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The pathophysiology and pharmacology of depression are hypothesized to be related
to the imbalance of excitation–inhibition that gives rise to hierarchical dynamics (or
intrinsic timescale gradient), further supporting a hierarchy of cortical functions. On
this assumption, intrinsic timescale gradient is theoretically altered in depression.
However, it remains unknown. We investigated altered intrinsic timescale gradient
recently developed to measure hierarchical brain dynamics gradient and its underlying
molecular architecture and brain-wide gene expression in depression. We first presented
replicable intrinsic timescale gradient in two independent Chinese Han datasets
and then investigated altered intrinsic timescale gradient and its possible underlying
molecular and transcriptional bases in patients with depression. As a result, patients
with depression showed stage-specifically shorter timescales compared with healthy
controls according to illness duration. The shorter timescales were spatially correlated
with monoamine receptor/transporter densities, suggesting the underlying molecular
basis of timescale aberrance and providing clues to treatment. In addition, we identified
that timescale aberrance-related genes ontologically enriched for synapse-related and
neurotransmitter (receptor) terms, elaborating the underlying transcriptional basis of
timescale aberrance. These findings revealed atypical timescale gradient in depression
and built a link between neuroimaging, transcriptome, and neurotransmitter information,
facilitating an integrative understanding of depression.

Keywords: first-episode depression, gene expression profiling, fMRI, intrinsic timescale gradient,
neurotransmitter
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INTRODUCTION

As one of the leading disabling diseases worldwide (Murray
et al., 2012), depression affects approximately 350 million
people each year (Schmaal et al., 2017). Recent studies
point out that imbalance of the excitation–inhibition
(E/I) underlays the pathophysiology and pharmacology
of the depression (Voineskos et al., 2019). Imbalance
of E/I ratio hypothetically results in the aberrance
of hierarchically organized intrinsic neural timescales
(Kiebel et al., 2008) that support synchronizing large-
scale brain networks usually measured with resting-state
functional connectivity (rsFC; Buzsáki and Draguhn,
2004). Accordingly, the intrinsic timescale gradient
is theoretically altered in depression that remains
unknown yet.

The brain regions are hierarchically organized into
increasing polyfunctional neural circuits embodied in
topographic gradients of molecular, cellular, and anatomical
properties (Huntenburg et al., 2018). Emerging through
hierarchically organized feature (Burt et al., 2018) such
as pyramidal cell dendritic spine density (Elston, 2003),
long-range interactions (Wang, 2020), and gene expression
gradients (Fulcher et al., 2019), intrinsic neural dynamics
(or intrinsic timescale gradient) are also hierarchically
organized, supporting a hierarchy of cortical functions
(Kiebel et al., 2008; Hasson et al., 2015). Brain dynamics is
also hierarchically organized along spatial gradients extending
from sensorimotor regions to association cortex (Hasson
et al., 2008) supporting functional communications between
brain regions (Cocchi et al., 2016). Regions with longer
“temporal receptive windows” are subsequently found to
exhibit more slowly changing activity and vice versa (Hasson
et al., 2015). In particular, regions such as prefrontal areas and
parietal areas, densely interconnected central regions, have
longer timescales compared to peripheral sensory areas
(Chaudhuri et al., 2015) for the reason that prolonged
neural timescale is needed to enable these high-order brain
regions to integrate various information for robust sensory
perception (Hasson et al., 2008), stable memory processing
(Bernacchia et al., 2011), and decision-making (Cavanagh
et al., 2016). By developing a large-scale biophysical model,
Chaudhuri et al. (2015) elaborate that intrinsic timescale
gradient depends crucially on recurrent network activity.
Aberrance of neural timescales is supposed to the result of
imbalance of the excitation–inhibition (E/I) ratio (Wengler
et al., 2020). Wengler et al. (2020) find evidence for distinct
hierarchical aberrance in timescale gradient as a function
of hallucination and delusion, supporting glutamatergic
and dopamine theories of psychosis (Corlett et al., 2011;
Jardri et al., 2016). Imbalance of the E/I is also implicated
in the pathophysiology and pharmacology of the depression
(Covington et al., 2010; Voineskos et al., 2019) and the
mechanism of fast-acting antidepressant is related to E/I
rebalance (Li, 2020). Although the intrinsic timescale gradient
should be altered in depression theoretically, it remains
unknown yet.

Brain function such as rsFC is also modulated by genetic
factors (Richiardi et al., 2015; Fornito et al., 2019; Richiardi
et al., 2015) and coupled to neurotransmitters (Stagg et al.,
2014; Kringelbach and Cruzat, 2020). Twin studies show that
functional connectivity within the default-mode network and
topological measures in the human brain are moderate to
highly heritable (Glahn et al., 2010; Fornito et al., 2011;
van den Heuvel et al., 2013). Recently, Allen Human Brain
Atlas (AHBA) (Hawrylycz et al., 2012), a newly proposed
brain-wide gene expression atlas, provides the possibility
of bridging the gap between transcriptome and large-scale
connectome organization (Fornito et al., 2019). Following the
work of Richiardi et al. (2015) where they find that the
transcriptome profile similarity within networks is higher than
that between networks, a number of studies begin to explore the
transcriptional basis of macroscopic neuroimaging phenotypes
(Krienen et al., 2016; Vértes et al., 2016; Anderson et al.,
2018; Li and Seidlitz, 2021). Recently, Zhu et al. (2021) find
that spatial distribution of functional connectivity strength
is modulated by genes enriched for terms such as synaptic
transmission in health (Zhang et al., 2021). In depression,
Li et al. (2021) identify that altered morphometric similarity
network is correlated with transcriptional signatures (Li and
Seidlitz, 2021). In addition, rsFC is found to be coupled
to neurotransmitter transporters/receptors (Stagg et al., 2014;
Kringelbach and Cruzat, 2020). Dysconnectivity in schizophrenia
is linked to altered neurotransmission (Landek-Salgado et al.,
2016; Limongi et al., 2020). Chen et al. (2021) find that
abnormal functional topography of brain networks is associated
with the dopaminergic and serotonergic systems underlying
cognitive decline in schizophrenia by investigating the molecular
architecture facilitating a link to treatment. The variation
of timescales is hypothesized to arise from local biophysical
properties of neurons across the cortical hierarchy, such as
the density of glutamate receptors, calcium channels, and
regulators of synaptic depression and facilitation (Zucker and
Regehr, 2002; Wong and Wang, 2006). Investigating the
molecular and transcriptional basis of altered intrinsic timescale
gradient in depression helps to advance our understanding
of how alterations at microscale architecture drive macroscale
neuroimaging aberrance in depression.

In this study, we aimed to explore altered intrinsic timescale
gradient and its underlying molecular and transcriptional
signatures bridging the gap between molecular mechanism
and macroscopic neuroimaging phenotypes in depression.
First, we presented replicable landscape of intrinsic
timescale gradient and its association with commonly
used functional indicators including amplitude of low-
frequency fluctuation (ALFF) and functional connectivity
density (FCD) in two independent Chinese Han cohorts.
Second, we investigated altered intrinsic timescale gradient
in different stages of depression according to illness duration.
Third, we inquired molecular and transcriptional basis of
altered intrinsic timescale gradient in depression. Fourth,
a functional enrichment analysis was performed to inquire
ontological pathways of timescale aberrance-related genes
in depression.
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MATERIALS AND METHODS

Datasets
Two independent Chinese Han datasets were used in this study.
The first dataset come from the Southwest University Adult
Lifespan Dataset (SALD) study including 494 healthy participants
(female: male, 308:187, 19–80 years old). The second dataset
included 121 HCs and 191 patients with depression. The resting-
state functional MRI data were acquired and preprocessed
using Data Processing & Analysis for Brain Imaging (DPABI)1

(Yan et al., 2016). The details about dataset description, scan
acquisition, and preprocessing procedures were included in
Supplementary Methods. The study was approved by the
research ethical committee of the First Affiliated Hospital of
Zhengzhou University.

Calculation of Timescales and Its
Association With Functional Connectivity
Density and Amplitude of
Low-Frequency Fluctuation
Based on previous studies (Watanabe et al., 2019; Raut and
Snyder, 2020), we calculated intrinsic neural timescales by
calculating the magnitude of autocorrelation of the resting-
state brain signals. There were two different definitions of
timescales. First, the timescale was defined as the sum of positive
autocorrelation function (ACF) values and then multiplied by the
repetition time (TR) (Watanabe et al., 2019). The results reported
in the next steps were based on this definition. The second was
defined as the half of the full width at half maximum of the ACF
(Raut and Snyder, 2020). To inquire the relationship between
these two definitions, spatial correlation was obtained between
the two mean timescale maps across healthy subjects in dataset 1
and healthy subjects in dataset 2, respectively. In addition, we also
compared spatial correlation between the altered timescale maps
of depression using these two definitions (see below).

As a newly proposed index, factors affecting landscape
of timescales remained unclear. To explore these factors, we
investigated whether factors such as gender (female vs. male),
age, motion movement, and education level could affect intrinsic
timescale gradient (Supplementary Methods). The timescales
were calculated using custom MATLAB code publicly available
at https://github.com/RaichleLab.

To intuitively elucidate the intrinsic timescale gradient
measured, we inquired the association between intrinsic
timescale gradient with other common functional indexes
such as ALFF and FCD. For FCD maps, local, long-range, and
global FCD maps were calculated (Tomasi and Volkow, 2010)
where correlation threshold was determined by significance of
single functional connection (p-value). A functional connection
(correlation coefficient) was considered significant if its
p < 0.05 (Bonferroni corrected). The obtained FCD maps were
transformed to z-scores by subtracting the mean value and
dividing by the standard deviation across gray matter voxels.
The ALFF maps were calculated using resting-state functional

1http://rfmri.org/dpabi

magnetic resonance imaging data processing toolbox (REST)
(Song et al., 2011), and normalized ALFF maps (dividing the
mean value across gray matter voxels) were chosen for the
following steps.

Dominance analysis was used to quantify the association
between mean FCD (including local, long-range and global
FCD), and mean ALFF maps to landscape of timescales
across healthy subjects in each dataset (Budescu and David,
1993; Azen and Budescu, 2003).2 The details are provided in
Supplementary Methods.

All of the above analysis steps were done in the discovery
cohort (dataset 1) and validated in the replication cohort (HCs
of dataset 2); results reported were based on the discovery cohort,
unless stated otherwise.

Altered Intrinsic Timescale Gradient in
Depression
Then, we explored whether intrinsic timescale gradient was
altered in depression. The altered timescale was obtained
by using two-tailed two-sample t-test equipped in SPM 12
where gender, age, mean FD, SNR0, and educational level
were included as covariates. To explore whether aberrance
of intrinsic timescale gradient was stage-dependent for the
reason that mental disorders were found to present progressive
brain structural alterations (Koutsouleris et al., 2014; Treadway
et al., 2015; Cao et al., 2017; Zhang et al., 2017; Yüksel
et al., 2018), patients with depression were further divided
into three stages according to illness duration (Stage 1:
0 ≤ illness duration ≤12 months; Stage 2: 12 <illness
duration ≤24 months; Stage 3: illness duration ≥24 months).
Moreover, we also compared timescales in patients whose
illness duration is less than 3/6 months to inquire whether
timescale aberrance emerged from the beginning of the disease.
Results reported in this study were corrected for multiple
comparison (voxel-wise p < 0.001, cluster-level p < 0.05;
GRF correction). To further explore the relationship between
two definitions of timescales, the same statistical procedures
were done in the second definition of timescales (half
maximum of the ACF).

Spatial Correlation Between Altered
Timescales of Depression With
Receptor/Transporter Densities
To explore association between depression-induced changes in
timescales and expression of a specific receptor/transporter,
we evaluated the spatial relationship between altered
timescales and the distribution of receptors/transporters.
The timescale difference map was spatially correlated with
PET/SPECT maps in JuSpace toolbox3 (Dukart et al., 2021).
The default neuromorphometrics atlas excluding white matter
and cerebrospinal fluid regions was used. Dopamine (D1
and D2), serotonin receptors (5-HT1a, 5-HT1b, and 5-
HT2a), transporters (dopamine transporter and serotonin

2https://github.com/dominance-analysis/dominance-analysis
3https://github.com/juryxy/JuSpace
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reuptake transporter 5-HTT), F-DOPA (a reflection of
presynaptic dopamine synthesis capacity), the GABAergic
receptor, and the noradrenaline transporter (NAT) were
investigated. The correlation results were adjusted for spatial
autocorrelation of local gray matter probabilities, and the
significance of results was computed using permutation
statistics (Dukart et al., 2021). To exclude the effect of
atlas choice on our results, we used another two atlas (268
and 246 regions) (Shen et al., 2013; Fan et al., 2016) to
validate these results.

What is more, to inquire whether the association
with receptor/transporter densities was specific to altered
timescales, we calculated spatial correlation between ALFF
differences of depression with PET/SPECT maps using default
neuromorphometrics atlas. The ALFF was chosen for the reason
that it was widely used in resting-state fMRI studies.

Cortical Gene Expression Related to
Altered Timescale of Depression
Inspired by a previous study (Reardon and Seidlitz, 2018),
we ranked genes based on the spatial correlation between
gene expression pattern and the voxel-wise unthresholded
t-statistic map of timescale difference in depression. The
gene expression data come from theAHBA4 (Hawrylycz et al.,
2012), obtained from six adult human brains (Hawrylycz
et al., 2012). Details and preprocessing procedures of AHBA
were included in Supplementary Methods. The preprocessed
AHBA used in this study comes from the Brain Annotation
Toolbox (BAT)5 (Liu et al., 2019). Because only two right
hemisphere data were included in the AHBA, we only considered
the left hemisphere in our analysis (Arnatkeviciute et al.,
2019). The correlation results were considered significant if
|r| > 0.2 and p < 0.05 (FWE corrected). Finally, the
positive and negative correlation gene lists were identified with
timescale aberrance.

Enrichment Pathways Associated With
Altered Timescales of Depression
We performed the gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways with the genes
presenting significant spatial correlation with altered timescales
of depression using Metascape (Zhou et al., 2019). Results
reported here were corrected by the FDR (p < 0.05). This
procedure was done in positive and negative correlation
genes separately.

As done in a previous study (Li and Seidlitz, 2021), we
further investigated shared enrichment terms between previously
reported polygenic risk for depression and the timescale-related
gene list (Wray et al., 2018; Howard and Adams, 2019). A multi-
gene list meta-analysis was carried out between the timescale
aberrance-related gene list and the gene list provided by these
two studies.

4http://human.brain-map.org/
5https://istbi.fudan.edu.cn/lnen/info/1173/1788.htm

RESULTS

Clinical Demographics
The clinical demographics of subjects in dataset 1 and dataset 2
are included in Supplementary Tables 1, 2.

The Landscape of Resting-State
Timescales and Its Association With
Functional Connectivity Density and
Amplitude of Low-Frequency Fluctuation
The mean timescale maps across healthy subjects in dataset 1 and
dataset 2 are drawn in Figure 1. In accordance with a previous
study (Watanabe et al., 2019), both dataset 1 and dataset 2 (only
HCs) presented similar whole-brain patterns of timescales with
longer timescales in frontal and parietal cortices and shorter
timescales in other regions such as sensorimotor and visual
areas (Figure 1). The spatial correlation between dataset 1 and
dataset 2 (only HCs) was r = 0.783 (p < 0.05, permutation test).
As there were two definitions of timescale, we calculated the
spatial correlation between mean maps of the two definitions
in dataset 1 and dataset 2 (only HCs). The landscapes of these
two definitions were in good agreement (dataset 1, r = 0.961,
p < 0.05 for permutation test; dataset 2, r = 0.893, p < 0.05
for permutation test) (Supplementary Figure 2). We observed
significantly negative correlation between age and timescales
only in dataset 1 (Supplementary Figure 3), suggesting that
the timescales might be related to normal brain aging; results
of HCs in dataset 2 were not significant, possibly due to the
limited sample size. In addition, timescales in regions such as
the left inferior temporal gyrus, sensorimotor cortex, and left
middle frontal gyrus presented significantly negative correlation
with educational level stating its potential role in the landscape of
educational level in HCs of dataset 2 (Supplementary Figure 4).

Then, we assessed the association between intrinsic timescale
gradient with common resting-state functional indexes including
FCD and ALFF using dominance analysis. Results revealed the
relative importance of each predictor (collective R2 = 0.4528,
long-range FCD = 29.19%, global FCD = 27.64%, local
FCD = 16.05%, ALFF = 27.11%), suggesting that long-range
and global FCD contributed the most to intrinsic neural
timescales. These results were validated in HCs of dataset 2
(Supplementary Table 3).

Altered Timescales in Depression
Overall, there was no significant aberrance of timescales in
patients with depression across stages according to illness
duration. Whereafter, we investigated altered timescales in
patients at different stages according to illness duration.
Timescales in patients with depression presented stage-specific
aberrance. In particular, patients presented shorter timescales
in regions including right anterior insula extending to right
putamen only at the first stage (<12 months). To further explore
whether this aberrance occurred at disease onset, we investigated
timescale aberrance in patients with shorter illness duration
(<3/6 months). Regions such as ventral medial prefrontal cortex
vmPFC/subgenual PFC, dorsal ACC, dorsal lateral PFC, the
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FIGURE 1 | The landscape of timescales and its association with ALFF and FCD. The “r” meant the spatial correlation between mean timescales maps in dataset 1
and dataset 2. The number in the dominance results meant the percentage of ALFF/FCD contributing to timescales where higher number meant higher association
with timescales.

bilateral nucleus accumbens (NAcc), the striatum, and the
bilateral insula presented decreased timescales in patients with an
illness duration of less than 3/6 months. With the prolongation of
the disease course, the timescale alterations gradually faded away
(Figure 2 and Supplementary Table 4). In addition, to further
explore the relationship between two definitions of timescales, the
same statistical procedures were done in the second definition
of timescales (half maximum of the ACF), and the results are
included in Supplementary Figure 5. These results confirmed
good consistency of altered intrinsic timescale gradient with
different definitions.

To exclude the possibility that the gradual reduction of
timescales resulted from the samples used in the current
study, we also inquired whether another functional index
also presented stage-specific aberrance. For the reason
mentioned above, ALFF was chosen. As a result, patients
with depression did not present gradual ALFF aberrance in
depression (Supplementary Figure 6).

Relationship to Receptor/Transporter
Densities
Altered timescales were significantly correlated (p < 0.05 for
permutation, FWE corrected) with seven receptor/transporter
densities (Figure 3 and Supplementary Table 5) including
5-HT2a (5-HT subtype 2a), D1 (dopamine D1), DAT
(dopamine transporter), F-DOPA (dopamine synthesis capacity),

NAT (noradrenaline transporter), and SERT (serotonin
transporter). These results were validated with a different
brain atlas (Figure 3). In addition, to explore whether the
correlation results were specific to altered timescales, we
also calculated spatial correlation between ALFF differences
of depression with receptor/transporter densities using
default neuromorphometrics atlas. As a result, there was no
significant spatial correlation between ALFF aberrance and
receptor/transporter densities, hinting that the association was
specific to timescale aberrance in depression.

Note: 5-HT1a, 5-HT subtype 1a; 5-HT1b, 5-HT subtype
1b; 5-HTaa, 5-HT subtype aa; D1, dopamine D1; D2,
dopamine D2; DAT, dopamine transporter; F-DOPA, dopamine
synthesis capacity; NAT, noradrenaline transporter; SERT,
serotonin transporter.

Cortical Gene Expression Related to
Altered Timescales in Depression
As timescales presented stage-specific aberrance and the
differences faded away as the progression of illness in
depression, we calculated the spatial correlation between gene
expression with timescale differences in patients with an illness
duration of less than 3 months (see before). As a result,
865/264 genes presented positive/negative correlation with the
unthresholded timescale differences in patients with depression
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FIGURE 2 | Stage-specific aberrance of timescales in depression.

whose illness duration was less than 3 months (see section
“Supplementary Methods”).

Enrichment Pathways Associated With
Altered Timescales of Depression
We performed the GO biological processes and KEGG
pathways with the associated gene lists obtained in the
previous step using Metascape. The top 30 significant GO
biological processes, such as “Trans-synaptic signaling,” “synapse
signaling,” “synapse organization,” “dendrite development,” and
“cognition,” and one KEGG pathway, “cGMP-PKG signaling
pathway,” were identified (Figure 4) for the positive correlation
gene list. Regulation of neurotransmitter receptor activity
such as “glutamatergic synapse,” “dopaminergic synapse,”
“glutamate receptor signaling pathway,” and “regulation of
neurotransmitter secretion” was also identified (see section
“Supplementary Methods”). These enrichment terms were
clustered into clusters such as synaptic signaling, synapse
organization (e.g., dendritic spine morphogenesis and dendrite
development), regulation of transmembrane transport, and head
development (e.g., hippocampus development and limbic system
development) (Figure 4).

Then, we investigated shared enrichment terms between
the previously reported polygenic risk for depression and the

positive correlation gene list by performing a multi-gene list
meta-analysis (Zhou et al., 2019). As a result, we found 11
common pathways. The enrichment pathways included “synaptic
signaling,” “synapse organization,” “cell–cell adhesion via plasma
membrane adhesion molecules,” and “dendrite development”
(Supplementary Figure 7).

DISCUSSION

In this study, we investigated altered intrinsic neural timescale
gradient in patients with depression and its possible underlying
molecular and transcriptional signatures. Timescales presented
stage-specific aberrance in depression. Specifically, patients at
the beginning of illness (illness duration <3 months) presented
shorter timescales in regions including vmPFC, ACC, the
bilateral nucleus accumbens (NAcc), the striatum, and the
bilateral insula. As the illness advanced, the difference faded away
(disappeared when illness duration ≥12 months). Moreover,
the shorter timescales at the beginning of depression were
associated with receptor/transporter densities including 5-HT2a,
D1/2, DAT, F-DOPA, NAT, and SERT, suggesting the underlying
molecular basis of timescale aberrance and providing clues to
treatment. Then, we identified timescale aberrance-related genes
ontologically enriched for synapse-related and neurotransmitter
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FIGURE 3 | The association between timescale aberrance with receptor/transporter densities. The “*” represented that the correlation was significant (p < 0.05 for
permutation, FWE corrected).

(receptor) terms elaborating the underlying transcriptional basis
of timescale aberrance. These findings revealed atypical intrinsic
timescale gradient in depression and bridged the gap between
neuroimaging, transcriptome, and neurotransmitter information
facilitating an integrative understanding of depression.

Stage-Specifically Shorter Intrinsic
Timescales in Depression
Patients with depression presented stage-specifically shorter
timescales according to illness duration in regions including

vmPFC, ACC, the bilateral NAc, the striatum, and the bilateral
insula. The shorter timescales were only observed in patients
with illness duration less than 12 months and then faded away
as illness advanced. Converging lines of evidence confirmed that
depression was a neuroprogressive illness (Kendler et al., 2001;
Moylan et al., 2013); the morphometric alteration of critical brain
regions was related to illness progression information (such as
illness duration) (Frodl et al., 2003; McKinnon et al., 2009; van
Eijndhoven et al., 2009; Alexander-Bloch et al., 2013; Chen V.
C. et al., 2016). Consistent with this notion, we observed stage-
specifically shorter timescales in patients with illness duration
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FIGURE 4 | Functional enrichment of gene transcripts. (A) Top 30 enrichment terms of positive correlation genes. The size of the circle represented the number of
genes enriched in a given term. The color bar represented the significance of a given term. (B) Metascape enrichment network visualization. Each term was
represented as a circle node where its size is proportional to the number of genes enriched in the term and its color represented cluster identify.

less than 12 months, and even 3 months, suggesting that shorter
timescales occurred at the beginning of the disease. In our
previous study, we identified that higher brain age was also stage-
dependent (Han et al., 2021). This stage-specific aberrance might
explain inconsistent findings in depression (Chen Z. et al., 2016).

Note that the insignificant timescale aberrance in patients with
longer illness duration did not necessarily mean the remission
of depression for the reason that we did observe a significant
difference in the total score of HAMD (p = 0.139, F = 2.00)
across stages. Regions presenting shorter timescales were found
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to be related to blunted processing of incentive salience, weak
reward source memory, and reinforcement learning underlying
the anhedonia in depression (Whitton et al., 2015; Alloy et al.,
2016; Han et al., 2020). The shorter timescales of these regions
might be associated with inefficient responsiveness to rewards
in depression (Whitton et al., 2015; Alloy et al., 2016). On the
other hand, dorsal lateral PFC, subgenual PFC, and dorsal ACC
belonged to dorsal systems inhibiting amygdala activity in the
unstressed state (Phillips et al., 2008). The reduced neuronal
size and diminished dendritic arborization in the dorsal system
were found in depression (Jaako-Movits et al., 2006; Drevets
et al., 2008). The chronic stress could affect the gene expression
of monoamine (serotonin)-glutamate/GABA and subsequently
affected the E/I balance (Dygalo et al., 2020). Consistent with
some ideas, we identified the shorter timescales in the dorsal
system resulting from imbalance of the excitation–inhibition
(E/I) ratio (Wengler et al., 2020), suggesting the inability of
the dorsal system to regulate stress response in depression
(Phillips et al., 2008).

There were two possible interpretations for the stage-
dependent timescale alteration in depression. First, this
phenomenon might mirror the transition from a clinically
unstable period, with large variability in functioning, to a
relatively stable period, when patients have reached a plateau
in functioning (Davidson and McGlashan, 1997; van Haren
et al., 2003). Another possible interpretation was that shorter
timescales might be associated with primal brain dysfunction
in depression. Here, we preferred the latter one. Multimodal
lines of evidence convergently indicated that depression
was a neuroprogressive illness (Kendler et al., 2001; Moylan
et al., 2013). Even patients with depression suffering from
only one depressive episode also displayed characteristics
of a progressive illness (Moylan et al., 2013). As the disease
prolonged, brain tissue damage and physiological functioning
gradually changed, which underpinned symptomatology and
functional decline over time (Moylan et al., 2013). Our previous
results (under review) revealed that progressive morphological
alteration might originate from regions like vmPFC and then
expand to other regions in depression. Similar progressive
morphological alterations such as advanced illness were observed
in schizophrenia (Jiang et al., 2018), epilepsy (Zhang et al.,
2017), and generalized anxiety disorder (Chen et al., 2020).
The original dysfunction might be of great significance to the
pathogeny and the treatment of depression. Actually, early
treatment of patients with depression is usually accompanied
with better outcome of antidepressant treatment and remission,
and the reverse was also true. For example, a longer duration
of untreated illness was reported to have an unfavorable effect
on the subsequent course of the illness (e.g., higher number
of recurrences) (Altamura et al., 2007, 2008; Li et al., 2021).
A shorter duration of untreated illness was related to better
remission of depression and somatic symptoms (Bukh et al.,
2013). On the other hand, a longer duration of untreated
illness was found to be associated with a greater severity and
a lower improvement percentage (Hung et al., 2015; Kraus
and Kadriu, 2019). What is more, we found that the stage-
specific aberrance might be specific to an intrinsic timescale

and did not result from the sample used in the current study.
In summary, the shorter timescales at the beginning of disease
might reflect initial functional aberrance and mean a lot to
subsequent treatment.

Molecular Architecture of the Shorter
Timescales
To explore the potential neurophysiological mechanism
underlying the shorter timescales observed in depression helping
to facilitate a link to treatment (Chen et al., 2021), we calculated
spatial correlation between maps of a variety of neurotransmitter
systems with that of timescale aberrance (Dukart et al., 2021). In
line with the monoamine hypothesis (Liu et al., 2018), shorter
timescales were associated with monoamine neurotransmitters
including serotonin, noradrenaline, and dopamine at the same
time. It was not unexpected that the timescale differences were
associated with serotonin and noradrenaline neurotransmissions
because of their fatal roles in pathogenesis (Hamon and Blier,
2013) and the first-line treatment of depression by inhibiting
the action of the serotonin/noradrenaline transporter to reduce
reuptake of serotonin/noradrenaline (Pirker et al., 1995).
Consistent with studies showing that 5-HT2a and SERT were
decreased in patients with depression (Kambeitz and Howes,
2015; Steinberg et al., 2019), we observed that the substrate
of timescale differences might be related to 5-HT2a and
SERT. The reason might be that the 5-HT2A receptors have
both excitatory and inhibitory roles underlying the potential
biological mechanism of timescale hierarchies (Chaudhuri
et al., 2015). The association between SERT binding and rsFC
(Beliveau et al., 2015) and dysfunction of SERT binding could
result in altered functional connectivity in depression (Han
et al., 2019) followed by altered timescales in depression. In
addition, we found that the timescale aberrance might be also
related to dopaminergic neurotransmission. Dopaminergic
neurotransmission playing an essential role by rewarding
prediction error (Hollerman and Schultz, 1998; Bayer and
Glimcher, 2005) and mediating motivational drive by the
attribution of incentive salience to reward-related stimuli
(Berridge, 2007) was also related to anhedonia and amotivation
in depression (Mayberg et al., 2005). Reduced DAT density in
the central and basal nuclei of the amygdala was found in a post-
mortem study (Klimek et al., 2002). The association between
timescale differences with dopaminergic neurotransmission
suggested that shorter timescales of these regions might result
in inefficient responsiveness to rewards (Whitton et al., 2015;
Alloy et al., 2016). Engaging additional targets (e.g., DA) could
help patients with residual symptoms and treatment-resistant
depression (Blier, 2016). Combining with these findings, our
results revealed the role of dopaminergic neurotransmission
in timescale aberrance. What is more, the validation results
confirmed the robustness (selection of different atlas) and
specificity (Compared with ALFF) of association between
timescale aberrance and neurotransmitter information. These
results suggested a potential neurophysiological mechanism
underlying the shorter timescales observed in depression,
providing clues to treatment.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 826609

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-826609 February 12, 2022 Time: 16:50 # 10

Han et al. Altered Timescale in Depression

Altered Timescale-Related Gene
Expressions Enriched for Functional
Annotations
We identified genes whose expression pattern presented
significantly spatial (positive/negative) correlation with timescale
aberrance and their ontology terms elaborated the underlying
transcriptional basis of timescale aberrance. Consistent with the
monoamine hypothesis in depression (Liu et al., 2018), positive
correlation genes related to timescale difference were significantly
enriched in monoamine neurotransmitter-related GO biological
processes/KEGG pathways including neurotransmitter secretion,
transport, and receptor activity/complex. These results
corresponded with the aforesaid findings about monoamine
aberrance, suggesting transcriptional mechanisms of association
between timescale difference and monoamine neurotransmitters.
In recent years, the synaptic dysfunction hypothesis that
depression was caused by disruption of homeostatic mechanisms
controlling synaptic plasticity (Duman and Aghajanian, 2012)
has been proposed in consideration of the moderate and delayed
effectiveness of the widely prescribed serotonin selective reuptake
inhibitors (SSRIs) (Trivedi et al., 2006) and rapid antidepressant
actions of ketamine in treatment-resistant depressed patients
(Berman et al., 2000; Zarate et al., 2006). Deficits of excitatory
glutamate neurons and inhibitory GABA interneurons resulted
in the vulnerability of these major neurotransmitter systems
followed by dendritic atrophy and spine loss in neurons of the
hippocampus and prefrontal cortex (Qiao et al., 2016; Duman
et al., 2019). Dendrite complexity and synaptic density can also
be increased after treatment with antidepressants (Li et al., 2010;
Li et al., 2011; MacQueen and Frodl, 2011). In our study, the
timescale difference-related genes were enriched in terms of
the charge of the balance of excitation and inhibition including
glutamatergic synapse, transmission, receptor signaling pathway,
GABAergic synapse, regulation of NMDA receptor activity, and
G protein-coupled receptor signaling pathway. In fact, the spatial
correlation (p = 0.024 uncorrected) between timescale aberrance
and GABAa (gamma-aminobutyric acid) was also observed in the
current study. These results elaborated possible transcriptional
basis underlying the altered intrinsic timescale gradient in
depression and provided new lines of evidence supporting the
synaptic dysfunction hypothesis. In addition to the overlapping
ontology terms with that in GWAS in depression, the multi-gene
list results stated that timescale difference-related genes were
reliable and sensitive, providing additional function-related
enrichment information for depression.

There were several limitations to be considered. First, the
timescale differences were obtained on a single dataset. However,
the stage-specific aberrance was also observed in accelerated
brain aging GMV in our previous study and might not result
from sample selection (Han et al., 2021). Second, there was
a substantial variation across subjects reflecting the individual
susceptibility of specific receptor systems (Dukart et al., 2021);
future studies should use simultaneous PET and MRI to provide
more direct evidence. Third, patients enrolled in our study were
under a depressive state. Whether the timescale difference was
differently altered in various mood states, such as remitted state

(Rive et al., 2015), could be tested in further studies. Fourth,
only cross-sectional data were included in this study, and future
studies could explore whether altered intrinsic timescale gradient
returned to normal with antidepressant treatment especially for
fast-acting antidepressants (Li, 2020).

CONCLUSION

This study revealed atypical intrinsic timescale gradient for the
first time. In virtue of brain-wide gene expression and molecular
imaging atlases, we investigated possible underlying molecular
and transcriptional basis of timescale aberrance linking
transcriptome, neurotransmitter information, and neuroimaging
findings in depression. These results consistently supported the
synaptic dysfunction hypothesis and promoted an integrative
understanding of hierarchical dynamics aberrance in depression.
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