM (c).

Table 1.   EDS analyses of RAB, 3DFAB, and CoTLM prepared from green macroalgae.

Element W% C O N Na Mg Al Si S K Ca Fe Co

RAB 41.12 22.00 – 1.21 1.24 0.75 2.32 13.0 2.92 15.3 0.15 –

3DFAB 36.47 55.78 4.00 – – – 1.92 1.83 – – – –

CoTLM 22.69 31.18 – – – – 1.54 2.52 – – 2.23 39.84
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band) and 1570 cm−1 (G band), which are ascribed to the turbostratic and ideal graphitic carbon structure. ID/
IG can reflect the disordered degree in the modified samples. The ID/IG ratio for RAB, 3DFAB and CoTLM was 
0.91, 1.05, and 1.65, respectively. Raman spectrum of CoTLM shows some characteristic peaks at 486, 529, 608, 
and 678 cm−1, which are related to the vibrational modes of Eg, F2g , F2g , and A1g, respectively36.

Electrochemical performance.  CV measurements Figure 5a gives typical cyclic voltammetry (CV) curves 
of the RAB, 3DFAB, and CoTLM at a scan rate of 50 mV s−1. The CV of RAB, 3DFAB, CoTLM were in the 
range of − 0.85 to 0.05 V, − 0.9 to 0.1 V, and − 0.1 to 0.9 V (vs. Ag/AgCl), respectively. The slight shift toward 
higher voltages in the redox potential of CoTLM, resulting from the unique 3D morphology and structure of 
the electrode material, shows the more polar nature of CoTLM30. Figure 5b–d shows typical CV curves of all 
three state of the art electrodes at various scan rates of 5–100 mV S−1. They all have shown a quasi-rectangular 

Figure 4.   N2 adsorption/desorption isotherm and pore size distributions (BJH) of the RAB, 3DFAB, CoTLM 
(a), Raman analyses (b).

Figure 5.   Electrochemical performance of the RAB, 3DFAB, and CoTLM electrodes. Cyclic voltammograms at 
50 mV s−1 (a); cyclic voltammograms RAB, 3DFAB, and CoTLM at increasing rates from 5 to 100 mV s−1 (b–d).
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shape even at the highest applied scan rate (100 mV S−1), which is an indication of their excellent charge transfer 
capability20,37,38. The closest shape to an ideal rectangular can be found in 3DFAB (Fig. 5c), which might result 
from its ordered interconnected 3D pore network and superior surface area. The slower scan rate gives the elec-
trolyte ions sufficient migration time to penetrate better within the interior of the porous carbons. At higher scan 
rates, electrolyte ions can only accumulate on the outer surface of samples21,39. The potential window of CoTLM 
is in the positive potential (vs. Ag/AgCl); while the potential window of 3DFAB is in the negative potential (vs. 
Ag/AgCl). The stable shape of CV in the high scan rate along with negative potential window make 3DFAB a 
good choice for negative electrodes. For the same reason above, CoTLM is suitable for positive electrodes in a 
full system. In the asymmetric system the positive electrodes is able to store energy with both faradic and non-
faradic mechanism.

CCV measurements Figure 6 shows the RAB’s cyclic performance, 3DFAB, CoTLM under 4000 cycles at the 
scan rate of 50 mV s−1. For the CoTLM electrode, 5% of the capacitance is dropped due to the volume alternation 
in the electrode material caused by electrolyte intercalation and deintercalation reactions during long potential 
cycling40. However, two other non-metal-modified electrodes, RAB and 3DFAB, exhibited superior cycling stabil-
ity with 100.9% and 101.5% retention of their initial capacitance after 4000 cycles, respectively. This phenomenon 

Figure 6.   3D-CCV curves of the RAB, 3DFAB, and CoTLM electrodes measured at a scan rate of 50 mV s−1 
(a–c), variation of the specific capacitance of the RAB, 3DFAB, and CoTLM electrodes with CCV method as a 
function of the number of cycles at 50 mV s−1 (d–f).
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has already been reported in the literature as the gradual activation of the surface with increasing the number of 
cycles. The results indicate that the electrochemical stability of the 3DFAB is higher than that of others, which 
makes it a suitable electrical double layer capacitor and a great candidate for accommodating pseudocapacitors.

GCD measurements. GCD curves of RAB, 3DFAB, and CoTLM are recorded and shown in Fig. 7a–c. The 
measurements were performed at current densities ranging from 1 to 16 A g−1. They all have symmetrical triangu-
lar shapes with any notable IR drop, suggesting their excellent charging-discharging behavior41,42. The maximum 
SC for RAB, 3DFAB, and CoTLM at the current density of 1 A g−1 were 158, 296, and 445 F g−1, respectively. The 
triangular, linear, symmetric, and very sharp curves reflects their reversible behavior, high coulombic efficiency, 
and ideal capacitor performance.

Capacitance retention as a function of cycle number, at the current density of 1 A g−1, is plotted for RAB, 
3DFAB, and CoTLM in Fig. 7d–f, respectively. As shown, three electrodes have a nearly identical capacitance 
drop after 4000 cycles. In all samples, the capacitance is promoted around 1%, indicating their superior cyclic 
performance. This slight increase in capacitance after 4000 cycles is due to the improved access of electrolyte 
ions to the new activated sites at higher cycles11.

To better demonstrate the synthesized sample’s superior performance, the literature is comprehensively 
reviewed, and the results are presented in Table 2. As for the cyclic stability, CoTLM’s stability slightly increased 
by 1.5% after 4 k cycles, which is significantly better than its counterparts presented in the table. This phenom-
enon could be due to the unique 3D morphological structure of CoTLM facilitating both conductivity and 
ion diffusion. Among those composites that nano-carbons have integrated with cobalt nanoparticles, ’reduced 
graphene oxide/cobalt oxide composites’ and ’Co3O4/carbon aerogel microbead’ exhibited a capacitance of 291 
and 350 F g−1, which are still lower than our reported SC (445 F g−1 ) tested at the same measurement condition. 

Figure 7.   GCD of RAB, 3DFAB, and CoTLM at the current densities rates from 1 to 16 A g−1 (a–c); and cyclic 
performance of the RAB, 3DFAB, and CoTLM electrodes at the current density of 4 A g−1 (d–f).

Table 2.   Electrochemical results derived from cobalt-based electrodes.

Sample Electrolyte Specific capacitance (F g−1) Measurement condition Cycling stability References

Graphene/Co3O4 composites 1 M NaOH 433 0.5 A g−1 97.1% after 1000 cycles 44

Cobalt oxide/multi-walled carbon nanotube composites 2 M KOH 418 0.625 A g−1 91% after 2000 cycles 45

Carbon blacks filler/Co3O4/graphene nanosheets 1 M KOH 694 2 A g−1 91.9 after 3000 cycles 46

Multi-walled carbon nanotubes/Co3O4 nanocomposites 1 M KOH 201 10 mV s−1 – 47

Reduced graphene oxide/cobalt oxide composites 6 M KOH 291 1 A g−1 90% after 1000 cycles 48

Co3O4/carbon aerogel microbead 6 M KOH 350 1 A g−1 90% after 5000 cycles 49

Reduced graphene oxide/Co3O4 composite 2 M KOH 472 2 mV s−1 95.6% after 1000 cycles 50

Graphene nanosheet/Co3O4 composite 6 M KOH 243.2 10 mV s−1 95.6% after 2000 cycles 51

Cobalt hydroxide nanosheets on carbon nanotubes/carbon paper 6 M KOH 1083 0.83 A g−1 82.5 after 1000 cycles 25

CoTLM 3 M KCl 445 1 A g−1 101.5% after 4000 cycles This work
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When it comes to the electrolyte, the milder condition you use, the higher possibility for its commercialization 
exists. For the recent cobalt-based composites, typical basic aqueous solutions such as NaOH and KOH with 
various concentrations, ranging from 1 to 6 M have been used. However, in our study, KCl was introduced to 
the system, which is an unbuffered aqueous electrolyte. Based on the Nernst equation, such neutral electrolytes 
enable us to work on broader potential windows under a non-corrosive condition43.

EIS measurements. Charge transfer kinetics and ion diffusion rates were studied by EIS analysis and the reults 
are given in Table 3. The Nyquist plots of RAB, 3DFAB, and CoTLM are shown in Fig. 8. EIS measurements 
were conducted at the frequency range from 0.01 to 100 kHz at a potential of about -0.45 V with an alternate 
amplitude voltage of 5 mV. The equivalent circuit can fit EIS data. Charge transfer resistance (Rct) and ohmic 
resistance (Rs) were obtained by calculating the semicircle diameter in the high-frequency regions and intercept 
of the real axis in the Nyquist diagrams, respectively. The CoTLM electrode shows a lower Rct (2.6 Ω) than that 
of RAB (5.1 Ω) and 3DFAB (3.9 Ω), confirming its remarkable electrical conductivity. Moreover, a higher slope 
is recorded for CoTLM electrode, revealing lower Rs (0.71 Ω) in this electrode as compared to RAB (0.84 Ω) 
and 3DFAB (0.81 Ω). The Warburg resistance, symbol Zw, is the straight line at low-frequency regions. These 
lines show the variations in ion diffusion path lengths. As seen in Table 2, RAB, 3DFAB, and CoTLM have a Zw 
of 0.11, 0.13, 0.21 Ω, respectively. We can conclude that modification of RAB resulted in shorter ion diffusion 
paths and fewer barriers to ion movement52.

Electrochemical performances of the and 3DFAB//CoTLM ASC devices.  For the ASC, 3DFAB has 
been considered as a positive faradic electrode due to its superior surface area and suitable potential window. 
On the other hand, CoTLM showed a stable and suitable potential window in the region of negative chosen 
electrodes. The working potential range of 3DFAB was − 0.9 to 0 V, while that of CoTLM was − 0.1 to 0.9 V. 
Thus, this two-electrode combination’s cell voltage has extended up to 1.7 V, which is significantly higher than 
that obtained in symmetric type supercapacitors. CV diagrams and charge/discharge curves of 3DFAB//CoTLM 
devices are shown in Fig. 9a,b. All the CV curves of the ASC devices remained unchanged, indicating that elec-
trons and ions can quickly move within the pore structure of the electrodes even at 100 mV s−1, suggesting the 
ASC cell possesses high power capability. Simultaneously, charge–discharge curves have almost retained their 
symmetrical shape at different current densities, suggesting their high coulombic efficiency and good electro-
chemical reversibility of these two asymmetric systems.

Table 3.   Calculated values of RS, CPE, Rct, ZW, and CF through CNLS fitting of the experimental impedance 
spectra based upon the proposed equivalent circuit.

RAB 3DFAB CoTLM

RS (mOhm) 0.84 0.78 0.71

Cdl (mF) 0.5 1.5 1.9

Rct (Ohm) 5.1 4.3 2.6

ZW (MMho) 0.11 0.14 0.18

CF (mF) 130 150 250

Figure 8.   Nyquist plots of the RAB, 3DFAB, and CoTLM electrodes.
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Figure 10a shows 3D-CCV curves of 3DFAB//CoTLM electrode measured at a scan rate of 50 mV s−1 for 4000 
cycles. As shown in Fig. 10b, the asymmetric systems showed superior cyclic stability and during the cycling, the 
additional peaks did not appear. Up to 98.8% of the capacitance was retained for 3DFAB//CoTLM; the results 
were further processed into a Capacitance-Cycle number diagram to clarify the above statements.

To further support the above results, the cycle performance of 3DFAB//CoTLM electrode at the current den-
sity of 4 A g−1 is shown in Fig. 11a. Notably, 3DFAB//CoTLM electrode retained 100.9% of its initial capacitance 
after 4000 cycles at the current density of 4 A g−1. Although the capacity decay after long-term cycling for asym-
metric cobalt-based electrodes has been observed previously, the reasons have remained somewhat uncertain. 
There are three main hypotheses for such phenomenon: i) slight changes in ternary oxides and/or hydroxide are 
caused by intensive reaction with KCl, and ii) damage in the morphology of tile-like Microstructure with a 3D 
architecture was due to the long-term cycling test.

Energy density and power density are two main factors that should be considered in scaling up the ACS 
devices. Figure 11b shows the Ragone plots of the 3DFAB//CoTLM electrode. The energy density acquired from 
the 3DFAB//CoTLM ASC device is 54.44 Wh kg−1 with a power density of 800 W kg−1, which is significantly 
larger than those reported for cobalt and iron-based composite ASCs30.

Experimental section
Green macroalgae wastes (Cladophora glomerata) were collected by hand from different locations of the Speed 
River, Guelph, Ontario, Canada, during the months of June and July 2019 (see Fig. 12a). The exact sampling 
locations are shown in Fig. 12d. The algae were carefully washed with deionized water to remove sand, salt, and 
other contaminants attached to their surface. Afterward, any surplus of water was drained, and the samples were 
then dried at 105 °C in a furnace overnight. The dried algae were then ground and mixed to ensure the batch’s 
uniform consistency and composition. RAB was prepared using a macro TGA at Bio-Renewable Innovation Lab, 
University of Guelph, Canada (Fig. 12c) and was further processed via HTL process (Fig. 12b). Five grams of 
green macroalgae (sieved into the particle size < 150 µm in diameter) were placed into a reactor consisting of a 

Figure 9.   CV curves at different scan rates of 3DFAB//CoTLM (a), and charge/discharge curves under different 
current densities of 3DFAB//CoTLM (b).

Figure 10.   3DFAB//CoTLM asymmetric systems measured at a scan rate of 50 mV s−1 (a), variation of the 
specific capacitance of the 3DFAB//CoTLM cell with CCV method as a function of the number of cycles at 
50 mV s−1 (b).
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stainless-steel tube of 175 mm height and 15 mm and then the nitrogen gas purged the system before starting the 
reaction. Afterward, the purged reactor was inserted inside a Muffle Furnace (Model F48055-60, USA) to heat 
the pyrolysis reactor. The experiments were performed at a heating rate of 15 °C/min, reaching a temperature of 
700 °C. The k-type thermocouple was connected to a data-logger to visualize and record the temperature profile 
on the computer continuously. RAB was utilized as a start material to synthesize3DFAB and CoTLM.

Synthesis of 3DFAB.  Four grams of green macroalgae were mixed with 6 M NaOH and refluxed for 5 h at 
100 °C. The resulting suspension was centrifuged and dried before being placed in the pyrolysis reactor. After-
ward, 3DFAB derived from green macroalgae was synthesized by pyrolysis at 700 °C for 2 h and subsequent 
reflux with H2SO4 and HNO3 (1:3 by volume) at 80 °C for 6 h.

Synthesis of CoTLM.  A suspension composed of 1  g 3DFAB, 100  mL of distilled water, Ammonium 
Hydroxide as pH adjusters (to set pH at ≈11), and 0.25 g of Co(NO3)0.6H2O was transferred into a Teflon-lined 
stainless-steel autoclave and heated at 150 °C for 15 h. The resulting products were centrifuged at 5000 rpm. 
CoTLM was obtained after being washed with distilled water and ethanol several times.

Figure 11.   Cycle performance of 3DFAB//CoTLM electrode at the current density of 4 A g−1 (a), Ragone plot of 
3DFAB//CoTLM (b).

Figure 12.   (a) physical location of sampling, schematics of the lab-scale experimental set up of the slow 
pyrolysis (b) and hydrothermal processes (c), and Satellite image (d).
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Preparation of working electrodes in supercapacitor.  A homogeneous mixture composed of synthe-
sized samples (RAB, 3DFAB, or CoTLM), carbon black, graphite, and polytetrafluoroethylene (PTFE) was pre-
pared with the assistance of a few droplets of ethanol. Afterward, the mixture was pressed on a piece of a stain-
less steel 316 mesh 200 current collector (0.5 cm × 1 cm) under a pressure of 10 M Pa, and the amount of active 
material for each electrode was ranged from 2–3 mg. To fabricate the asymmetric supercapacitor of 3DFAB//
CoTLM, 3DFAB and CoTLM were assembled into an MTI cell as negative and positive electrodes, respectively. 
In this system, the mass ratio between positive and negative electrodes was equal. The glassy fiber (GF/A) was 
used as a separator and 3 M KCl was introduced as an aqueous electrolyte.

Characterization of materials.  The morphological characteristics and pore structure were investigated 
through field emission scanning electron microscopy FESEM (MIRA3 LM, Tuscan) at an acceleration voltage of 
15.0 kV. Fourier Transform Infrared (FTIR) spectroscopy (Brand: Bruker ISS-88) was used to determine the type 
and intensity of attached functional groups over synthesized materials. New crystallinity phases resulting from 
reaction and interaction among components were determined by studying the XRD patterns recorded by Xpert 
MPD diffractometer. Textural properties of RAB, CoTLM, and 3DFAB were analyzed by TriStar II 3020 Version 
3.02 through Brunauer Emmett Teller (BET) equation. X-ray photoelectron spectroscopy (XPS) measurement 
was performed in a Perkin Elmer PHI 6000C ECSA system with monochromatic Al KR (1486.6 eV) irradiation.

Electrochemical measurement.  The electrochemical parameters (CV, CCV, GCD, and EIS) of state-of-
the-art electrodes were measured using a three-electrode system comprised of CoTLM (3DFAB or RAB) work-
ing electrode, an Ag/AgCl reference electrode, and a graphite rod counter electrode. We implemented the same 
instruction for determining CV, CCV, and GCD, but in a two-electrode system. All electrochemical data were 
collected using an Autolab 302 N, at 25 °C in 3 M KCl electrolyte.

As for the SC calculations of three-electrode systems using GCD curves, the following formula is applied:

where SC (F g−1), I(A), ΔS, m (g), and ΔV (V) are referred to specific capacitance, real current discharge, inte-
grated area of discharge curves, active mass of the single working electrode, and potential window. The equation 
for the asymmetric cell operates in a pretty similar fashion, but with a minor change in that the numerator is 
multiped by two. For ’m’ average active mass of both electrodes is considered (equal mass).

Conclusions
In summary, we have fabricated a cost-effective ASC using RAB and 3DFAB as negative electrodes and CoTLM as 
a positive electrode. CoTLM was synthesized by integrating pyrolysis and hydrothermal carbonization methods. 
XRD, FTIR, and FESEM-EDS analyses confirmed the unique hierarchical architecture and superior surface area 
of CoTLM, resulting in high specific capacitance and excellent cycling stability. The potential operating range 
of 3DFAB was − 0.9 to 0 V, while that of CoTLM was − 0.1  to  0.9 V. Thus, this two-electrode combination’s cell 
voltage has extended up to 1.7 V, which is significantly higher than that obtained in symmetric type superca-
pacitors. In terms of its capacitance, it holds an SC of 411 F g−1 at the current density of 1 A g−1. Besides that, 
the capacitance remained unchanged after 4 k cycles at 4 A g−1. The energy density acquired from the 3DFAB//
CoTLM ASC device is 54.44 Wh kg−1 with a power density of 800 W kg−1, which is significantly larger than that 
of the RAB//CoTLM (23.22 Wh kg−1 at a power density of 850 W kg−1). These values are significantly higher 
than those reported for cobalt and iron-based composite ASCs.
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