ORIGINAL ARTICLE

OPEN

Application of the Risk Stratification Index to
Multilevel Models of All-condition 30-Day Mortality
in Hospitalized Populations Over the Age of 65

Vikas Saini MD and Valérie Gopinath, MS

Background: The Risk Stratification Index (RSI) is superior to
Hierarchical Conditions Categories (HCC) in patient-level re-
gressions but has not been applied to assess hospital effects.

Objective: The objective of this study was to measure the accuracy
of RSI in modeling 30-day hospital mortality across all conditions
using multilevel logistic regression.

Subjects and Data Sources: A 100% sample of Medicare inpatient
stays from 2009 to 2014, restricted to patients greater than 65 years of
age in general hospitals, resulting in 64 million stays at 3504 hospitals.

Research Design: We calculated RSI and HCC scores for patient stays
using multilevel logistic regression in 3 populations: all inpatients,
surgical, and nonsurgical. Correlations of risk-standardized mortality
rates with rates of specific case types assessed case-mix balance. Patient
stay volume was included to assess smaller hospitals.

Results: We found a negligible correlation of all-conditions risk-
standardized mortality rates with hospitals’ proportions of orthope-
dic, cardiac, or pneumonia cases. RSI outperformed HCC in multi-
level regressions containing both patient and hospital-level effects.
C-statistics using RSI were 0.87 for the all-inpatients group, 0.87 for
surgical, and 0.86 for nonsurgical stays. With HCC they were 0.82,
0.82, and 0.81. Akaike Information Criteria and Bayesian In-
formation Criteria values were higher with HCC. RSI shifted 41% of
hospitals’ rankings by > 1 decile. Hospitals with smaller volumes
had higher 30-day observed and standardized mortality: 11.2% in the
lowest volume quintile versus 8.5% in the highest volume quintile.

Conclusion: RSI has superior accuracy and results in a significant
shift in rankings compared with HCC in multilevel models of 30-day
hospital mortality across all conditions.
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To ensure fair comparisons of hospital performance, ad-
equate risk adjustment remains an important goal. The
Risk Stratification Index (RSI), a machine algorithm that
exploits the structure of the International Classification of
Diseases (ICD) coding system to enhance the signal and re-
duce noise, substantially captures available information and
yields robust, stable results at the patient level with accuracy
superior to Hierarchical Condition Categories (HCC) methods
and neural network models.!™

RSI has not been assessed for hospital-level performance,
where multilevel techniques are necessary to avoid confounding
of within- and between-hospital effects.®” Most hospital evalu-
ations, including CMS Hospital Compare, apply multilevel re-
gressions using clinical groupings within specific conditions®!!
and variably include hospital characteristics such as volume and
staffing.>>13 While condition-specific evaluations can support
improvement efforts, the use of all-conditions populations with
adequately overlapping case-mix'* would theoretically provide
greater insights into global hospital treatment effects.

The incorporation of diagnosis codes as risk adjusters in
hospital ranking may improve performance.'>'” Because RSI
efficiently incorporates large numbers of such codes, our 2
specific objectives were: (1) to assess its utility for measuring
a hospital global effect by applying it to all-conditions
populations; and (2) to compare its overall performance with
HCC using identical methods. To do this we applied multilevel
models with both patient-level risk as well as fixed and random
hospital-level effects to broad classes of inpatients and inves-
tigated any residual correlation of the risk-standardized mortality
(RSMR) rates with hospital rates of specific case types.

METHODS

Under a Data Use Agreement with the Center for Medi-
care and Medicaid Services, > 106 million patient stay records
from the 2009 to 2014 Medicare Analysis Provider and Review
(MEDPAR) files (100% sample) served as the universe of our
modeling datasets. The MEDPAR file contains fee-for-service
claims data from Medicare-certified inpatient hospitals and
skilled nursing facilities. Patient-level data include age, sex, race,
provider information, and up to 25 fields for the International
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TABLE 1. Data Summary

Total number of MEDPAR Patient stays 2009-2014: 106.3 million

1
After applying hospital selection criteria* and age > 65: 65.4 million

Minimum 50 stays annually: 65.4 million patient stays at 3706 hospitals

Restrict to AHA Primary Service Code 10 “General medical and surgical”
and exclude hospitals defined by MedPAC as specialty
64.0 million patient stays at 3504 hospitals

# of inpatient 50% random

Patient stay category  # of hospitals stays sample

All patients 3504 64.0 million 32.0 million
(100%)

Surgical 3478 37.8 million 18.9 million
(59.0%)

Nonsurgical 3502 26.2 million 13.1 million
(41.0%)

*Acute care and critical access hospitals in 50 US States.
AHA indicates American Hospital Association; MedPAC, Medicare Payment Ad-
visory Commission; MEDPAR, Medicare Analysis Provider and Review.

Classification of Diseases, Ninth Revision (ICD-9) diagnosis
codes, and up to 25 procedure codes, each with an associated
present on admission (POA) code indicator.'31° Table 1 shows
the summary of MEDPAR records we used for this analysis.
Patients under 65 years of age were excluded. We randomly
split the data into 50% for model development and 50% holdout
and within each identified 3 populations of interest: all-inpatient
stays, surgical stays, and nonsurgical stays.

Hospital Selection

Excluding skilled nursing facilities, we included hos-
pitals within the 50 US states and the District of Columbia
classified as Short-Term General hospitals or Critical Access
by CMS (see Fig., Supplemental Digital Content 1, which
shows the flow chart of our hospital selection process, http://
links.lww.com/MLR/C249).

Defining General Hospitals and Addressing
Case-mix Variation

We sought to study general rather than specialty hos-
pitals, given the substantial differences in case-mix and
a priori patient risk between those 2 types.

In preliminary work, we found specialty orthopedic
hospitals had lower observed and expected mortality rates
(data not shown). While specialty hospitals may have lower
mortality compared with community hospitals,?’ we were
concerned that this could reflect case selection for elective
procedures, and unfairly overestimate their expected mortality
from a national regression of all inpatients. This would result
in superior risk-adjusted mortality at the hospital level even
after patient-level adjustment, effectively importing the eco-
logic fallacy into rankings.?!-??

To reduce variation in case-mix, we restricted our
analysis to General Medical and Surgical Hospitals in the
American Hospital Association (AHA) database. We then
applied previously published Medicare Payment Advisory
Commission (MedPAC) criteria®®?3 to identify any hospitals

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

with a specialty case-mix despite AHA classification and
excluded them. We developed a data reduction tool for case-
mix adjustment using factor analysis>»?> on “Base-DRGs”
(see Text, Supplemental Digital Content 2, which details the
case-mix factor analysis, http://links.lww.com/MLR/C250) to
assess the impact on hospital performance. Using the 50%
model development sample, we performed separate multi-
level logistic regressions estimating 3 models, one for each
population (all-inpatient, surgical, nonsurgical) against the
outcome of interest, 30-day mortality.

Multilevel Regression Modeling

Model Development

The RSI method calculates the risk posed by comorbid-
ities jointly with the risk of any associated procedure. Diagnosis
and procedure codes [International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM)] generate an
optimum covariate set for modeling endpoints. The codes are
hierarchical, permitting a roll-up algorithm to assign them to a
higher level when the sample size is insufficient. The algorithm
collapses codes into binary indicators (0 or 1) to create a can-
didate covariate set. This process is detailed in previous RSI
publications'3 (see Fig., Supplemental Digital Content 3, which
shows the flow chart, http:/links.lww.com/MLR/C251). We
restricted our analysis to POA codes, excluding those added
during hospitalization to avoid contamination that might reflect
hospital performance.

Adjustments for Hospital Volume

Estimates of mortality rates in low-volume hospitals are
subject to greater sampling error, reducing the confidence of
estimates. As a result, estimates of the performance of low-
volume hospitals are “shrunken” toward the national mean,
making it difficult to determine both high-performing and low-
performing low-volume hospitals. Others have shown that in-
cluding volume improves mortality estimates for low-volume
hospitals,5 and we, therefore, included it as a covariate.’ To
ensure sufficient representation of small volume hospitals we
examined hospitals that performed surgeries during 2009-2014
(n=4231). From their distribution of patient stay volume, we
identified a minimum of 50 admissions per year would include
87.6% of hospitals and 99.4% of patient stays. We selected this
cutoff point (see Fig., Supplemental Digital Content 4, for dis-
tribution of patient hospital stay volume in hospitals, http://links.
Iww.com/MLR/C252). When we used a minimum of 250 ad-
missions per year only 2362 hospitals (55.8% of hospitals,
93.2% of patient stays) were included.

We created a 2-level logistic regression model for 30-day
mortality. Level 1 effects included patient conditions, age, and
sex. Level 2 effects included hospital volume quintile and
hospital random intercept. The candidate covariate set included
1827 diagnosis codes derived from the truncation and roll-up
algorithm. Before estimating the multilevel model, we used a
forward stepwise selection process with relaxed inclusion cri-
teria (P <0.001 for covariate addition and P <0.0005 to avoid
covariate removal). These criteria were selected to allow the
largest number of likely variables to be identified. We then
estimated a multilevel model with covariates further selected
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based on their statistical significance. The criterion for the final
iteration of the algorithm (P < 107°) was selected after examin-
ing the output and identifying a threshold below which the
highly significant variables were clustered. In the final model,
comorbidity variables not meeting a significance threshold of
P-value <107° were eliminated.

Models were estimated from the 50% model develop-
ment sample. We used samples of 1.5 million for all-inpatient
and nonsurgical populations and 2 million for surgical. An
RSI score for each patient was then developed from the es-
timated regression coefficients representing the log odds for
30-day mortality. Similarly, an HCC score was derived from
the regression coefficients for HCC. Our final models in-
cluded a range of 120-300 variables from the selected diag-
nosis and procedure codes, age, sex, hospital volume quintile,
and hospital intercept.

To assess the effects of patient-level and hospital-level
case-mix on model performance and rankings, we ran an
identical set of models adding case-mix adjustment using the
factor analysis (see Text, Supplemental Digital Content 2,
showing the case-mix factor analysis, http://links.lww.com/
MLR/C250). Patient-level case-mix did not contribute to
model performance in early iterations. We then focused on
case-mix as a hospital-level fixed effect by calculating the
percent of cases in each factor and examined the impact on
model performance and resulting RSMRs.

To assess residual case-mix bias, we examined the
correlations of RSMRs with hospital-specific rates of ortho-
pedic, cardiac, and pneumonia cases both with and without
adjustment by the case-mix factors.

Application of Risk Stratification Index and
Hierarchical Condition Categories to Hospital
Performance Evaluation

After calibration, the predicted mortality scores for each
patient stay were aggregated to create predicted (P) and ex-
pected (E) mortality rates for both RSI and HCC models. P
was the predicted mortality for the patients of a given hospital
obtained from the multilevel model based on patients’ con-
ditions, age, sex, hospital random intercept, hospital volume
quintile, and in the second set of models, case-mix factors; E
was the expected mortality for the patients of that hospital
obtained from ordinary logistic regression using only patient
conditions, age, sex, and excluding both hospital volume
quintile and hospital case-mix factors. We calculated each
hospital’s RSMR by multiplying its P/E ratio by the national
observed mortality rate across all hospitals in our data.’%-2

To ensure comparability, we included the same varia-
bles in both RSI and HCC multilevel models. The only dif-
ference was the use of Hierarchical Condition Categories for
HCC and diagnosis codes for RSI. In models adjusting for
case-mix, we added the proportion of cases in each of the
case-mix factors to the models.

We compared model performance using the receiver op-
erating characteristic curve C-statistic for discrimination as well
as the information criteria of both Akaike Information Criteria
and Bayesian Information Criteria (AIC and BIC).27-28 To assess
the impact of models on ranking, we calculated the mean shift in
ranking using bootstrapping. We generated 500 bootstrapped
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datasets and then calculated the mean change in rank position as
well as the 95% confidence interval. We also compared the
percent of hospitals whose rankings changed across deciles
along with a 95% confidence interval.

Software

Statistical procedures were performed using SAS, version
9.4 (SAS Institute, Cary, NC) and R, version 3.3.2.

RESULTS
Using the MEDPAR files from 2009 through 2014, we
found over 20,000 facilities with 106.3 million patient stays.
After applying beneficiary age as well as hospital type and
volume criteria, our initial dataset consisted of 65.4 million
patient stays at 3706 hospitals.

Defining General Hospitals

From this list, 3525 hospitals corresponded to the AHA
General Medical and Surgical category. Of these, we found 21
hospitals that met the MedPAC criteria for cardiac, orthopedic, or
surgery specialty hospitals. After their removal, 3504 hospitals
were our final hospital population; 81.7% were Short-Term
General Hospitals and 18.3% Ceritical Access Hospitals. The pa-
tient population sizes are shown in Table 1. The 32.0 million
patient stays of the all-inpatient group represented a 50% random
sample (50% for model development and 50% holdout) captured
in the CMS Chronic Conditions Data Warehouse (CCW).

Characteristics of the Study Populations by
Hospitals and by Diagnostic Profiles

For the all-inpatient population, the patient stays had an
average age of 78.0, were 56.4% female, and had a 30-day
mortality of 8.6% (see Table, Supplemental Digital Content 5,
which shows the patient characteristics, http:/links.lww.com/
MLR/C253). For that group, the most frequent diagnoses were
septicemia not otherwise specified (3.7%), pneumonia (3.7%),
obstructive bronchitis, and urinary tract infections (2.4% each).
The surgical and nonsurgical populations had similar diagnoses
in differing order (see Table, Supplemental Digital Content 6,
which shows the 10 most frequent diagnoses, http://links.lww.
com/MLR/C254).

Model Results

The Effect of Case-mix on Model Performance

RSI models had excellent discrimination. Inclusion of
diagnosis-related group (DRG)-based case-mix factors to RSI
models did not improve model discrimination (C-statistic of
0.87 for both, Table 2). As an additional assessment, an RSI
model using a simple case adjuster (% orthopedic patients)
had an identical C-statistic of 0.87 (data not shown).

At the patient level, case-mix factor indicators also did
not significantly change RSI ranking results: only 0.4% of the
hospitals shifted by >1 decile (see Table, Supplemental
Digital Content 7, which shows the ranking shift for the pa-
tient-level variable, http:/links.lww.com/MLR/C255). With
case-mix factors as hospital-fixed effects, 32.4% (30.8-33.4)
of hospitals shifted 1 or more deciles and 3.2% (2.6-3.8) of
hospitals shifted 2 or more deciles (see Table, Supplemental
Digital Content 8, which shows the ranking shift for the

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 2. General Hospitals 30-Day Mortality: RSI Versus HCC Performance

General Hospitals 30-Day Mortality

RSI vs. HCC

C-statistic

RSI

HCC

Development Set

Holdout Set

Development Set Holdout Set

Without Case-mix  With Case-mix

With Case-mix

Without Case-mix  With Case-mix With Case-mix

Inpatient Population Factors Factors Factors Factors Factors Factors

All inpatients 0.87 0.87 0.86 0.82 0.82 0.82
(3504 hospitals)

Surgical stays 0.87 0.87 0.87 0.82 0.82 0.82
(3478 hospitals)

Nonsurgical 0.86 0.86 0.86 0.81 0.81 0.81

(3502 hospitals)

Model performance characteristics across 3 inpatient populations.
HCC indicates Hierarchical Condition Categories; RSI, Risk Stratification Index.

hospital-fixed effect, http://links.lww.com/MLR/C256) with a
modest mean change in the ranking of 129.5 (confidence
interval: 5.2-300.6).

Case-mix adjustment ranked the 20 hospitals with the
highest % of orthopedic surgery cases lower by an average of
205 positions (median: 218) (see Fig., Supplemental Digital
Content 9, which compares the performance of RSI and RSI
with case-mix, http:/links.lww.com/MLR/C257).

When all-conditions RSMRs were plotted against rates
of 3 specific case types (Fig. 1), the correlation was minimal
(R2 values of 0.045, for orthopedic, 0.107 for cardiac, and
0.049 for pneumonia), suggesting the case-mix of this general
hospital population was relatively balanced. The addition of
case-mix factors into the models as hospital-fixed effects did
not reduce the correlation coefficients further, except for a
small drop in the inverse correlation of mortality with %
orthopedic case rates (from 0.045 to 0.028)

Comparative Performance of Risk Stratification
Index and Hierarchical Condition Categories Risk
Adjustment

In all 3 patient groups, RSI discrimination outperformed
HCC in the development set. The all-inpatient model had a
higher C-statistic of 0.87 compared with the 0.82 of the HCC
model, indicating better classification. RSI models also had
lower AIC and BIC values (see Table, Supplemental Digital
Content 10, which compares RSI vs. HCC performance, http://
links.lww.com/MLR/C258). The inclusion of case-mix factors
in RSI models did not change C-statistics, AIC, and BIC values,
and both versions outperformed HCC models. The other 2
populations, surgical and nonsurgical, showed similar results
(data not shown). The C-statistics of 0.86, 0.87, and 0.86 for
each population in the holdout samples were essentially identical
(Table 2, Fig., Supplemental Digital Content 11, which shows
the associated receiver operating characteristic curves, http://
links.Iww.com/MLR/C259). Models using only derived RSI and
HCC patient scores in the 3 populations from the holdout
samples had comparable results of 0.85, 0.86, and 0.84 (see

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

Table, Supplemental Digital Content 12, which shows com-
parative model performance, http:/links.lww.com/MLR/C260).
The difference in accuracy between RSI and HCC re-
sulted in a mean change in the ranking of 391.4 (19.6-845.2),
with 73.9% (72.4-75.3) of hospitals shifting 1 or more deciles
and 41.0% (39.4-42.7) of hospitals shifting 2 or more deciles
(Table 3, see Table, Supplemental Digital Content 13, which
shows shifts by decile, http://links.lww.com/MLR/C261).

Risk-standardized Mortality Rates: The Effect of
Hospital Volume

The calculated P/E ratios by quintile of hospitals sorted
by volume are shown in Figure 2. For each population, the
highest volume hospitals had the lowest mortality. This was
true for observed mortality rates (8.3% for the highest volume
to 9.6% for the lowest in the all-inpatient group) as well as
after risk adjustment (8.5% for the highest to 11.2% for the
lowest). The results for the other population groups were
similar (see Table, Supplemental Digital Content 14, which
shows mortality by hospital volume, http://links.lww.com/
MLR/C262). For surgical, the observed mortality range was
8.4%—-11.2%, and the RSMR 9.0%—-11.7%. For nonsurgical,
the observed mortality range was 8.0%-9.5% and RSMR
ranged from 8.5%-10.4%.

Using higher thresholds (250 all-inpatient annual stays,
150 surgical, and 100 for nonsurgical) the RSMRs were 8.7,
9.3, and 7.7, respectively and were unchanged across volume
quintiles (data not shown).

DISCUSSION

RSI multilevel models applied to a group of 3504
general hospitals consistently outperformed HCC and the all-
conditions RSMRs resulted in large shifts in hospital rank-
ings. Correlations with specific case types were negligible;
hospital-level, but not patient-level, case-mix factors im-
proved these slightly and shifted rankings modestly.

Previous work has shown that at the patient level, RSI
risk adjustment is more granular than HCC, resulting in su-
perior model performance.!? Since we used an identical
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FIGURE 1. Correlations of RSMRs with hospital rates of conditions. Scatterplots of RSMRs against hospitals’ percentage of 3 case

types: orthopedic surgery (all-inpatient Base-DRGs from factor 8),

CABG surgery, and pneumonia. Upper row: RSMRs from models

without case-mix factors. Lower row: RSMRs from models in which case-mix factors were included as hospital-fixed effects. CABG
indicates coronary artery bypass graft; DRG, diagnosis-related group; RSMR, risk-standardized mortality rate.

modeling approach for both RSI and HCC in the current
study, it appears that the granularity of the RSIs 1827 diag-
nostic codes is also responsible for its superior performance
here. Furthermore, RSI appears to capture sufficient in-
formation that the addition of DRG or other case-mix varia-
bles does not materially improve model fit. We believe that
the negligible correlation of risk-adjusted mortality with rates
of specific case types is evidence suggesting that our

TABLE 3. All-conditions Risk-standardized Mortality Rate
Differences in Decile Ranking When Using Case-Mix Adjusted
Risk Stratification Index Versus Hierarchical Condition

Categories

Decile Shift # of Hospitals Y Cumulative Percentage
0 916 26.1 26.1

1 1151 329 59.0

2 726 20.7 79.7

3 403 11.5 91.2

4+ 308 8.8 100.0

Total 3504

N =3504 general hospitals, all-inpatient model of 30-day mortality.
Performance decile is based on the rank of the hospital’s risk-standardized mortality
rate. Decile shift=number of deciles that a hospital’s rankings differed between the

2 methods.
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approach provides an estimate of a global hospital effect. To
test this hypothesis, a systematic comparison of all-patient P/
E ratios to condition-specific P/E ratios is required, something
that is outside of the scope of the current paper.

Compared with CMS Hospital Compare, which uses HCC
in condition-specific models, the RSI multilevel models had su-
perior discriminatory accuracy without evidence of overfitting. In
the literature, reported C-statistics for 30-day mortality are
0.68-0.70 for heart failure>® 0.73 for acute myocardial
infarction, pneumonia and acute myocardial infarction,’® and
0.864 for stroke with clinical severity adjustment.?

The inclusion of case-mix factors modestly shifted
rankings but was more pronounced at the tail of the dis-
tribution of orthopedic case rates. We believe these modest
improvements warrant their inclusion in all-conditions MLM
models for comparison of hospital global effects.

We adjusted for hospital volume and added to the
evidence from others that volume is an independent predictor
of 30-day mortality, with lower hospital volumes associated
with higher mortality.>?!3 Our results confirm this across all
conditions and support the incorporation of volume in re-
gression models to compare smaller hospitals fairly to each
other or to larger facilities. Our results suggest there may be a
threshold effect: above 250 stays per year, we found flat,
essentially identical RSMRs across volume quintiles. This

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 2. Mean P/E ratio versus volume quintile with error
bars. Mean P/E ratio versus volume quintile for 3 populations.
All inpatients (n=3504 hospitals); surgical (n=3478 hospi-
tals); nonsurgical (3502 hospitals). E indicates expected mor-
tality; P, predicted mortality.

threshold may be a useful minimum for comparisons when
not including volume. This issue matters for consumers who

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

might want to know the quality of the facility near them when
making a decision regarding local care versus the incon-
venience of traveling a significant distance. Accuracy also
matters for policy, regulation, payment, and quality im-
provement, since low-volume hospitals are often smaller rural
facilities functioning as sole providers.

The RSI method uses a large number of variables to
achieve its results, raising a concern of overfitting. We do not
believe that such concern is reasonable here. First, we vali-
dated our results using holdout samples of 1.5 million patient
stays for all inpatients, 2 million for surgical, and 1.5 million
for nonsurgical. C-statistics were essentially identical, as has
been true in previous RSI reports. Second, the lower AIC and
BIC values with RSI compared with HCC support this con-
clusion. Furthermore, RSI generates coefficients that are re-
markably stable: application to a completely out of sample
dataset of 39 million people 5 years later yielded essentially
identical discrimination.” The similar performance of models
using only patient scores supports the use of archived RSI
coefficients for any given risk adjustment task without the
laborious rederivation of coefficients.

Accurate assessment of hospital performance remains an
important objective as efforts to improve the value of care de-
livery in the United States continue. As alternative payment
models are refined and become more widely adopted, the ability
to assess global hospital effects would enable adjustments to
global payment models and allow movement beyond bundled
payments for episodes of care limited to specific case types.

Limitations

Our study is limited because we chose to examine only
POA codes in this initial examination of RSI in multilevel re-
gression models. If we had incorporated a look-back period, it is
possible that the capture of more codes might result in additional
improvements in model fit. Our study is limited to hospitalized
patients; harvesting additional diagnostic codes from outpatient
and carrier claims might improve results further.

Our 3 inpatient populations have important dissimilarities
and there is likely residual variation in individual procedures or
diagnoses within subpopulation groups. For instance, while the
case-mix variation within the surgical group may be relatively
narrower, the nonsurgical group is likely more heterogenous in
its risk profile. Furthermore, our study does not account for any
underlying selection bias driven by provider behavior, partic-
ularly of elective cases, nor does it account for bias arising from
unmeasured confounding by social risk factors, even if a case-
mix adjustment were perfect. Thus, extrapolation of our results
to subpopulations of patients should be done with caution.

Inclusion of our case-mix factor analysis re-ranked
hospitals modestly; alternative case-mix measurement tools
that capture other elements of between-hospital variation, or
are more sensitive to the joint association of risk and case
type might yield stronger results.

Additional efforts to address selection bias and socio-
economic status bias continue to be necessary for the fair
assessment of hospital performance. Our results are only
applicable to Medicare fee-for-service patients, and it is
possible that our method may not be applicable to Medicare
Advantage patients.
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This study was limited to datasets containing ICD-9 co-
des. Although results may differ with ICD-10, the nested hier-
archical structure is maintained and will permit the use of
truncation and roll-up algorithms. Gao et al'” have exploited this
architecture using a different method with a similar effect.
However, because code numbers are greater and nesting ceases
at the fourth level, total numbers entering regressions will likely
be substantially greater, requiring additional computation time.
Preliminary results applying RSI to ICD-10 confirm this surmise
but suggest similar levels of model performance.

Unsupervised machine learning or “artificial intelligence”
algorithms are subject to important biases that may skew ma-
chine inferences and reinforce erroneous or unethical historical
practices.332 It is important to note that the RSI method is not
such a machine learning/artificial intelligence program. Biases
embedded in RSI will be a function of the underlying structure
of the ICD-9 and 10 architectures and as such, limited by the
design decisions of those systems.

CONCLUSIONS

We applied the RSI to multilevel regression models to
assess global hospital performance across all conditions and
found that it yielded superior discriminatory accuracy com-
pared with the HCC method when applied to large inpatient
populations over the age of 65. The greater accuracy of RSI
models also resulted in a substantial re-ranking of hospitals.

These results matter because there is a public and policy
interest in assessing global hospital effects as an enabling tool
for global payments models. More accurate risk adjustment
would improve and promote accountability and fairness in
payment models. There is also a strong public interest in
including the widest possible range of hospitals that Ameri-
cans use, particularly low-volume hospitals in rural areas. We
believe that RSI is a broadly applicable method and repre-
sents an opportunity to improve the measurement of hospital
performance.
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