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Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex
interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will
focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences
between allergic contact dermatitis and irritant contact dermatitis.

1. Introduction

Irritant contact dermatitis (ICD) is an inflammatory response
of the skin to various external stimuli. It arises as a result of
activated innate immunity to direct injury of the skin without
prior sensitization [1–3]. ICD is a complex reaction modu-
lated by both intrinsic and extrinsic factors [2–4]. Intrinsic
factors which influence the susceptibility to ICD include
genetic predisposition, for example, atopic diathesis, age, sex,
and body region. Extrinsic factors include the inherent nature
of the irritants, exposure volume, concentration, duration,
repetition, and the presence of further environmental and
mechanical factors.

ICD has a spectrum of clinical features which can be
divided into several different categories depending on the
irritant and its exposure pattern. Ten clinical subtypes have
been proposed [2]. The influence of irritants on various
cytokines/chemokines has not been well delineated so far,
although it is plausible that different environmental insults
and the subsequent variation in cytokines/chemokines
expression could result in distinct clinical phenotypes.

In this review, we discuss the pathophysiological mech-
anisms involved in ICD with a focus on key cytokines and
chemokines as well as their cellular source in the skin.
Furthermore, we highlight the key differences between ICD
and allergic contact dermatitis (ACD).

2. Pathophysiology of Irritant
Contact Dermatitis

Previously thought of as an immunologic inert process, at
present there is increasing evidence showing that ICD is a
complex, interlinked process involving perturbations in the
skin barrier integrity, cellular changes, and release of various
proinflammatory mediators [5, 6].

2.1. Irritants and Skin Barrier Integrity. Integrity of the
epidermal barrier function plays an important role in the
interaction and the response of the human skin to irritants
[7]. Patients with atopic dermatitis are known to have
an epidermal barrier dysfunction and have an augmented
response to various exogenous irritants [8]. In particular,
atopic dermatitis and filaggrin null alleles are associated
with an increased susceptibility and severity to ICD [9, 10].
Recently, it has been shown that filaggrin loss-of-function
mutation is associated with an enhanced expression of IL-1,
which plays a central role in the initiation of ICD [11].

The mechanisms leading to damage of the skin barrier
are also dependent on the intrinsic nature of the irritant.
Organic solvents such as acetone can extract lipids from
the stratum corneum, thereby leading to disruption of the
epidermal barrier [12]. Anionic surfactants like sodium lauryl
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sulphate (SLS) can damage protein structures such as keratin,
involucrin, profilaggrin, and loricrin, exposing new water
binding sites and causing hyperhydration of the stratum
corneumand disorganization of the lipid bilayers [13–16].The
end result of this damage to the skin barrier is the activation of
the innate immunity with its cellular changes and production
of proinflammatory cytokines, such as IL-1𝛼. Simultaneously,
barrier disruption also induces reparative processes to restore
homeostasis [17].

2.2. Key Cellular Components and Mediators in ICD

2.2.1. Keratinocytes. Keratinocytes play a major role in the
production of immune mediators in ICD. The disruption
of the skin barrier leads to release of preformed IL-1𝛼 [18],
which represents an initial step in the inflammatory cascade
of ICD. Numerous in vitro studies have also shown that
various irritants induce IL-1𝛼 expression in keratinocytes
[5, 6, 19–22]. Activation of IL-1𝛼 is subsequently thought to
stimulate further production of proinflammatory cytokines
and chemokines such as IL-1𝛽, TNF-𝛼, IL-6, and CXCL8 (IL-
8) by surrounding epidermal and dermal cells [23, 24].

Unlike IL-1𝛼, which is constitutively produced, IL-1𝛽 is
secreted as a biologically inactive precursor that is cleaved
into an active 17.5 kDa molecule by a protease not nor-
mally present in resting keratinocytes [25]. IL-1𝛽-converting
enzyme (ICE) is a unique processing enzyme involved in the
production of active IL-1𝛽. In activated keratinocytes, ICEhas
been readily detected following incubationwith irritants such
as phorbol myristate acetate (PMA) or SLS [26], indicating
that activation of ICE may represent a key pathogenic step in
ICD elicited through certain irritants.

Together with IL-1𝛼, the subsequent actions of IL-1𝛽
are pleiotropic and involve activation of dendritic cells and
T cells, further cytokine and chemokine production, and
upregulation of adhesion molecules such as ICAM-1 on
endothelial cells and fibroblasts [5, 6, 24], which can all lead
to perpetuation of cutaneous inflammation.

Another key cytokine in ICD is TNF-𝛼. Upregulation of
TNF-𝛼 in the skin has been reported following application
of irritants such as dimethyl sulfoxide, PMA, formaldehyde,
tributyltin, and SLS [20, 27–29]. Moreover, the importance of
TNF-𝛼 in ICD has previously been demonstrated in irritant
reactions which were inhibited in vivo by administration
of antibodies to TNF [30]. The effects of TNF-𝛼 are also
pleiotropic, leading to increased expression of major his-
tocompatibility complex class II molecules, upregulation of
cell adhesion molecules such as ICAM-1 on keratinocyte
and endothelial cells [31, 32], and further induction of
inflammatory mediators such as IL-1, IL-6, GM-CSF, IFN-𝛾,
and CXCL8 [23, 33]. In addition, TNF-𝛼 in concert with IL-
1𝛼 particularly acts as primary alarm signals, which triggers
the release of secondary CCL20 (Macrophage Inflammatory
Protein-3) and CXCL8 chemokine signals [34, 35]. These
increased levels of CCL20 and CXCL8 have the potential to
initiate infiltration of immune cells such as CCR6+ T cells
and immature dendritic cells into an area of the skin that is
exposed to the irritant [36].

Further support for a central role of IL-1𝛼 and TNF-𝛼 in
the pathogenesis of ICD include recent studies which have
shown that certain genetic polymorphisms are associated
with increased or decreased risk of developing ICD. Individ-
uals with TNFA-238 polymorphisms have a reduced risk of
developing ICD whereas individuals with TNFA-308 alleles
have an increased risk of ICD [37]. Similarly, individuals
with IL1A-889 C/T polymorphisms are associated with a
protective effect to the development of ICD [38].

Other cytokines and factors that have been implicated
in the pathogenesis of ICD and which are also produced
by keratinocytes include vascular endothelial growth factor
(VEGF) [21, 39, 40] and IL-6 [19, 27, 39]. VEGF which is
mainly secreted by keratinocytes is a potent mediator of
angiogenesis that stimulates the migration and proliferation
of endothelial cells, facilitates vascular permeability, and
induces the expression of adhesion molecules ICAM-1 and
VCAM-1 on endothelial cells [39]. IL-6, which is upregulated
by various irritants, induces infiltration of mononuclear cell
and is believed to play an important role in perpetuating skin
inflammation. However, a recent study has shown that IL-6
may also exert some anti-inflammatory effects in ICD and
that these effects may be dependent on the chemical nature
of the irritant [41]. Furthermore, counterregulatory cytokines
such as IL-10 [27, 42] and IL-1 receptor antagonists [21]
especially in repeated irritant application are also produced
to limit inflammation.

2.2.2. Fibroblasts. Dermal involvement is common in ICD
due to either penetration of the irritant chemical to the
dermis or indirectly through mediators derived from ker-
atinocytes. Fibroblasts have been associatedwithmaintaining
homeostasis of the skin immune system by their interac-
tions with the keratinocytes. The release of keratinocytes
derived IL-1𝛼 activates fibroblasts to release other active
mediators such as CXCL8, CXCL1 (GRO-𝛼), and CCL2
(monocyte chemotactic protein-1/MCP-1) [43]. In addition,
TNF-𝛼 dependent secretion of CCL2 and CCL5 (RANTES)
plays a role in initiatingmigration of irritant-exposed human
Langerhans cells (LCs) out of the epidermis [44–46].

2.2.3. Endothelial Cells. Following exposures to irritants,
there is an upregulation of adhesion molecules and
chemokines on endothelial cells which can facilitate the
migration of further immune cells like dendritic cells,
macrophages, and T cells into the skin. Interestingly, CCL21
has been reported to be upregulated on dermal lymphatic
endothelial cells in ICD [47]. This is thought to facilitate the
emigration of CCR7+ dendritic cells (DCs) from the skin.

2.2.4. Dendritic Cells. The role of DCs and their cytokines
in ICD is not well characterized. Epidermal LCs have been
shown to migrate into the dermis after topical exposure of
irritants to the skin, despite the supposed independence of
ICD from adaptive immunity [44, 48]. This migration is
likely to occur due to the upregulation of IL-1 and TNF-𝛼
by irritants. Furthermore, migration to the dermis occurs
under the influence of CCL2 (MCP-1) and CCL5 (RANTES),
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Figure 1: Immunological mechanisms in irritant contact dermatitis. Following irritant insult, there is disruption of the epidermal barrier with
release of proinflammatory mediators, that is, IL-1 and TNF-𝛼. This results in stimulation of further cytokine and chemokines production,
for example, by keratinocytes, fibroblasts, and endothelial cells, upregulation of adhesion molecules on endothelial cells, and the subsequent
recruitment of leucocytes thereby perpetuating ongoing inflammation.

which are secreted by fibroblasts [44]. In addition, it has
been shown that there is an IL-10 dependent postmigration
phenotypic switch from CD1a+ LCs into CD14+CD68+
macrophage-like cells in ICD [46]. The significance of this
migration and phenotypic switch is unclear although it is
postulated that this is an important escape mechanism to
protect LCs from cell death by harmful toxic agents. These
transformed CD14+CD68+ macrophages may also have a
role in rapidly removing damaged tissue as a result of skin
barrier disruption, and lastly this phenotypic switch may
also serve to maintain immunological ignorance, thereby
avoiding the generation of collateral autoimmunity [46].

2.2.5. Lymphocytes. The role of skin infiltrating T lympho-
cytes in ICD is also notwell defined. In acute reactions of ICD,
cellular infiltrates consisting of mainly CD4+ lymphocytes
are seen with an increased level of IL-2 and IFN-𝛾 (Th1-
associated cytokines) as well as CD8+ cytotoxic T cells [20,
49]. However, it has been shown that Th1 associated CXCR3
ligands such as CXCL9, 10, and 11 are among the most
differentially expressed chemokines discriminating between
ICD and ACD [50]. These chemokines were expressed at
significantly lower levels in ICD compared to ACD. Further
studies would be needed to clarify the role and subsets of T
lymphocytes involved. Recently, Th17 cells which are novel
subset of CD4+ T cells have been shown to be implicated
in the pathogenesis of ACD. These T-cell subsets induce
chemokine and cytokine release from keratinocytes and

intensify the ICAM-1 dependent keratinocytes T-cell interac-
tion thus promoting nonspecific T-cell-induced apoptosis. At
present, it remains unclear if a similar mechanism exists for
ICD [51–53].

2.3. Summary of Cytokines/Chemokines Activation Cascade
in ICD. Although the precise cytokines/chemokines acti-
vation cascade in ICD is still unclear, it is likely that the
primary cytokines involved following irritant exposure are
IL-1 and TNF-𝛼.The synergistic effects of these two cytokines
result in the further activation and release of secondary
cytokines/chemokines such as IL-2, IL-6, GM-CSF, IFN-𝛾,
VEGF, CXCL8, CCL2, CCL5, and CCL20 and expression of
cell adhesion molecules [4, 5, 23, 30, 31]. A postulated model
is shown in Figure 1. The various cytokines/chemokines and
mediators involved in ICD are also summarized in Table 1.
The myriad of cytokines and cell types involved in ICD
demonstrates that the complexity of the skin response to irri-
tants and interindividual variations in the level of cytokines
present or produced in the skin is likely responsible for the
nature of irritants and intensity of the irritation reaction.

3. Comparison between ACD and ICD

Despite some distinct pathological differences, many com-
mon features such as certain histopathological (e.g., cellular
infiltrate, vasodilatation) and molecular (e.g., cytokines/che-
mokines production, upregulation of endothelial adhesion



4 Mediators of Inflammation

Table 1: Key cytokines and chemokines involved in ICD.

Cytokine Source Function

Interleukin-1

Keratinocytes
Langerhans cells/dendritic cells
Monocytes/macrophages
T cells
Endothelial cells

Proinflammatory
Chemoattractant for T and B cells
Upregulates adhesion molecule
Induces IL-1, IL-2, IL-4, IL-6, IFN-𝛾, CXCL8, and CCL20
Aids Langerhans cell migration

Interleukin-6

Keratinocytes
Langerhans cells/dendritic cells
Monocytes/macrophages
Fibroblasts
Endothelial cells

Proinflammatory
Chemotactic for neutrophils and T cells
Keratinocyte proliferation

Interleukin-8
(CXCL8)

Keratinocytes
Monocytes/macrophages
Fibroblasts
Neutrophils
T cells
Endothelial cells
Lymphocytes

Proinflammatory
Chemotaxis
Activation of neutrophils
Basophil release of histamine

Interleukin-10 Keratinocytes
T cells

Anti-inflammatory
Inhibits production of IL-1𝛼, IL-1𝛽, IL-2, IL-3, IL-6, IL-8, TNF-𝛼,
MIP-1𝛼, IFN-𝛾, M-CSF, and GM-CSF
Downregulates MHC class II
Downregulates adhesion molecules

GM-CSF

Keratinocytes
Melanocytes
T cells
Endothelial cells
Mast cells

Proinflammatory
Enhances effector function of monocytes and neutrophils

IFN-𝛾 Lymphocytes
Keratinocytes

Proinflammatory
Induces/enhances MHC class II
Upregulates cellular adhesion molecules

TNF-𝛼

Keratinocytes
Dendritic cells
Monocytes/macrophages
Mast cells
Fibroblasts
Lymphocytes

Proinflammatory
Activates T cells, macrophages, and granulocytes
Upregulates MHC classes I and II
Induces IL-1, IL-6, IL-8, TNF, GM-CSF, M-CSF, G-CSF, PDGF, and
VEGF
Cellular adhesion molecule expression

VEGF Keratinocytes

Proinflammatory
Induces endothelial cell permeability
Promotes angiogenesis
Increases expression of adhesion molecules
Promotes monocyte migration

CCL2
(MCP-1)

Monocytes/macrophages
Dendritic cells
Fibroblasts

Chemotactic for monocytes, T cells, and dendritic cells

CCL5
(RANTES)

Keratinocytes
Dendritic cells
Fibroblasts
Mast cells

Chemotactic for T cells, eosinophils, and basophils

CCL20
(MIP-3)

Keratinocytes
Lymphocytes
Fibroblasts
Monocytes

Chemotactic for dendritic cells, lymphocytes, and neutrophils

Adapted and modified from Smith et al. [5].



Mediators of Inflammation 5

molecules) alterations exist between ICD and ACD [54, 55].
Such similarities have also been attributed to the irritant
potential of allergens which strongly contributes to their
allergenicity [56]. In the early phases, it is likely that IL-1 and
TNF-𝛼 driven innate immune responses are involved in both
ICD and ACD. In later phases of ICD, skin inflammation is
still critically dependent on innate responses. However, in
ACD adaptive immune responses involving antigen-specific
T cells take over to amplify skin inflammation [50]. In
recent years, some molecular differences between ICD and
ACD have been identified. In particular, CXCR4 and CCR7
expressions on LCs have been shown to be upregulated
after allergen but not by irritant exposure [46]. CXCR4 and
CCR7 are important chemokine receptors which facilitate
allergen-induced LC migration toward the lymph vessels
via a two-step CXCR4-CXCL12 and CCR7-CCL19/CCL21
interaction [57]. Moreover, the expression of CXCL9,
CXCL10, and CXCL11 has been shown to be specifically
upregulated in ACD [50]. In addition, in vitro studies using
monocyte-derived DCs have shown that certain phenotypic
alterations of immature DCs such as upregulation of surface
expression markers (CD54, CD86, and HLA-DR) as well
as production of IL-1𝛽 [58] and CXCL8 [59] are increased
in ACD compared to ICD. Previous studies involving gene
expression analysis have also demonstrated that allergens
but not irritants may lead to upregulation of certain genes
such as CCL23, CCL4, CYP27A1, HML2, NOTCH3, S100A4,
and SLAM in DCs, thus providing the basis for approaches
to identify skin-sensitizing chemicals [60].

4. Conclusion

Although the precise pathomechanisms of ICD still remain
to be elucidated, there is increasing evidence that a myriad
of cytokines and chemokines as well as immune cells are
actively involved in ICD. Greater understanding of these
mechanisms and differences between ACD and ICD will aid
in the evaluation of irritants and assessment of skin damage
as well as therapeutics.
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