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X-linked hypophosphatemia (XLH) is caused by inactivating mutations in the phosphate-
regulating endopeptidase homolog, X-linked (PHEX ) gene, resulting in an excess of
circulating intact fibroblast growth factor-23 (iFGF-23) and a waste of renal phosphate.
In the present study, we retrospectively reviewed the clinical and molecular features
of 153 Chinese patients, representing 87 familial and 66 sporadic cases with XLH.
A total of 153 patients with XLH presented with signs or symptoms at a median
age of 18.0 months (range, 9.0 months–26.0 years). Lower-limb deformity was the
most frequent clinical manifestation, accounting for 79.1% (121/153). Biochemical
screening showed increased serum levels of iFGF23 in patients with XLH, with
a wide variation ranging from 14.39 to 730.70 pg/ml. Median values of serum
iFGF23 in pediatric and adult patients were 94.87 pg/ml (interquartile range: 74.27–
151.86 pg/ml) and 72.82 pg/ml (interquartile range: 39.42–136.00 pg/ml), respectively.
Although no difference in circulating iFGF23 levels between these two groups was
observed (P = 0.062), the proportion of patients with high levels of circulating iFGF23
(>42.2 pg/ml) was greater in the pediatric group than in the adult group (P = 0.026).
Eighty-eight different mutations in 153 patients were identified, with 27 (30.7%) being
novel. iFGF23 levels and severity of the disease did not correlate significantly with
truncating and non-truncating mutations or N-terminal and C-terminal PHEX mutations.
This study provides a comprehensive description of the clinical profiles, circulating
levels of iFGF23 and gene mutation features of patients with XLH, further enriching
the genotypic spectrum of the diseases. The findings show no evident correlation of
circulating iFGF23 levels with the age or disease severity in patients with XLH.

Keywords: X-linked hypophosphatemia, clinical features, mutational spectrum, intact fibroblast growth factor-23,
genotype-phenotype correlation

INTRODUCTION

X-linked hypophosphatemia (XLH, OMIM 307800), a rare disorder of phosphorus metabolism, is
the most common heritable form of rickets, with an incidence of approximately one in 20,000 births
(Carpenter, 1997). The primary physiological trait of the disease is leakage of phosphate from the
kidney, which leads to hypophosphatemia and defects in bone mineralization.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 617738

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.617738
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.617738
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.617738&domain=pdf&date_stamp=2021-06-01
https://www.frontiersin.org/articles/10.3389/fcell.2021.617738/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-617738 May 31, 2021 Time: 10:46 # 2

Lin et al. X-Linked Hypophosphatemia

XLH is caused by inactivating dominant mutations in the
phosphate-regulating endopeptidase homolog X-linked (PHEX)
gene. The PHEX gene is located on Xp22.1 and exhibits homology
with a family of zinc metalloproteases, including neprilysin
(NEP), the Kell antigen (KELL) and endothelin-converting
enzymes 1 and 2 (ECE-1 and ECE-2) (Francis et al., 1997). PHEX
is expressed in osteocytes and odontoblasts, and loss-of-function
PHEX mutation results in excess circulating fibroblast growth
factor 23 (FGF23), leading to hypophosphatemia (Kinoshita and
Fukumoto, 2018). However, studies to date on circulating levels
of FGF23 in XLH patients are contradictory. For example, several
studies report elevated serum intact FGF23 (iFGF23) values in
the majority of patients with XLH (Yamazaki et al., 2002; Jonsson
et al., 2003; Zhang et al., 2019), whereas another study indicates
serum iFGF23 values virtually in the reference range (Weber
et al., 2003). Thus, we conducted a study to determine circulating
iFGF23 concentrations in XLH patients.

For decades, conventional therapy (multiple daily doses of
oral phosphate and calcitriol) was the only treatment option
for patients with XLH; the partial efficacy of this approach has
been indicated in several reports (Verge et al., 1991; Mäkitie
et al., 2003a; Fuente et al., 2017). However, long-term treatment
is frequently accompanied by a series of complications (Santos
et al., 2013; Linglart et al., 2014). Recently, a new targeted
therapy for XLH, i.e., the recombinant human monoclonal
antibody against FGF-23 burosumab, has been approved in
the United States and Europe and has achieved significantly
greater therapeutic effect and safety in patients with XLH than
conventional therapy (Imel et al., 2019). Because this new therapy
will soon be available in China, a depiction of the general traits
of Chinese individuals with XLH is important. Our center has
previously reported several XLH cases in the Chinese population
(Kang et al., 2012; Yue et al., 2014; Li et al., 2016); however,
these reports do not comprehensively summarize the clinical and
genetic characteristics of XLH patients because of their small
sample sizes. Hence, we conducted this study by enlarging the
study population to further systematically delineate the clinical
and genetic spectrum of XLH and to explore circulating iFGF23
levels in these patients and their relationship with clinical and
genetic parameters.

MATERIALS AND METHODS

Subjects
This study was approved by the Ethics Committee of Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital. This
study retrospectively reviewed the clinical and molecular
features of 153 patients with XLH who were identified
with PHEX gene mutations from 2008 to 2019. These
patients included 87 familial cases and 66 sporadic cases,
from 105 unrelated pedigrees. Hypophosphatemic patients
with other causes (autosomal dominant hypophosphatemic
rickets, autosomal recessive hypophosphatemic rickets, tumor-
induced osteomalacia, hereditary hypophosphatamic rickets with
hypercalciuria, etc.) were excluded in this study. One hundred
and sixteen of the 153 patients were orally administered

phosphate 20–40 mg/kg per day divided into five doses per
day and calcitriol 0.25–0.5 µg per day; follow-up data for these
patients were recorded when available.

Clinical Features
Basic information was collected, including sex, age at diagnosis,
and height converted into standard deviation scores (SDS) using
standardized growth charts for Chinese children and adolescents
(Li et al., 2009). Clinical rachitic signs or symptoms in these
patients were recorded (bowed lower extremities, abnormal
gait, short stature, dental disease, etc.). Radiography of bilateral
posteroanterior wrists and knees was performed, and the Rickets
Severity Score (RSS) was evaluated using Thacher’s method
(Thacher et al., 2000). The severity score of rickets is scaled from
0 (normal) to 10 (severe).

Biochemical Measurements
Relevant biochemical tests included serum phosphorus, calcium,
total alkaline phosphatase (ALP), intact parathyroid hormone
(PTH), 25-hydroxy-vitamin D (25OHD), β-CrossLaps of type
1 collagen containing cross-linked C-telopeptide (β-CTX), and
serum osteocalcin (OC), in the form of N-terminal mid-molecule
fragments and creatinine.

Serum phosphorus, calcium, and ALP levels were measured
using a Hitachi 7,600-020 automatic biochemistry analyzer.
Serum PTH, 25OHD, β-CTX, and OC concentrations were
assessed using an automated Roche electrochemiluminescence
system.

Serum iFGF23 Measurement
Serum samples were collected to measure iFGF23 levels at
each patient’s first visit to Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital. All samples were stored at
−80◦C until analysis. In total, 62 samples were available for
measuring iFGF23. Serum iFGF23 levels were evaluated using a
two-site ELISA kit (KAINOS Laboratories, Inc., Tokyo, Japan)
with a detectable concentration range from 3 to 800 pg/ml.
The reference range for serum iFGF23 is 16.1–42.2 pg/mL
(Zhang et al., 2019).

Sanger Sequencing for PHEX Gene
Mutations
Genomic DNA was extracted from peripheral blood leukocytes
using a DNA extraction kit (Lifefeng Biotech, Shanghai). The
DNA sequence for the PHEX gene was obtained from an online
database (GenBank accession NO. NC _000012.). The PCR
and sequencing primers were the same as those used in our
previous study and were designed using Primer 3 software1. All
22 exons and exon-intron boundaries of the PHEX gene were
amplified by polymerase chain reaction (PCR). Direct sequencing
was performed using BigDye Terminator Cycle Sequencing
Ready Reaction Kit, version 3.1 (Applied Biosystems, Foster,
CA, United States), and the product was analyzed with an
automated ABI 3730 sequencer (Foster, CA, United States).

1http://bioinfo.ut.ee/primer3-0.4.0/
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Single-nucleotide polymorphisms (SNPs) were identified using
Polyphred2 and novel mutations using HGMD.

Multiplex Ligation-Dependent Probe
Amplification Analysis
Multiplex ligation-dependent probe amplification (MLPA)
analysis was performed to detect large deletion/duplication
mutations in patients for whom direct DNA sequencing did not
reveal PHEX mutations. MLPA analysis was performed according
to the manufacturer’s instructions (Salsa MLPA Kit P223 PHEX,
Version 01, MRC-Holland, Amsterdam, Netherlands), and the
product was analyzed using an ABI 3730XL sequencer (Applied
Biosystems, Foster City, CA, United States) and the Coffalyser
software program (MRC-Holland, Amsterdam, Netherlands).

Statistical Analyses
All data were analyzed using IBM SPSS Statistics (version
26.0; SPSS Inc., Chicago, IL, United States). The Kolmogorov–
Smirnov test was employed to detect the normality of the
distribution of continuous variables. Normally distributed data
are presented as the mean ± SD, and between-group differences
were assessed with independent-sample t tests. Non-normally
distributed data are expressed as medians (25th and 75th
percentiles), and intergroup differences were evaluated with
the Mann–Whitney U test. Categorical variables are described
as frequencies or percentages, and intergroup comparisons
were analyzed with Fisher’s exact test. Correlations between
continuous variables were analyzed with the Spearman rank
correlation coefficient. A two-tailed value of P < 0.05 was
considered statistically significant.

RESULTS

Demographics and Clinical Features of
XLH Patients
The study cohort included 153 patients belonging to 105
unrelated pedigrees: 87 were familial cases and 66 were sporadic
cases. Of the 153 patients, 45 were male, and 108 female, with
a median age and a median onset age of 23.0 years (range: 1.3–
73.0 years) and 18.0 months (range: 9.0 months–26.0 years),
respectively. The average height SDS for juveniles and adults
was −2.3 ± 1.4 and −4.6 ± 2.1, respectively. According to
further statistical analysis, adult patients showed significantly
lower height SDS than juvenile patients (P < 0.001), which
revealed a lasting effect on stature development during a long
period of non-treatment. The most frequent manifestation of
XLH in our center was bowed lower extremities, which accounted
for 79.1% (121/153), followed by abnormal gait (106/153), short
stature, growth retardation (106/153), dental disease (47/153),
bone pain (28/153), and fracture (24/153) (Table 1). Lower-limb
deformity or abnormal gait became apparent at a median age
of 18.0 months. Based on radiographic manifestations, many
patients had metaphyseal abnormalities of the distal femur,

2http://droog.mbt.washington.edu/poly_get.html

TABLE 1 | Characteristics of 153 patients with XLH.

Clinical characteristics All patients (n = 153)

Sex (Female: male), n 108: 45

Mean age, years 23.0

Mean onset age, months 18.0

Height (SDSa)

Juveniles, mean ± SD −2.3 ± 1.4

Adults, mean ± SD −4.6 ± 2.1

Bowed lower extremities, n 121

Abnormal gait, n 106

Short stature, growth retardation, n 106

Dental disease, n 47

Bone pain, n 28

Fracture, n 24

Rachitic rosary, n 14

RSSb, mean ± SD 4.8 ± 2.2

aSDS, standard deviation score.
bRSS, rickets severity score.

proximal tibia, and distal radius and ulna, with a mean RSS score
of 4.8± 2.2 for juveniles (n = 34).

Biochemical Characteristics of XLH
Table 2 provides the biochemical characteristics of patients with
XLH. Mean serum phosphorus was lower than the reference
range established for all age groups (Ruppe, 1993). In addition,
serum ALP values were greatly above the upper limit of normal
in the juvenile group but were normal in the adult group.
Furthermore, 54.4% of patients had serum PTH levels higher
than the upper limit of normal, though serum calcium was within
the normal range (n = 79), and 59.8% of patients had vitamin D
deficiency (n = 82).

Serum iFGF23 Measurement
Serum iFGF23 values were determined for 62 patients and
displayed a wide variation from 14.39 to 730.70 pg/ml, with a
median value of 91.88 pg/ml. For pediatric patients (n = 31),
the median value of circulating iFGF23 was 94.87 pg/ml
(interquartile range: 74.27–151.86 pg/ml), and 96.8% (30/31) of
patients had a high level of serum iFGF23 (>42.2 pg/ml). For
adult patients (n = 31), the median value of circulating iFGF23
was 72.82 pg/ml (interquartile range: 39.42–136.00 pg/ml), with
74.2% (23/31) having levels in the high range (Table 3). Despite
the lack of difference in serum iFGF23 levels between these two
groups (P = 0.062), the proportion of pediatric patients with high
levels of circulating iFGF23 (>42.2 pg/ml) was higher than that
of adult patients (P = 0.026).

Correlation analysis demonstrated that serum iFGF23 levels
had no relationship with the serum phosphate/upper limit ratio,
age, onset age, height SDS or RSS (Table 4).

Treatment and Following-up
Forty-seven (40.5%) of the 116 XLH patients who were treated
with phosphate and calcitriol daily received follow-up; 28 were
children, and 19 were adults, with a median follow-up duration of
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TABLE 2 | Biochemical features of patients with XLH.

Biochemical parameters Age groups

Serum phosphorus, mmol/L 1–3 years 0.84 ± 0.20a

4–11 years 0.79 (0.71–0.87)b

12–15 years 0.75 ± 0.11

>15 years 0.61 ± 0.11

Serum calcium, mmol/L 2.34 ± 0.12

ALP, U/L 1–15 years 585.5 ± 195.9

16–18 years 388.7 ± 210.7

>18 years 94.0 (82.5–146.0)

PTH, pg/ml 69.80 (56.39–86.28)

25OHD, ng/ml 17.84 (12.50–29.63)

iFGF23, pg/ml 91.88 (55.88–143.31)

β-CTX, ng/L 1,387.00 (491.00–2444.00)

OC, ng/ml 51.85 (21.38–99.55)

Serum creatinine, µmol/L 33.62 ± 13.62

aNormally distributed data are shown as the mean ± SD.
bNon-normally distributed data are shown as the median (interquartile range).
ALP, total alkaline phosphatase; PTH, parathyroid hormone; 25OHD, 25-hydroxy-
vitamin D; β-CTX, β-CrossLaps of type 1 collagen containing cross-linked
C-telopeptide; OC, serum osteocalcin in the form of an N-terminal mid-
molecule fragment.
Normal range: phosphorus [varies by age (Ruppe, 1993)]: 1–3 years: 1.25–
2.10 mmol/L, 4–11 years: 1.20–1.80 mmol/L, 12–15 years: 0.95–1.75 mmol/L,
>15 years: 0.80–1.60 mmol/L, calcium: 2.08–2.60 mmol/L, ALP: 1–15 years: 42–
390 U/L (Zhang et al., 2019), 16–18 years: 52–171 U/L (Zhang et al., 2019),
>18 years: 15–112 U/L, PTH: 15–65 pg/mL, 25OHD: >30 ng/ml, iFGF23: 16.1–
42.2 pg/mL (Zhang et al., 2019), β-CTX: 278–540 ng/L (Hu et al., 2013), OC:
13.07–27.68 ng/mL (Hu et al., 2013), creatinine: 53.0–115.0 µ mol/L.

TABLE 3 | Distribution of serum iFGF23 levels in pediatric and adult patients with
XLH (n = 62).

Serum iFGF23 levels, pg/ml No. (%)

Pediatric patients, n = 31 94.87 (74.27–151.86)

Low 0

Medium 1 (3.2%)

High 30 (96.8%)

Adult patients, n = 32 72.82 (39.42–136.00)

Low 1 (3.2%)

Medium 7 (22.6%)

High 23 (74.2%)

Low: Serum iFGF23 levels < 16.1 pg/ml.
Medium: Serum iFGF23 levels ≥ 16.1 and ≤42.2 pg/ml.
High: Serum iFGF23 levels > 42.2 pg/ml.

TABLE 4 | Correlation analyses of circulating iFGF23 and other clinical and
biochemical parameters.

Clinical and biochemical parameters Serum iFGF23

r P value

Age −0.195 0.133

Age of onset −0.077 0.590

Serum phosphate/Upper limit ratio −0.195 0.159

Height SDS 0.259 0.064

RSS −0.235 0.305

12.0 months (3.0–120.0 months). For both groups, no significant
increase in serum phosphorus level (P = 0.511; P = 0.651) or
decrease in serum ALP (P = 0.434; P = 0.442) was observed at
the median follow-up.

Mutation Analysis of the PHEX Gene
A total of 88 different mutations were identified in 153
patients, including 15 missense mutations (17.0%), 15 non-
sense mutations (17.0%), 21 splicing mutations (23.9%), 18 small
deletions (20.5%), four small insertions (4.5%), and 15 gross
deletions/duplications (17.0%). Of the 88 mutations, 27 (30.7%)
were novel mutations not found in HGMD or reported in the
literature. All the PHEX mutations identified in the present study
are listed in Supplementary Table 1.

Seventy-three point mutations, including missense
mutations, non-sense mutations, splice-site mutations, and
small insertions/deletions, are scattered throughout the PHEX
coding sequence and flanking intronic sequences, with 80.8%
of point mutations in the 5′ region (up to amino acid 649 in
exon 19) and the other 19.2% in the 3′ region (amino acid
650 to the 3′ end of PHEX); no mutations were detected
in the 3′-untranslated regions (UTR) or 5′-UTR (Figure 1).
The most frequent point mutations were R702X and R549X,
which accounted for 4.1% (3/73) and 4.1% (3/73) of all point
mutations, respectively.

Genotype-Phenotype Association
Analysis
We divided the genotypes of the 153 patients into two
groups, truncating mutations (non-sense mutations, deletions,
insertions, and splice-site mutations, n = 124) and non-
truncating mutations (missense mutations, n = 29), and explored
the phenotypic severity of the groups. The results showed no
significant difference in terms of the serum phosphate/upper
limit ratio, serum ALP/upper limit ratio and iFGF23, age of
onset, or RSS and height SDS. Because residues 1–649 of
the PHEX protein include several functional domains, such as
the transmembrane domain and the two zinc-binding motifs,
mutations in these locations might result in a more severe
phenotype (Holm et al., 2001). Therefore, we divided another
two groups: N-terminal mutations (from 5′ end to amino
acid residue 649, n = 105) and C-terminal mutations (from
residue 650 to the 3′ end of PHEX, n = 24) to verify the
above hypothesis. However, no significant difference in the
serum phosphate/upper limit ratio, serum ALP/upper limit ratio,
iFGF23, age of onset, RSS, or height SDS was observed between
the two groups (Table 5).

DISCUSSION

The present study describes the phenotypic characteristics and
genotypic spectra of 153 pediatric and adult patients with
XLH. Apparently, patients with XLH in China have similar
symptoms to those of XLH patients in Western countries.
Indeed, most patients present symptoms of rachitic skeletal
deformities during childhood (Kinoshita and Fukumoto, 2018).
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FIGURE 1 | Distribution of all point mutations identified in this study. A total of 73 point mutations (including missense mutations, non-sense mutations, splice-site
mutations, and small insertions/deletions) were scattered throughout the 22 exons and adjacent intron areas of the PHEX gene. Black corresponds to missense
mutations, yellow corresponds to non-sense mutations, red corresponds to splice-site mutations, green corresponds to small deletions, and purple corresponds to
small insertions.

TABLE 5 | Genotype-phenotype correlation in patients with XLH.

Truncating mutations
(n = 124)

Non-truncating
mutations (n = 29)

P value N-terminal mutations
(n = 105)

C-terminal mutations
(n = 24)

P value

Onset age (years) 1.5 (1.0–2.0) 1.2 (1.0–3.0) 0.996 1.5 (1.0–2.0) 1.8 (1.2–3.0) 0.360

Height SDS −3.5 ± 2.2 −3.9 ± 2.0 0.510 −3.5 ± 2.2 −3.4 ± 1.9 0.759

Serum phosphate/Upper limit ratio 0.40 ± 0.09 0.41 ± 0.07 0.925 0.40 ± 0.08 0.43 ± 0.12 0.286

Serum ALP/Upper limit ratio 1.29 ± 0.56 1.23 ± 0.42 0.700 1.36 ± 0.57 1.05 ± 0.36 0.077

Serum iFGF23 (pg/mL) 91.38 (60.96–141.99) 112.55
(40.74–337.53)

0.695 90.93 (53.55–142.08) 107.23 (72.07–160.31) 0.485

RSS 4.8 ± 2.2 5.0 ± 4.2 0.895 5.0 ± 2.2 4.4 ± 2.6 0.538

In pediatric patients, their parents frequently discover lower-
limb abnormities, or waddling gaits when they just learn to
walk. A consensus statement of clinical practice for XLH
(Haffner et al., 2019) indicates that rachitic skeletal characteristics
usually occur at 6 months after birth and that waddling
gait and lower-limb deformities become apparent at the age
of 2 years. Correspondingly, our study showed that patients
manifested bowed lower extremities or abnormal gait at a median
age of 18.0 months.

Patients with XLH at our center exhibited typical biochemical
traits, similar to those in Western countries. Ninety-five percent
of these patients displayed decreased levels of serum phosphorus
below the age-related reference range because of renal phosphate
wasting, which is a result of increasing serum FGF23. Our study
reported that 85.5% (53/62) of patients had serum iFGF23 levels

above the upper limit of the reference range. However, there
were still 12.9% (8/62) of patients having serum iFGF23 levels
within the reference range, which suggested that serum iFGF23 in
patients with XLH is very likely associated with other metabolic
factors, such as serum PTH, circulating α-Klotho, hypoxia,
and inflammatory cytokines, in addition to serum phosphate
(Courbebaisse and Lanske, 2018). On the other hand, the serum
concentration of iFGF23 is regulated by serum phosphate (Hori
et al., 2016), serum FGF-23 is positively correlated with serum
phosphate; hence, this “normal” FGF-23 in these patients can
be considered inappropriately normal. It is worth mentioning
that a 24-year-old woman who sought a medical consultation
in 2014 had circulating iFGF23 levels under the reference range.
We speculated the inappropriate level of iFGF23 in this patient
might be due to the presence of hypophosphatemia; moreover,
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partial degradation of serum iFGF23 during long-term storage
at −80◦C may have resulted in the low level of iFGF23 for this
patient. An in vitro study by Liu et al. (2003) illustrated that
FGF23 is not the direct substrate cleaved by PHEX; in fact, the
mechanism by which PHEX mutation causes overproduction of
FGF23 remains unknown, and further study is required to clarify
the pathogenesis.

To evaluate renal phosphate wasting, the tubular maximum
reabsorption of phosphate per glomerular filtration rate
(TmP/GFR) should be calculated clinically (Haffner et al.,
2019). Unfortunately, we did not perform this, and further
detection is needed to better evaluate the disease. Secondary
hyperparathyroidism (SHPT), a typical property of XLH, was
observed in 54.4% of patients prior to treatment in our center.
Studies by DeLacey et al. (2019) and Rafaelsen et al. (2016) have
also described the high prevalence of SHPT, at 83.3% (70/84)
and 66.7% (10/15), respectively, in patients with XLH. Several
factors may be associated with SPHT in patients with XLH. For
those who receive treatment, prolonged oral phosphate induces
intermittently elevated serum phosphate concentrations, with
recurrent stimulation of the parathyroid glands (Mäkitie et al.,
2003b); accordingly, calcitriol is required in combination with
oral phosphate supplements in clinical practice to minimize the
risks of SHPT. For those who have never received phosphate
therapy, a reduced circulating level of 1,25(OH)2D due to excess
FGF-23 is very likely the main factor involved in the development
of hyperparathyroidism. In addition, loss of PHEX function in
the parathyroid gland leading to abnormal PTH mRNA cleavage
or degradation may be responsible for the occurrence of SPHT
(Lecoq et al., 2020).

Until now, conventional therapy (phosphate salts and
calcitriol) has been regarded as the first-line treatment option
for patients with XLH in China. To assess the efficacy and
safety of conventional therapy, serum ALP levels are suggested
to be a reliable biomarker of rickets (Chesney et al., 1983; Tsuru
et al., 1987; Linglart et al., 2014). In the present study, no
improvement in serum ALP level was noted during the 1-year
treatment follow-up. This may be explained by the notion that
treating XLH with conventional therapy will increase circulating
FGF23, which to some extent diminishes the therapeutic effect
(Imel et al., 2010).

We identified PHEX gene mutations in this population-based
cohort and found 88 different mutations in 153 patients. Of the 88
PHEX variants, 30.7% have never been reported, indicating that
PHEX gene mutations are private (Rafaelsen et al., 2016).

Fifteen different missense mutations were identified in this
study, of which six (40%) are novel. All missense mutations
we detected occur at residues that are highly conserved in
mammals. The mutation C77R is located at the site where
five of the 10 conserved cysteine residues are clustered at the
C-terminus of the transmembrane domain (Sabbagh et al., 2000).
Consequently, such a mutation most likely disrupts disulfide
bond formation and alters the secondary structure of the protein
by influencing folding, leading to instability and dysfunction
of the protein (Rowe et al., 1997). Additionally, G579R is very
likely a mutational hot spot because approximately 20 unrelated
patients of distinct races are reported to harbor this mutation

(Popowska et al., 2000; Sabbagh et al., 2000, 2001, 2003; Durmaz
et al., 2013; Radlović et al., 2014; Lin et al., 2018; Zhang
et al., 2019). Our center detected the same mutation in a 3-
year-old boy. G579 is adjacent to the highly conserved zinc-
binding motif (HEFTH), a major fingerprint of the M13 family
of metallopeptidases. Evidence-based research has demonstrated
that the G579R mutation attenuates the function of the PHEX
protein by altering protein trafficking, endopeptidase activity,
and protein conformation (Sabbagh et al., 2003).

Non-sense and splicing site mutations are considered to
cause truncation of the PHEX protein, resulting in loss of
function. In the present study, the first N-terminal non-sense
mutation was encountered in exon 1 (R20X), with this non-
sense mutation segregating in two families. The R20X mutation
is predicted to result in degradation of the mRNA through non-
sense-mediated mRNA decay, thereby abrogating synthesis of
a truncated protein (Sabbagh et al., 2000; Charoenngam et al.,
2019). Another stop mutation in exon 21 (R702X), despite
being located in the 3′ end of PHEX, has been proven to be
deleterious. This mutant lacks two conserved cysteine residues,
causing protein structure alteration and indicating that the
end of N-terminal amino acids still has an important role in
PHEX function. Among the 21 splicing site mutations in the
current study, 12 are splice donor mutations, and nine are splice
acceptor mutations. These splicing mutations result in major
changes in the secondary structure of the PHEX protein via exon
skipping, intron retention, and activation of cryptic splice sites
(BinEssa et al., 2019).

The genotype-phenotype correlation of the PHEX gene
mutation in XLH has not been well established, and scholars
have followed genotype-phenotype correlation research with
great interest, particularly regarding the relationship between
phenotype and mutation type or location (Holm et al., 2001;
Cho et al., 2005; Rafaelsen et al., 2016; Zhang et al., 2019;
Zheng et al., 2020). An evidence-based study by Zheng et al.
(2020) has revealed that the severity of the disease is not related
to truncating or non-truncating mutations, as based on their
experimental finding that truncating and non-truncating variants
possess a similar functional portrait. Nevertheless, a study by
Zhang et al. (2019) has concluded that patients with mutations
in the 5′ region of PHEX have an earlier age of onset and higher
circulating levels of iFGF23 than those with mutations in the
3′ region of the gene. Moreover, a study by Holm et al. (2001)
has revealed no relationship between disease severity and the
type or location of the mutation, despite a trend toward a more
severe skeletal phenotype in familial patients with truncating
mutations (P = 0.072). In conformity with the reports by Zheng
et al. and Holm et al. no correlation between phenotype severity
and truncating and non-truncating mutations or N-terminal and
C-terminal mutations was found in our study.

In conclusion, our retrospective study broadens the genotypic
spectrum of XLH. We have identified 88 different mutations
in 153 Chinese patients with XLH, and 27 of the mutations
have never been reported. Furthermore, the present study has
determined circulating iFGF23 levels in XLH patients and found
no relationship with age, onset age, severity of the disease
or mutation type.
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