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Abstract: Endometrial cancer is the most common gynecological cancer, representing 3.5% of all new
cancer cases in the United States. Abnormal stem cell-like cells, referred to as cancer stem cells (CSCs),
reside in the endometrium and possess the capacity to self-renew and differentiate into cancer progen-
itors, leading to tumor progression. Herein we review the role of the endometrial microenvironment
and sex hormone signaling in sustaining EC progenitors and potentially promoting dormancy, a
cellular state characterized by cell cycle quiescence and resistance to conventional treatments. We
offer perspective on mechanisms by which bone marrow-derived cells (BMDCs) within the endome-
trial microenvironment could promote endometrial CSC (eCSC) survival and/or dormancy. Our
perspective relies on the well-established example of another sex hormone-driven cancer, breast
cancer, in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype and
dormancy. Our previous studies demonstrate that BMDCs migrate to the endometrium and express
sex hormone (estrogen and progesterone) receptors. Whether the BM is a source of eCSCs is unknown;
alternatively, crosstalk between BMDCs and CSCs within the endometrial microenvironment could
be an additional mechanism supporting eCSCs and tumorigenesis. Elucidating these mechanisms
will provide avenues to develop novel therapeutic interventions for EC.

Keywords: endometrial cancer; cancer stem cells; dormancy; endometrium; breast cancer; bone
marrow niche

1. Introduction

Endometrial cancer is the most common gynecological cancer, representing 3.5% of
all new cancer cases in the United States [1]. In recent years, there has been a 0.7% rise in
EC incidence from 1999 to 2015, and 1.1% increase in associated mortality from 1999 to
2016 [2]. This rise is due to both an increase in women’s life expectancy as well as increasing
incidence of obesity [3]. For cases involving localized EC, the 5-year relative survival rate
is 94.9%; as compared to a rate of 69.3% in more severe cases of regional EC [1]. EC recurs
in about 13% of high-risk patients and is associated with a poor prognosis [4].

EC is broadly categorized into two types, I (endometrioid) and II (non-endometrioid) [3].
Type I EC is estrogen-dependent and displays low proliferative capacity, correlating with a
better prognosis and lower incidence of recurrence relative to type II [5]. Excessive estrogen
exposure due to anovulation, excessive adipose tissue, and/or hormone therapies lacking
progesterone, predisposes women to type I EC [3,5]. Conversely, type II EC pathogenesis is
estrogen-independent, and tumors possess high metastatic potential, worsening patient
prognosis and increasing cancer recurrence [6].

Irrespective of the type, EC tumors are composed of heterogenous cell subpopulations
that differ in proliferative properties and sensitivity to treatment [7]. The heterogeneous
tumor is composed of progenitor cancer cells and cancer stem cells (CSCs) [8]. CSCs are
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the source of tumor formation, leading to cancer recurrence even after long periods of
remission [9]. CSCs exhibit the hallmark properties of stem cells, including the ability to
self-renew and to differentiate into progenitors [8]. These cells resourcefully leverage their
microenvironment to enter a dormant state, characterized by cell cycle quiescence, which
confers resistance to treatment and immune evasion [9,10]. Tissue-specific CSC populations
have been described, such as endometrial CSCs (eCSCs); however, a lack of consensus
regarding eCSC-specific markers has hindered their isolation and characterization [4,11].

Intrinsic cues within a cancer cell are important for tumor progression; however, can-
cer cell survival is also dependent on their microenvironment [12]. In EC specifically, the
tumor microenvironment provides support to cancer cells via contact-dependent and/or
contact-independent interactions, resulting in enhanced metastatic potential [13]. In this
perspective article, we will discuss the function of various cell types within the EC mi-
croenvironment and their role in promoting EC progression. Since multiple laboratories
demonstrate that bone marrow-derived cells (BMDCs) take up long-term residence within
the endometrium [14–17], we offer a novel perspective on how BMDCs within the tumor
microenvironment may promote endometrial CSC (eCSC) survival and/or dormancy. To
do this, we leverage what is known about another sex hormone-driven cancer, breast cancer,
in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype
and dormancy [18].

2. Endometrial Cancer
2.1. Types of Endometrial Cancer

Bokhman’s dualistic model classifies EC into two pathogenic types [19]. Type I tumors
are the most prevalent form of EC and are estrogen-dependent, sensitive to progestogens,
and often display premalignant endometrial hyperplasia [20]. Type II tumors are estrogen-
independent, arise in the endometrium, and are derived from precancerous lesions [21].
Type II ECs present earlier and more aggressively, are insensitive to progestogens, and
are often resistant to standard chemotherapy and radiation [22]. Although type II tumors
account for 10–20% of all cases, they account for 40% of total deaths from EC [23].Thus,
type II ECs are highly malignant in comparison to type I EC, and diagnosis is associated
with poor prognosis. Generally, type I ECs have endometrioid histology while most type
II ECs have non-endometrioid histology such as serous carcinoma (5–10% of all ECs) and
clear cell carcinoma (1–5% of all ECs) [22]. However, classification based on histology alone
can be inaccurate due to overlapping of morphologies of different histologies, so molecular
markers identified through immunohistochemistry are often used to aid in diagnosis.

While the Bokhman model remains valid, it fails to consider the genetic and molecular
heterogeneity of EC tumors. Instead, some advocate for a classification system that incorpo-
rates both histopathological and genetic/molecular features to allow for better predictions
of survival [24]. Using multiple sequencing data derived from The Cancer Genome Atlas
Project (TCGA), researchers have been able to classify EC into four groups with different
molecular profiles: Polymerase ε (POLE ultra-mutated), microsatellite-instable (MSI [hy-
permutated]), copy-number (CN) low, and CN high [25]. Depending on the tumor profile
status it is possible to specifically classify different EC subtypes to improve treatment strate-
gies. Combining molecular features with clinical elements used to identify the severity
of the disease, such as stage and node status, will afford clinicians improved ability to
determine the tumor type and specialized treatment needed.

2.2. Role of Estrogen in EC Pathogenesis

The ovarian steroid hormones estradiol and progesterone are predominant factors driv-
ing cyclic endometrial proliferation, differentiation, and shedding (menses) in a woman’s
menstrual cycle. The menstrual cycle is composed of the follicular, ovulatory, and luteal
phases. During the follicular phase, increasing levels of estradiol, derived from granulosa
cells of ovarian follicles, stimulate endometrial epithelial and stromal cell proliferation. A
mid-cycle surge in luteinizing hormone (LH) and follicle-stimulating hormone from the
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pituitary stimulates ovulation. Following ovulation, the luteal phase commences; during
this time, the endometrium undergoes differentiation under the influence of progesterone
and other steroid and peptide hormones secreted by the corpus luteum [26]. In the absence
of pregnancy, circulating estradiol and progesterone levels fall in the late luteal phase,
and menstrual shedding of the functional endometrial layer ensues. In the anovulatory
woman (in which there is no cyclic luteal source of progesterone), prolonged periods of un-
opposed estrogen results in overgrowth of the endometrium which may lead to malignant
transformation [27].

2.3. Role of Obesity in EC Pathogenesis

EC rates in high income countries such as the United States have increased in a similar
manner as obesity rates over the past few decades [28]. EC incidence is directly linked to
obesity; an increase in 5 BMI units augments one’s risk of EC by 50% [29]. Most EC is related
to obesity due to the conversion of androgens to estrogen by aromatase within adipose
fat cells, thus creating an overabundance of unopposed circulating estrogen. Opposing
estrogen with administration of progestins is one strategy for treating certain type I ECs
in women desiring pregnancy [29]. In fact, patients with stage IA endometroid tumors
(low-grade progesterone receptor-positive) who are interested in bearing children have
been shown to have excellent clinical outcomes, including pregnancy, when treated with
progestins [30].

2.4. Role of p53 and PTEN Mutations in EC

Mutations within the TP53 (p53) gene are characteristic of EC tumors. The frequency of
p53 mutations for type I and type II EC is 90% and 10–40%, respectively [31]. Missense p53
mutations are the most prevalent in EC tumors, correlating with poor patient outcomes [32].
One study demonstrated that p53 deletion causes the development of multiple type II EC
subtypes that possess high metastatic potential, in vivo [33]. Additionally, EC tumors in
which p53 is overexpressed display higher resistance to treatment in comparison to those
without p53 mutations [34]. Higher incidence of type I EC recurrence at primary and/or
secondary sites has been observed in patients with tumors that co-express p53 and estrogen
receptor (ER)β proteins [35]. However, future studies addressing the potential interplay
between p53 and ERβ in EC pathogenesis need to be performed.

Mutations in the phosphatase and tensin homolog (PTEN) gene, a tumor suppressor
gene that controls cell proliferation [36], are also prevalent in EC tumors, encountered
in approximately 37–60% of type I EC [37]. PTEN mutations are mostly present in short
coding mononucleotide repeats which correlate with microsatellite instability [38]. One
study showed that 61% of type I EC tumors exhibit loss of PTEN expression [39], which
is associated with EC recurrence [40]. Despite this, loss of PTEN sensitizes EC tumors to
PARP/PI3K inhibitors, a useful strategy to treat EC patients with metastatic disease [41].
In women older than 60 years, co-expression of PTEN and p53 in EC tumors correlates
with high metastatic potential and EC recurrence [36]. Studies are ongoing to identify
appropriate molecular markers for use as clinical prognostic indicators and to better guide
therapy in women with EC.

3. Cancer Stem Cells

Tumor heterogeneity is one feature displayed by cancerous tissues that permits adapta-
tion to different niches and microenvironmental cues. Within the tumor microenvironment,
cancer stem cells (CSCs) exhibit abnormal stem cell-like behavior and are responsible for
tumor repopulation and cancer resurgence [42]. CSCs undergo asymmetric division, a
process that can be modulated by microenvironmental or intrinsic cues resulting in either
CSC self-renewal or differentiation into cancer progenitors [43], thus contributing to the
heterogeneity of the tumor. In addition, CSCs express core stem cell genes (i.e., Octamer4-a,
Nanog, Sox2, and Klf4) and drug-efflux transporters (i.e., ATP-binding cassette), which
serve as a protective mechanism against conventional treatments by allowing disposal of
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toxins from the cell [44,45]. CSCs undergo dormancy, a process characterized by cell cycle
quiescence and resistance to treatment [46]. Dormancy poses a therapeutic challenge be-
cause current treatments require an active cell cycle status for successful eradication of the
cells. CSCs share properties with non-malignant stem cells, complicating the development
of pharmacological agents that will solely eliminate the cancer cells. Therefore, elucidating
fundamental pathways and markers exclusive to CSCs is imperative to effectively target
these cells without negatively impacting the non-malignant stem cells.

CSCs were identified in solid tumors as CD44+/CD24(−/low)/Lineage(−) [8,47]. Phe-
notypic and functional studies demonstrated the capacity of these cells in driving tumor
repopulation in immunodeficient mice [47]. Further studies aimed to better stratify CSCs,
leading to the identification of CD133 and aldehyde dehydrogenase-I as markers enriched
in abnormal stem cell-like cells [48,49]. The identification and isolation of CSCs varies
depending on the tissue of origin; thus, classification of tissue-specific markers is necessary
to discern between CSCs from different sources and to better understand CSC behaviors
that might be limited to specific anatomical regions [8].

The origin of CSCs is mainly attributed to two different theories. One of the theories
establishes that mutations in core stem cell genes of non-malignant stem cells result in the
development of CSCs [50]. Alternatively, mutations can promote the de-differentiation of
progenitor cancer cells into CSCs [51]. Notably, the acquisition of an abnormal stem cell-like
phenotype is a highly dynamic process that may be dictated by the cellular microenviron-
ment. Regardless of their origin, CSCs require extrinsic (niche-driven) and intrinsic signals
that allow their survival for extended periods.

The first evidence of CSCs in the endometrium was provided by Hubbard et al. [50],
demonstrating that clonally derived endometrial carcinoma cells possess a capacity for
self-renewal, de-differentiation, and tumorigenic properties [50]. Identification of eCSCs
poses a challenge due to a lack of consensus regarding cell-surface or intracellular markers
that are solely expressed in such cells. Therefore, determining markers that are exclusive
for eCSCs is necessary to better understand behaviors specific to these cells and to develop
strategies that can effectively target and ameliorate disease outcomes.

4. Pathways Involved in eCSC Maintenance

The lack of markers specific to eCSCs has made it difficult to develop strategies to
target these cells. However, a number of cell signaling pathways involved in maintaining
eCSC stemness are being studied as possible therapeutic targets. A comprehensive review
of established pathways that regulate eCSC maintenance is outside the scope of this review.
Herein, we discuss selected pathways (i.e., Notch and Wnt signaling) and molecules (i.e.,
micro-RNAs) that could be implicated in EC progression driven by bone marrow-derived
cells (BMDCs) recruited to the endometrium. We focus on these pathways and molecules
because they play a fundamental role in the well-established model of BM-driven breast
cancer dormancy.

The Notch signaling pathway plays a major role in cell maintenance and fate [52].
Notch has been recognized as an important pathway in a multitude of solid tumor types
such as breast [53], colorectal [54], and cervical [55]. This signaling cascade can induce
cell proliferation, metastasis, and epithelial-to-mesenchymal transition (EMT), all of which
relate to CSC maintenance [56]. EMT is a process by which cancer cells lose the polarization
typically associated with epithelial cells and gain mesenchymal characteristics such as
increased migration and invasiveness [57]. With respect to EC, several studies have re-
ported that eCSCs have enhanced Notch signaling activity [4,58], and inactivation of Notch
signaling reduces eCSC clonogenic capacity and resistance to treatment [58]. Downstream
proteins of Notch interact with a myriad of different factors involved in other pathways
to maintain CSCs and progenitors. One of these factors is Musashi-1, an RNA-binding
protein known for its role in CSC maintenance [59]. Elevated levels of Musashi-1 have
been observed in eCSCs and inhibition of this protein results in downregulation of Notch-1
signaling which triggers apoptosis in endometrial cancer cells (ECCs) [60].
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Another pathway which has been widely studied for its role in the development of can-
cer and CSC maintenance is the Wnt/β-catenin pathway (Wnt pathway). In physiological
conditions, this signaling pathway is associated with increased differentiation, polariza-
tion, and migration [61]. However, in cancer, Wnt signaling is crucial in maintaining CSC
stemness [62]. In EC specifically, the Wnt pathway is often dysregulated, characterized
by increased mutations in β-catenin and expression of Wnt ligands within endometrial
tissue [63]. Three Wnt ligands (WNT7A, WNT10A, and WNT10B) are significantly elevated
in EC tumors in an estrogen-dependent manner, affecting primarily type-I EC [63,64]. Wnt
signaling, activated by the calcium binding protein, SPARC-related modular calcium bind-
ing 2 (SMOC-2), modulates stemness in eCSCs [65]. Interestingly, expression of SMOC-2
has been used to distinguish between eCSCs and progenitors [65].

In addition to cell signaling pathways, many micro-RNAs (miRNA) have been studied
as potential therapeutic targets for EC. For the purpose of this review, we will focus on
a few notable ones that have been shown to regulate eCSC functions. Overexpression
of miRNA-21, for example, downregulates PTEN expression in eCSCs, resulting in cell
proliferation [66]. Overexpression of miRNA-194 inhibits eCSC invasion and metastasis
in vivo, by suppression of the transcription factor sex-determining region Y-box protein 3
(SOX-3), which plays a major role in EMT [67]. Certain miRNAs regulate eCSC functions
by interaction with the Notch pathway. For instance, miRNA-34a has been shown to
downregulate Notch-1 gene expression in ECCs, thereby inhibiting ECC proliferation,
invasion, and migration [68]. Another miRNA that regulates Notch signaling is miRNA-
134, which reduced eCSC proliferation and migration by downregulating eCSC expression
of protein O-glucosyltransferase 1 (POGLUT) and Notch signaling [69]. Overall, several
factors are key drivers of CSCs and eCSCs; thus, in-depth studies should be conducted
to determine the feasibility of targeting such factors to effectively halt cancer progression.
Established eCSC markers and key factors involved in eCSC maintenance are summarized
in Table 1.

Table 1. eCSC markers and pathways involved in stemness, resistance to treatment, and survival.

Name Type Function(s) within EC References

CD133 pentaspan transmembrane
glycoprotein

Modulation of stem cell genes, invasiveness,
chemoresistance, tumorigenesis [70,71]

CD44 transmembrane glycoprotein Crosstalk with microenvironment, progression,
poor prognosis, co-expression with CD133 [72–74]

CD117 type III receptor tyrosine kinase Proliferation, aggression, independent
prognostic factor [75]

ALDH enzyme Drug resistance, independent prognostic factor [76–78]
Notch signaling pathway Cell proliferation, apoptosis [60]

Musashi-1 RNA-binding protein Involved in Notch pathway; cell proliferation
and apoptosis [60]

Wnt/β-catenin signaling pathway Proliferation, migration, invasiveness,
tumorigenicity [79,80]

NANOG homeobox transcription factor Self-renewal [50,81]
OCT-4 transcription factor Self-renewal [50,82]
SOX-2 transcription factor Self-renewal [50,82]

SMOC-2 protein Reduce expression of stemness-related
transcription factors, activate Wnt pathway [83]

miRNA-21 miRNA Cell proliferation [84]
miRNA-194 miRNA Inhibits EMT [66]
miRNA-34a miRNA Inhibits Notch pathway [67]
miRNA-134 miRNA Inhibits Notch pathway [68]

5. Endometrial Cancer Microenvironment

Inherent mutations in cancer cells are a driving force in tumor development. To pro-
long their survival, cancer cells leverage their niche by orchestrating either transcriptional
or epigenetic changes within the stroma to allow tumor progression [12,85]. The stroma
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provides structural and functional support within an organ and is composed of fibroblasts,
endothelial cells, epithelial, and immune cells [86]. Bidirectional communication between
the stroma and cancer cells allows adaptation of the cancer cells to the niche. Herein, we
will discuss the role of the stroma in EC and provide insights about molecules that support
the cancer cells.

5.1. Cancer-Associated Fibroblasts in EC

Cancer-associated fibroblasts (CAFs) can exert a supportive role during tumor pro-
gression by enhancing proliferation, metastatic potential, and resistance to treatment in
cancer cells. In EC, CAFs can promote proliferation of ECCs by upregulating PI3K/Akt
and MAPK/Erk pathways [87]. Unlike normal fibroblasts, CAFs mediate proliferation of
ECCs by releasing increased levels of cytokines and growth factors, such as macrophage
chemoattractant protein (MCP)-1, IL-6, IL-8, RANTES and vascular endothelial growth
factor (VEGF) [88]. Interestingly, higher levels of epidermal growth factor, transforming
growth factor-β, hepatic growth factor, and fibroblast growth factor in the conditioned
media of CAFs induces EMT in ECCs, resulting in increased invasiveness and migratory
properties [89]. Furthermore, CAFs release stromal derived factor 1-α (SDF-1α/CXCL12), a
chemokine which interacts with its receptor CXCR4 expressed in ECCs and subsequently
enhances ECC migration [90]. Upregulation of the CXCL12/CXCR4 axis is correlated
with poor prognosis in EC patients [91]. Mechanistically, downstream signaling of CXCR4
activates PI3K/Akt pathways to support ECC survival, proliferation, and migration [90].
The CXCL12/CXCR4 axis has been shown to be crucial in metastasis to distant organs in
other cancer types such as breast and ovarian cancer [92,93]. Altogether, soluble factors
released by CAFs contribute to enhanced ECC migration and proliferation, ultimately
resulting in tumor progression.

5.2. Endothelial Cells in EC

Estrogen-driven angiogenesis during each menstrual cycle is necessary for regener-
ation of the functional layer of the endometrium. Specifically, estrogen-induced VEGF
secretion from glandular epithelial and stromal cells promote vascularization in the en-
dometrium [94]. Increased tissue levels of VEGF are associated with poor prognosis in
EC patients [95]. VEGF secretion can be induced by hypoxic conditions during cancer
development, triggering expression of matrix metalloproteinases, which promote neovascu-
larization within the tumor and metastasis [96]. For instance, epithelial membrane protein-2
(EMP2), a marker for early-stage EC, mediates upregulation of hypoxia-inducible factor
1-alpha (HIF-1α) by stimulating expression of VEGF and thereby increasing capillary forma-
tion [97,98]. Indeed, in early-stage EC, patients exhibit high levels of circulating endothelial
cells in comparison to healthy individuals, suggesting that angiogenesis is fundamental
during development of the disease [99]. Microarray studies performed on EC-associated
endothelial cells revealed enhanced microtube formation, increased invasiveness, and
upregulation of ECM proteins to facilitate interaction with ECCs [100].

As noted earlier, prolonged exposure of the endometrium to estrogen, without the op-
posing role of progesterone, can cause type I EC [3]. In EC, estradiol induces VEGF and basic
fibroblast growth factor (b-FGF) in ECCs, leading to Akt activation and downstream Nfκ-B
signaling, resulting in increased tumor burden [101]. Additionally, estrogen-mediated Nfκ-
B activation can be caused by ECC-secreted platelet-activating factor, facilitating vasculature
sprouting [102]. Collectively, during EC development, elevated amounts of angiogenic
factors are released to promote neovascularization, contributing to tumor survival.

5.3. Immune Cells in EC

In steady-state conditions, the immune system recognizes and eliminates cancer cells
via pro-inflammatory mechanisms. Despite this, cancer cells can circumvent inflammatory
responses and effectively leverage the immune system [103]. In some cases, cancer cells
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bias the immune system towards an anti-inflammatory response, resulting in prolonged
survival, and enhanced metastatic potential [104].

In EC, innate and adaptive immune cells infiltrate the tumor, exerting either pro-
or anti-tumorigenic effects. Migration of macrophages to the tumor microenvironment
is critical during disease progression. EC promotes polarization of macrophages from
an anti-tumor (M1) to a tumor-enhancing (M2) phenotype [105,106]. Both natural killer
cells and cytotoxic CD8+ T cells can exert anti-tumorigenic effects, leading to decreased
tumor burden. Despite this, ECCs take advantage of NK cells by promoting transcriptional
changes resulting in reduced cytotoxicity and degranulation [107]. In addition, ECCs reduce
recruitment of CD8+ T cells and release immunosuppressive cytokines to persist within the
niche [108]. Ultimately, ECCs take advantage of the immune system to successfully evade
conventional treatments.

6. Bone Marrow Niche in Hormone-Driven Cancers—Using Breast Cancer (BC)
as a Model

In the bone marrow, metastatic cancer cells of certain solid tumors (e.g., breast) are
known to survive in a dormant state as CSCs, later resurging as increasingly aggressive,
metastatic disease [109]. Although EC rarely metastasizes to the BM, BMDCs have been
shown to be recruited to the uterus [14,15]; whether these cells play a role in EC survival
and/or recurrence at the primary site is unknown. Extensive studies in breast cancer have
elucidated mechanisms by which cancer cells leverage the BM for their survival. In this
section, we will discuss how the BM niche homes metastatic BC, and how breast cancer cells
(BCCs) utilize the BM microenvironment to ensure their survival. Understanding these
mechanisms provides important insights into how BMDCs recruited to the endometrium
might be supporting EC at the primary site.

6.1. Concept of BC Dormancy

BC is the most common type of cancer among women, and like type 1 EC, is a sex
hormone-driven disease. Despite recent advancements in treatment and early intervention,
BC remains a clinical challenge, primarily due to increased incidence of recurrence over the
years [110]. Upon recurrence, BCCs are highly metastatic and more aggressive, contribut-
ing to reduced overall patient survival [111]. However, the mechanisms underlying BC
recurrence remain poorly understood. Metastatic BCCs preferentially migrate to the BM,
residing in the BM for extended periods by successfully evading treatments and immune
surveillance [109]. BCCs thrive in the BM microenvironment by acquiring a dormant phe-
notype and undergoing de-differentiation into CSCs [112,113]. Certainly, the heterogeneity
of the BM provides a beneficial microenvironment for BCC survival, impeding efficacious
targeting of the malignant cells. Therefore, it is important to understand how BM-niche
cells support dormancy acquisition to develop strategies that can eradicate BCCs.

6.2. Role of BM Niche in BC Dormancy
6.2.1. Perivascular Niche

The perivascular niche of the BM is composed of endothelial cells, mesenchymal
stem cells, and nerve fibers sheathed throughout the blood vessels [114]. The sinusoids are
capillaries distributed across the BM that are highly permeable and allow the release and/or
entrance of HSCs and progenitors [115]. The permeability of the sinusoids permits the
invasion of metastatic BCCs into the BM cavity [114]. Entrance of BCCs into BM is primarily
mediated through the CXCL12-CXCR4 axis [93]. BM cells, such as mesenchymal stem cells
(MSCs) and endothelial cells, release CXCL12 which allows recruitment of metastatic BCCs
with increased expression of the receptor CXCR4 to the BM [93,116]. The upregulation of
CXCR4 in BCCs is facilitated by the neuropeptide, tachykinin-precursor-1 [93].

The perivascular niche of the BM promotes dormancy in BCCs. In vivo imaging stud-
ies of the BM perivascular niche demonstrated that BCCs are in proximity to endothelial
cells, suggesting a role of the vasculature in BC dormancy [117]. Endothelial cells induce
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BC dormancy by releasing thrombospodin-1, which restricts cancer cell proliferation [117].
Furthermore, BCCs previously exposed to high doses of chemotherapy tend to preferen-
tially migrate to the BM, seeking refuge at the perivascular site [118]. Both the endothelium
and MSCs within the BM provide protection against chemotherapy through enhanced
integrin signaling [118].

MSCs are multipotent non-hematopoietic cells that support HSC maintenance. Our
previous studies have shown that BCCs instruct MSCs in the perivascular niche to release
microvesicles (i.e., exosomes) that contain a specific set of miRNA cargo that facilitate
BC dormancy [112]. Exosomes, a form of contact-independent mediated interaction, are
small microvesicles that transport various molecules such as lipids, proteins, and coding
and non-coding RNAs, including miRNAs [119]. Exposure of MSCs to BCCs induces
the expression and release of miRNAs 222/223 within MSC-derived exosomes, resulting
in BC dormancy [112]. Introduction and packaging of anti-miRs 222/223 in BM-MSC-
derived exosomes induced dormancy reversal [112]. In addition, MSCs, upon exposure
to BCCs, secrete exosomes that promote de-differentiation of late progenitor BCCs into
CSCs by enhancing the Wnt pathway [113]. Altogether, the perivascular niche is critical in
supporting BC dormancy and transition into CSCs.

6.2.2. Endosteal Niche

The endosteal niche of the BM is located near the bone area and is primarily composed
of osteoblasts, osteoclasts, HSCs, MSCs, fibroblasts, adipocytes, and immune cells [120].
Long-term repopulating HSCs, which sustain hematopoiesis during an individual’s lifetime,
reside at the endosteum. Various cell types from this region have been shown to be critical in
HSC maintenance and overall homeostasis. However, in addition to supporting HSCs, the
endosteal niche plays an important role in promoting CSC survival. Metastatic BCCs home
to the endosteum and remain dormant in this region for extended periods. The dormant
BCCs exhibit CSC properties and utilize the same resources that HSCs require to survive.
Therefore, to avoid disruption of hematopoiesis, mechanisms developed to target CSCs in
the BM need to take into consideration that HSCs reside in the same anatomical location.

Contact-dependent interactions such as gap junction intercellular communication
(GJIC) between stromal cells and BCCs maintain dormancy of BCCs at the endosteum [121].
Specifically, connexin-43-mediated GJIC between stromal cells and BCCs allows the trans-
mission of specific miRNAs that reduce proliferation of the malignant cell [121]. Since Cx43
is also expressed on HSCs, and these cells use it as a form of communication with neighbor-
ing cells, Cx43 is not a potential target for treatment of BC. Thus, identifying factors that
might be facilitating communication between BCCs and BM-niche cells is imperative to
target the malignant cells. For instance, we identified that N-cadherin interacts with Cx43
and promotes GJIC between CSCs and stromal cells, maintaining BC dormancy [122]. Dis-
ruption of the interaction between N-cadherin and Cx43 resulted in reversal of dormancy
in BCCs [122]. In conclusion, the endosteal niche supports homing and maintenance of
CSCs in the BM.

7. Perspective: BM-Derived Cells in EC Progression—Insights from BC

Although the general prognosis for EC patients is favorable due to early detection
and intervention, approximately 13% of ECs recur, contributing to reduced overall patient
survival [123]. The mechanisms accounting for the aggressiveness of EC upon recurrence
remain to be elucidated. In this section, we provide insights into the mechanisms by which
BMDCs recruited to the endometrium might be supporting ECC survival at the primary
site, using BM niche-driven breast cancer dormancy as a model.

7.1. Role of CXCL12-CXCR4 Axis in BMDC Recruitment/Parallels with BC

Metastatic EC rarely migrates to the BM [124]. However, multiple studies indicate that
BMDC populations migrate to the endometrium and take residence within the tissue [16,17].
Mechanisms regulating BMDC recruitment to the endometrium remain poorly understood
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but appear to involve inflammatory cues [125,126]. For instance, endometrial stem cells
produce high levels of the chemokine CXCL12 in response to estradiol [125]. Enrichment
of CXCL12 results in upregulation of its receptor CXCR4 in BMDCs, facilitating their
recruitment to the endometrium [125]. In a murine model recapitulating endometrial injury,
administration of BMDCs with CXCL12 enhanced cell migration to the endometrium and
promoted tissue regeneration [126].

Although studies support a role for the CXCL12-CXCR4 axis in promoting recruitment
of BMDCs to the endometrium, whether this pathway is implicated in migration of BMDCs
during EC progression remains to be elucidated. As noted earlier, in BC, the CXCL12-
CXCR4 axis promotes the recruitment of BCCs to the BM; the BM niche facilitates acquisition
of a dormant phenotype and de-differentiation of BCCs into CSCs [113]. Whether this
same phenomenon is occurring in EC is unknown. It is possible that in EC, BMDCs
enter the endometrium via the CXCL12-CXCR4 axis and are potentially supporting eCSCs
and progenitors.

7.2. Role of Specific BMDC Population: BM-MSC

The role of BMDCs once recruited to the endometrium is not completely understood
but may either involve transdifferentiation into mature endometrial cell types and/or
endometrial regeneration via paracrine factors [14,16]. In physiologic conditions, MSCs
recruited from the BM take up residence within the endometrial basalis and serve as
precursors for endometrial MSCs (eMSCs) which contribute to regeneration of the func-
tionalis layer during the menstrual cycle [127]. It is possible that in EC, eMSCs of BM-MSC
origin may support EC dormancy in a similar manner to BM-MSCs which promote BC
dormancy [112].

To expand on this concept: transcriptome studies indicate that eMSCs express high
levels of genes involved in angiogenesis, steroid hormone response, and immunomod-
ulation [128], processes involved in EC development. Angiogenesis is critical for tumor
development and progression. In the endometrium, eMSCs release exosomes that are
endocytosed by endothelial cells, resulting in increased proliferation, migration, and an-
giogenesis in vitro [129]. Endometriosis, although a non-cancerous disease, has interesting
parallels with cancer biology. For instance, eMSCs derived from patients with endometrio-
sis promote multiple properties also implicated in cancer development/tumorigenesis, such
as angiogenesis, remodeling of the extracellular matrix, and development of fibrosis [130].
Therefore, mechanistically, it is plausible that BM-MSCs recruited to the endometrium are
precursors of endometrial MSCs, which in turn modulate EC by promoting angiogenesis in
the tumor microenvironment.

7.3. Role of BM-MSC Exosomes in Promoting Dormancy

Contact-independent interactions between BM-derived cell types and ECCs may
be considered as another possible mechanism mediating survival of cancer cells at the
endometrial niche. As previously mentioned, BM-MSC-derived exosomes contain miRNAs
that are sufficient to promote BC dormancy [112].Therefore, in EC, it is plausible that
BMDCs recruited to the endometrium release exosomes containing miRNAs that similarly
regulate key molecules involved in dormancy, stemness, and cell cycle progression. Indeed,
although not a cancer model, during endometrial damage, BM-MSC-derived exosomes
have been shown to reduce fibrotic lesions and increase the number of glands via the
TGF-β1 pathway [131]. In addition, BM-MSCs upregulate the expression of miRNAs,
including miR-340, in endometrial cells, resulting in endometrial regeneration following an
injury [132]. Based on the findings in BC and in non-cancerous diseases of the endometrium,
contact-independent signaling between BMDC and ECC (e.g., via exosomes) could be
considered as a potential mechanism involved in regulation of EC.
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7.4. Role of Sex Hormones

Certain endometrial cancers (e.g., type I EC) are highly responsive to estrogen. How-
ever, whether BMDCs recruited to the endometrium are sensitive to sex hormones and/or
support endometrial cancer via steroid hormone receptor signaling is unknown. Our
studies demonstrate that BMDCs taking residence within the murine endometrium ex-
press estrogen receptor (ER) α and β, and progesterone receptor (PR), but whether these
cells are steroid hormone-responsive is unclear [133–135]. Some cell types within the en-
dometrium (for example, endometrial stem cells) are estrogen-responsive via paracrine
signaling from neighboring cells, despite low level expression of ERα and ERβ [136]. It is
unknown whether endometrial cancer stem cells in estrogen-dependent EC types express
steroid hormone receptors. The fact that BMDCs home to the endometrium and express
sex-hormone receptors raises the possibility of an indirect mechanism regulating eCSCs
after sex-hormone stimulation.

7.5. Pathways Regulating Endometrial CSC Self Renewal/Maintenance: Parallels with BC

Although a multitude of pathways regulate CSC self-renewal and maintenance, a
potential mechanism by which BMDCs may support ECCs is through the Wnt signaling
pathway. As noted earlier, the Wnt pathway is often dysregulated in EC [63]. A question
that remains to be elucidated is whether recruited BMDCs could be supporting ECCs in
the primary site by modulating the Wnt pathway. In BC, it has been shown that BM-MSCs
release exosomes that induce the de-differentiation of progenitor cancer cells into CSCs
via activation of the Wnt pathway, allowing them to persist in the BM for extensive pe-
riods [113]. Given that BMDCs are recruited to the endometrium, we hypothesize that
intercellular communication between BMDCs and ECCs may similarly play a role in regula-
tion of pathways (i.e., Wnt signaling) that are implicated in stemness, cell cycle progression,
and resistance to treatment. However, studies need to be conducted to determine whether
BMDCs facilitate ECC de-differentiation (and if so, which BM-derived cell type[s]) and to
mechanistically determine whether the Wnt pathway is driving this process.

Another candidate pathway by which BMDCs may regulate EC is via the Notch
signaling cascade. In physiological conditions, Notch signaling is important in cell-fate
transitions, development, differentiation, and proliferation [52]. In the endometrium,
during steady-state conditions, both epithelial and stromal compartments express Notch
receptors, whereas the ligands are mostly expressed by epithelial cells [137]. During can-
cer development, activation of Notch signaling contributes to CSC self-renewal, cancer
cell proliferation, resistance to treatment, and neovascularization [138]. As previously
mentioned, eCSCs have enhanced Notch signaling activity [4,58]; inactivation of Notch sig-
naling reduces eCSC clonogenic capacity and resistance to treatment [58]. Notch signaling
is thus crucial in the regulation of eCSCs, but whether BMDCs support EC progression
by modulating the Notch pathway remains unknown. In BC, microenvironmental cues
regulate the Notch pathway resulting in cancer progression. More specifically, stroma-
derived exosomes activate Notch signaling in BCCs via the NOTCH3 receptor, promoting
increased proliferation and resistance to treatment [139]. In addition, BM endosteal niche
cells facilitate and support BC dormancy in a NOTCH2-dependent manner [140]. Alto-
gether, both Notch and Wnt pathways are potential mechanisms by which BMDCs could
be regulating ECC at the primary site, accounting for progression and aggressiveness of the
disease. These signaling pathways should be explored in mechanistic studies to determine
their suitability for development of novel therapeutic strategies.

8. Concluding Remarks

In this perspective article, we have offered insights regarding the recruitment of
BMDCs to the endometrium and introduced the concept that these cells may play a role
in survival and dormancy of ECCs. Detailed characterization of BMDCs is needed to
better assess how different cell types homing to the endometrium may contribute to EC
development. Since the role of BMDCs has been extensively studied in BC, a hormone-
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driven disease, we utilized this model (Figure 1A) to propose mechanisms by which BMDCs
modulate EC survival at the primary site (Figure 1B). We hypothesize that intercellular
communication between ECCs and the various BMDC types taking residence within the
endometrium may facilitate disease progression by modulating pathways involved in cell
cycle regulation, resistance to treatment, and stemness (Figure 1B). Future mechanistic
studies must be performed to better understand the crosstalk between BMDCs and ECCs.
Such insights will be critical for the development of targeted effective treatments for EC.
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Figure 1. Proposed mechanisms by which BMDCs promote endometrial cancer cell (ECC) dormancy:
Insights from breast cancer (A) (1) Breast cancer cells (BCCs) metastasize to the bone marrow (BM)
and undergo dormancy acquisition facilitated by secretome exchange with perivascular mesenchymal
stem cells (MSCs). (2) Dormant BCCs exhibit properties of cancer stem cells (CSCs) and establish
residence at the endosteal niche where they interact with stromal cells via gap junction intercellular
communication (GJIC), resulting in dormancy maintenance. (B) (1) BMDCs, including BM-MSCs,
are recruited to the endometrium to potentially initiate ECC dormancy. (2) Mechanistically, we
propose that BM-MSCs may support EC dormancy in two ways. First, (a) BM-MSCs release exosomes
containing miRNAs that may initiate dormancy and (3) de-differentiation of ECCs by regulating
Wnt/Notch signaling. Another mechanism may be via (b) BM-MSC differentiation into eMSC
which, in turn, release exosomes that facilitate ECC dormancy and (3) de-differentiation into CSCs.
Ultimately, de-differentiation of ECCs into CSCs results in resistance to treatment and immune
evasion, allowing the tumor to persist for extended periods.
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