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Protocols 2, 100437

June 18, 2021 ª 2021 The

Author(s).

https://doi.org/10.1016/

j.xpro.2021.100437

mailto:etienne.boulter@inserm.fr
mailto:chloe.feral@inserm.fr
https://doi.org/10.1016/j.xpro.2021.100437
https://doi.org/10.1016/j.xpro.2021.100437
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100437&domain=pdf


Protocol

Cyclic uniaxial cell stretching in tissue culture using
a LEGO�-based mechanical stretcher
and a polydimethylsiloxane stretchable vessel

Etienne Boulter1,2,* and Chloé C. Féral1,3,*
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SUMMARY

Mechanical signals are essential for the regulation of many biological processes.
Therefore, it has become paramount to account for these mechanical parameters
when exploring biological processes. Here, we describe a protocol to apply cyclic
uniaxial stretch on cells in culture using a LEGO�-basedmechanical stretcher and
a flexible custom-made polydimethylsiloxane culture vessel as well as validated
downstream applications. While this system offers an out-of-the-box limited
type of simulation, it provides a reliable and low-cost opportunity to perform
cell stretching.
For complete details on the use and execution of this protocol, please refer to
Boulter et al. (2020).

BEFORE YOU BEGIN

This protocol provides instructions on how to generate, functionalize, and stretch a PDMS plate

associated to a LEGO� based mechanical stretcher. There are a number of cell stretching systems

available from vendors and biotech companies or academic investigators (Kah et al., 2020),

providing distinctive features but generally built around the same core principles such as the use

of PDMS plates or membranes.

Assemble LEGO� mechanical stretcher

Timing: Estimated one to two hours (Once LEGO� parts are collected)

1. Order LEGO� parts and download assembly booklet

a. Order LEGO� parts, using the provided parts list (see supplemental file 1; available at https://

data.mendeley.com/datasets/m594s3s5h7/1), from the official LEGO� store or an indepen-

dent retailer (days to weeks).

b. Download the assembly booklet (see supplemental file 2; available at https://data.mendeley.

com/datasets/m594s3s5h7/1) and stretcher model files (see supplemental files 3–5; available

at https://data.mendeley.com/datasets/m594s3s5h7/1)

2. Assemble LEGO�mechanical stretcher according to instructions from the assembly manual (see

supplemental file 2; available at https://data.mendeley.com/datasets/m594s3s5h7/1) with help

from the Studio 2.0 model files when necessary (see supplemental file 3–5; available at https://

data.mendeley.com/datasets/m594s3s5h7/1). We estimate the assembly time to be one to

two hours per stretcher.
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CRITICAL: During the assembly of the LEGO� stretcher, the critical steps are commented

in the assembly booklet. This mostly includes adding the motors at step 80 and gluing the

8-stud axle in the final step (86).

Note: Precise characterization of the mechanical stretcher and presentation of all its features

are reported in the original publication. The frequency of the stretch can be adjusted by step

increments between 0.2 to 1Hz (Table 1) by changing the combination of wheels of the gear

box as indicated in (Boulter et al., 2020). The extent of stretch can also be adjusted by modi-

fying the length of the main arm axle, however, in such case, de novo full characterization of

the stretcher motion is required. Troubleshooting 4 and 5

The stretcher itself can be reused indefinitely once assembled. LEGO� parts are made of ABS (acry-

lonitrile butadiene styrene), a very robust plastic material that can be cleansed and sanitized using

cell culture certified cleansing reagents containing ethanol or quaternary ammonium (see KRT). Spe-

cial attention should be taken not to wet the electrical motors though. Regarding the reliability of the

system, we never experienced any failure of any part but, in the unlikely event this would happen, it is

possible to replace the defective or broken part. For instance, we have been using the exact same

LEGO� motors for the past 6 years.

Prepare and assemble PDMS plate casting mold

Timing: few days

3. Generate PDMS plate casting mold

a. The casting mold parts can be generated by milling a plexiglass� plate upon access to a me-

chanical workshop (see supplemental file 6–8; available at https://data.mendeley.com/

datasets/m594s3s5h7/1).

b. Alternatively, it is also possible to order or produce castingmold parts by 3D printing using the

provided 3D printing templates generated with the CAO App Shapr3D (see supplemental file

9–11; available at https://data.mendeley.com/datasets/m594s3s5h7/1)

4. Assemble the casting mold using M2 screws

CRITICAL: Upon assembly of the castingmold and in order to prevent PDMS leakage, tape

the exterior of the casting mold with two rounds of lab tape.

Additionally, the casting molds, at least the plexiglass molds, can be cleaned and re-used

indefinitely.

Note: A timing of a few days was indicated but this step can be achieved faster if direct access

to a workshop or a 3D printer is available in which case a few hours should be enough. The

longer timing takes into account ordering, production, and shipping when ordering from a

remote supplier.

Table 1. Summary of the main features of the LEGO� stretching system as compared to typical commercial/

reported systems

Feature LEGO� stretcher system Commercial/other systems

Stimulation type Uniaxial Uniaxial or equibiaxial

Stretch frequency 0.2 to 1Hz 0.01 to 5 Hz (uniaxial)

Stretch extent 12% 0.5 to 30% (uniaxial)

Culture Area 40cm2 Few cm2

PDMS stiffness kPa range MPa range

Cost 150–200V Up to 50kV
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The authors only used plexiglass molds and never experienced 3D printing of these molds. Never-

theless, 3D printing now emerges as a very efficient alternative to other methods which, we thought,

was worth mentioning. If the end user decides to use 3D printing, we would strongly advise to

consider some of the potential drawbacks and limitations of this technology, and seek expert advice

regarding choice of printing technology, material, etc. On this note, we would advise against using

Fused Deposition Modeling (FDM) which cannot withstand required curing temperature.

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Dow SYLGARD� 184 Farnell GMID 01673921

Fibronectin from bovine plasma Sigma-Aldrich Cat#F1141

3-Aminopropyltriethoxysilane (APTES) Thermo Fisher
Scientific

Cat#80370

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC)

Thermo Fisher
Scientific

Cat#22980

DPBS Thermo Fisher
Scientific

Cat#14190-094

Paraformaldehyde 16% EM grade EMS Cat#15710

Sucrose Sigma-Aldrich Cat#S0389

DMEM Thermo Fisher
Scientific

Cat#21969-035

Penicillin-streptomycin Thermo Fisher
Scientific

Cat#15140-122

L-Glutamine Thermo Fisher
Scientific

Cat#25030-024

FBS Thermo Fisher
Scientific

Cat#10270-106

Experimental models: cell lines

HeLa ATCC� Cat# ATCC� CCL-2�

Software

Shapr3D (iOS App for CAO) Shapr3D Zrt. https://www.shapr3d.com

BrickLink Studio 2.0 (LEGO� design) BrickLink https://www.bricklink.com/v2/build/
studio.page

Tracker NA https://physlets.org/tracker/

Other

LEGO� cyclic uniaxial cell stretcher (Boulter et al., 2020)https://jcs.biologists.org/content/133/1/
jcs234666

PDMS casting mold (Boulter et al., 2020)

PHAGO’SPRAY DASR Phagogene Cat#65049

Autoclave resistant tape Sigma-Aldrich Cat#BR61750-1ROLL

MiniVac/ScanVac evaporator system LaboGene Cat#7.008.100.011

Mini-PROTEAN Short Plates (35) Bio-Rad Cat#1653308

Mini-PROTEAN Glass Plates (35) Bio-Rad Cat#1653312

22 3 60 mm #1 coverslips Menzel Glaser

Supplemental files Mendeley Data https://doi.org/10.17632/m594s3s5h7.1

Cell complete growth medium

Reagent Final concentration Amount

DMEM Cat#21969-035 NA 450 mL

Penicillin-streptomycin Cat#15140-122 100 U/mL 5 mL

L-glutamine Cat#25030-024 2mM 5 mL

FBS Cat#10270-106 10% 50 mL
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STEP-BY-STEP METHOD DETAILS

Generation of the PDMS vessel

Timing: One day

The goal of this step is to generate the PDMS plate that will be fitted on the LEGO� mechanical

stretcher (Figure 1). It will be used to grow and stretch cells. The PDMS plate is constituted of three

layers of PDMS that are poured and cured successively, upside-down.

1. Pour and cure bottom layer.

a. Prepare 15 mL of a 1:20 (w:w) ratio mixture of curing agent to PDMS for each PDMS plate to be

cast. Mix extensively either using a magnetic bar and a magnetic stirrer or alternatively, manu-

ally using a clean plastic L-shaped bacterial spreader.

Figure 1. Overview of the cyclic uniaxial cell stretching system

(A) stretchable PDMS plate and its LEGO� adaptors.

(B) Mechanical stretcher and its PDMS plate with adaptors.

(C) System fully assembled.
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b. Degas the mixture for 10 min under vacuum at 190mbar. We routinely use a vacuum concen-

trator in vacuum mode only, at room temperature.

c. Pour the mixture in the casting mold, avoiding bubbles and taking care not to pour over the

central plate of the casting mold which will constitute the bottom of the PDMS plate.

d. Place horizontally in an oven and cure at 80�C for 2 h.

2. Pour and cure intermediate layer. This layer will constitute the bottom of the plate in contact with

cells. The investigator should experimentally assess the stiffness required for its own experi-

mental setup and we provide the protocol for a standard 1:40 ratio mixture.

a. Prepare 40 mL of a 1:40 (w:w) ratio mixture of curing agent to PDMS for each PDMS plate to be

cast. Mix extensively either using a magnetic bar and a magnetic stirrer or alternatively, manu-

ally using a clean plastic L-shaped bacterial spreader.

b. Degas the mixture for 10 min under vacuum as previously.

c. Pour the mixture in the casting mold over the previous layer avoiding creating bubbles. This

layer should cover the central plate.

d. Place horizontally in an oven and cure at 80�C for 2 h.

3. Pour and cure top layer. This thin layer is only present to prevent the stickiness of the intermediate

layer

a. Prepare 5 mL of a 1:20 (w:w) ratio mixture of curing agent to PDMS for each PDMS plate to be

cast. Mix extensively either using a magnetic bar and a magnetic stirrer or alternatively, manu-

ally using a clean plastic L-shaped bacterial spreader.

b. Degas the mixture for 10 min under vacuum as previously.

c. Pour the mixture in the casting mold over the previous layer avoiding creating bubbles. This

layer should cover the central plate.

d. Place horizontally in an oven and cure at 80�C for 2 h.

4. Disassemble the casting mold and peel the PDMS plate off the base plate. Such a thick PDMS

plate is quite resistant to tear, however, pay attention and caution to the corners of the PDMS

plate when peeling off to prevent tearing (Figure 2G).

CRITICAL: It is critical to mix properly and extensively the PDMS mixture since the two

components are quite viscous and do not mix well. Improper mixing will result in heterog-

enous mixture that will create zones of different stiffnesses. It is particularly critical to

ensure the casting mold is placed horizontal in the oven. Use a bubble level to check hor-

izontality if required. It is also preferable to avoid making bubbles when pouring the liquid

mixture in the casting mold. Proceed continuously and slowly when pouring. Finally, as

indicated pay extra-caution to the corners of the PDMS plate when peeling off as these

may tear upon excessive pulling (Figures 2E–2G).

Pause point: It is possible to pause the protocol at any step of the PDMS plate production.

Note: On the choice of PDMS formulation and associated stiffness, we have tested formula-

tions ranging between 1:40 to 1:60 (w:w) ratios and we can certify that those allow stretching

of the PDMS plate by the mechanical stretcher. Softer formulations (1:n>60) would most likely

allow stretching as well although we cannot certify them since we have not tested them. Addi-

tionally, investigators should figure out which stiffness would be appropriate to conduct their

experiment. Parameters include organ of origin of the cells and its physiological stiffness,

experimental assessment of the behavior and fate of the cells on various PDMS surfaces, etc.

In case of use of a 3D printedmold, the user should also verify that the material used for the mold will

not have any adverse effect on the experiment such as cytotoxicity, autofluorescence, etc.

Functionalization and coating of the PDMS plate

Timing: 1 h
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Figure 2. PDMS plate casting mold assembly and PDMS plate casting

(A) PDMS casting mold disassembled.

(B)Casting mold assembled.

(C) PDMS casting mold with fully cured PDMS plate still assembled.

(D) disassembled casting mold with PDMS plate.

(E) zone of potential corner rupture upon excessive pulling during PDMS plate unmolding.

(F) unmolding of the PDMS plate.

(G) example of ruptured PDMS plate.
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The goal of this step is to chemically functionalize and coat the surface of the PDMS plate with an

extracellular matrix (ECM) protein, fibronectin in this particular case, or any other adhesion molecule

for the cells to attach to the culture surface. The functionalization and coating should be carried out

just prior to cell seeding.

5. Silanization of the surface of the PDMS plate. All manipulations should be carried out under a

chemical hood and waste disposed of properly through appropriate chemical waste.

a. Prepare 2 mL of a 20% dilution of APTES in absolute ethanol per plate under a chemical hood.

Cover the surface of each PDMS plate with this solution and incubate for 5 min. Remove excess

of solution and dispose in chemical waste. Wash twice with 4 mL of absolute ethanol.

b. Air dry the PDMS plate in a chemical hood

6. Coating of the surface of the PDMS plate with fibronectin

a. Prepare 3 mL of a 10 mg/mL of fibronectin from bovine plasma in PBS containing 0.05% EDC

(w/w).

b. Immediately add the solution to the surface of the silanized PDMS plate and incubate for

30 min at room temperature.

c. Wash twice with PBS. Cover with PBS until the plate is used.

Optional: At this step, it is possible to irradiate the PDMS plates with germicidal UV for 30 min

in order to prevent bacterial contamination.

Note: All manipulations with APTES should be carried out under a chemical hood.

The functionalization of the PDMS plate should be carried out just prior cell plating.

Pause point: It is not recommended to pause at this point, the functionalized PDMS plates

should be used immediately and should not be stored for future use.

Cell growth on the PDMS plate

Timing: 12 h

The goal of this step is to grow cells on the PDMS plate prior to stretching.

7. Cell splitting

a. We routinely use HeLa cells or fibroblasts. Wash cells with PBS on the tissue culture plate.

b. Incubate cells with trypsin EDTA (0.05%) for a few minutes at 37�C. Check cell rounding and

detachment under a microscope.

c. Harvest cells in complete medium (see recipe in Material and Equipment section).

8. Cell seeding on the PDMS plate

a. The surface of one PDMS plate is half (40 cm2) that of a 100 mmpetri dish. Plate the required num-

ber of cells on the PDMSplate in amaximumof 4mLof complete growthmedium.We recommend

cells to be 90% confluent at the time of stretching so seed the cells accordingly. For HeLa cells, we

would recommend seeding 4 to 5 million cells 12 h prior to stimulation. For immunofluorescence

on individual cells, 500 000 cells would constitute a starting point. Troubleshooting 1 and 2

Note: In this example, we used epithelial HeLa cells but other cell types can be used such as

fibroblasts (NIH 3T3 and murine dermal fibroblasts have been used successfully). Some cell

types turned out to be more difficult to use such as bovine aortic endothelial cells for instance.

It may be challenging to manipulate the PDMS plate out of the incubator. We routinely use SDS-

PAGE glass plates to accommodate the PDMS plate. We use one clean large glass plate as a support

for the PDMS plate and a small plate as a lid (Figure 3).

ll
OPEN ACCESS

STAR Protocols 2, 100437, June 18, 2021 7

Protocol



Cell stretching on the mechanical stretcher

Timing: Variable from several minutes to a few hours

The goal of this step is to mount the PDMS plate on the LEGO� mechanical stretcher and to apply

cyclic uniaxial stretch to the cells.

9. Fit the LEGO� adaptors to the PDMS plate (Methods video S1)

a. Carefully adjust the jaws of the adaptors on the PDMS plate as shown in Figure 4 and Methods

video S1.

b. Firmly press the two parts against each other and insert the pins as indicated.

c. Repeat the procedure with the other adaptor

10. Mount the PDMS plate on the mechanical stretcher using the LEGO� adaptors (Methods video

S2)

11. Perform cyclic uniaxial cell stretching (Methods video S2).

a. Place the stretcher in the incubator (Figure 4F).

b. Plug the battery box.

c. Switch the system on to start stretching, monitor time. Troubleshooting 3

EXPECTED OUTCOMES

The expected outcome of the stretching experiment is a cellular response that includes, depending

on the duration of the stimulation, cell reorientation, cell adhesion complexes reorganization and

Figure 3. Practical handling of the PDMS plate for cell culture

(A and B) The PDMS plate is handled between two glass plates.
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mechanical signaling pathway activation. Here, we will describe a few assays or techniques that we

validated and can be used to monitor the outcome of the experiment.

Cell lysis and biochemical assay or Western blotting

Following cell stretching, cells can be lysed directly on the PDMS plate to either perform a biochem-

ical assay such as a GST-RBD pull-down assay or undergoWestern blotting. To monitor the outcome

of the experiment we routinely monitor RhoA activity using a GST-RBD pull-down assay (Boulter

et al., 2020)

Fixed cell imaging

Alternatively, cells can be fixed directly on the PDMS plate prior to permeabilization and staining.

We previously performed cell fixation on the PDMS plate using a solution of paraformaldehyde

3.7%, sucrose 100mM in PBS for 30min at 37�C.Other fixation protocols will require to be validated.

It is then possible to perform cell staining like on glass coverslips. The bottom of the PDMS plate is

cut out from the PDMS plate and can be chopped into smaller pieces for immunostaining. The PDMS

piece is turned upside-down and immunostaining is done directly at the surface of the PDMS accord-

ing to the user’s protocol. At the end of the immunostaining, the piece of PDMS is mounted directly

on a 22 3 60 mm #1 coverslip using any mounting medium (we routinely use mowiol). The coverslip

can then be observed and imaged on an inverted wide-field or confocal microscope.

When performing immunofluorescence staining, we recommend cutting out the whole bottom of

the PDMS plate. It is still possible to reuse the PDMS plate by casting a new bottom surface with

adequate formulation.

Nucleic acid purification

We did not test DNA or RNA purification at this point, therefore, we cannot advise on this assay.

LIMITATIONS

While there are a number of advantages associated with LEGO� building such as design versatility

or parts availability, this type of design also harbors some inherent limitations due to the nature of

LEGO� bricks themselves. In addition, the specific design of the stretcher which was intended to be

as simple, cheap, and easy to use as possiblemay also contribute to some of its limitations. Generally

speaking, the stimulation parameters of the stretcher are within the range of that of commercially

available systems but remain restricted to a fraction of this range. For instance, the form of stimula-

tion remains limited to a sine wave while it is much more versatile in commercial systems, the range

of frequency can only be adjusted by step increments between 200 mHz and 1 Hz (as compared to

0.01 to 5 Hz for commercial systems), etc. (Table 1).

Another limitation comes from the PDMS plate which stiffness can only be adjusted within a limited

range (1:40 to 1:60 w:w curing agent to PDMS ratio). This is mostly due to the design of the PDMS

plate which requires some extensive structural support and a specific stiffness range to both prevent

its unintended deformation at rest and allow its extension upon stimulation.

It is however noteworthy that this possibility to slightly adjust the stiffness of the plate remains an

exclusivity from our system that is usually unavailable in commercially available systems. Trouble-

shooting 4 and 5

Figure 4. Preparation of the PDMS plate for mechanical stretching

(A) individual elements required to assemble one adaptor.

(B) partially assembled adaptor.

(C and D) sPDMS plate with one adaptor attached to one side.

(E) fully fitted PDMS plate attached to the mechanical stretcher via the adaptor.

(F) entire system ready to stretch in a CO2 incubator.
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TROUBLESHOOTING

Problem 1

Issue with cell adhesion.

The usual symptom is that cells are sitting at the bottom of the plate but are not attached to the sur-

face which can be tested by slightly shaking the plate sideways to observe if cells are immobile (Fig-

ure 5). This issue most likely arises from improper surface coating which prevents cells from adhering

to the PDMS plate. It is not to be confused with defective cell spreading which may rise from other

issues.

Potential solution

If surface coating has previously been successfully achieved at such a concentration of surface pro-

tein, this most likely means that this particular coating was faulty. From our experience this is gener-

ally due to the decay of the crosslinker which is a highly reactive species. We suggest trying again

with a new batch of crosslinker.

Problem 2

Issue with cell spreading.

This is not to be confused with defective cell adhesion although it may initially look the same under

the microscope. Here, the cells are attached to the bottom of the plate but fail to spread properly.

Potential solution

This issue may arise from the stiffness of the plate that is incompatible with proper cell spreading.

This is a complicated issue to fix since it is highly dependent on the inner properties of the cells

and adjustments are limited. We would generally suggest increasing stiffness by decreasing the

curing agent to PDMS ratio to 1:40.

Alternatively, it is also possible that the surface coating was carried out with a concentration of

coating protein too low resulting in extreme ligand spacing preventing cell spreading. Try increasing

protein concentration.

If the ligand concentration has been successfully used before, the issue may arise from the activation

of the PDMS surface. It is then possible to activate the PDMS prior to silanization using an O2 plasma

cleaner.

Figure 5. Examples of proper/improper attachment or spreading to the PDMS plate

scale bar is 100 mm.
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Problem 3

No measurable cellular response to mechanical stretching.

It may happen to have no measurable cellular response at the end of the stretching experiment.

Potential solution

First, we noticed that different cells may have different response amplitude to stretch, for instance,

we obtained strong and reliable RhoA activation in HeLa cells while this response was fainter in fibro-

blasts. There is no definitive guide to these cell-to-cell differences, but this should be taken into

consideration and experienced by the end user. Also, the stimulation regimenmay require some ad-

justments in order to obtain the appropriate cellular response, such as stretch frequency or ampli-

tude. This can be achieved by modifying the gearbox or liftarm length.

Problem 4

The stimulation parameters need to be adjusted to fit the user’s requirements.

Potential solution

It is possible to adjust both the frequency and potentially the stretch extent of the device. To change

the frequency of the stimulation, the gearbox can be modified to adjust the frequency by step incre-

ments between 0.2 and 1 Hz (Boulter et al., 2020). It is more complicated to adjust the extent of

stretch. This requires modifying the length of themain arm by replacing an axle by a longer or shorter

axle. One possibility is to build different stretchers with different axle length. Alternatively, one can

change the main arm to replace it with a different pre-assembled arm. This procedure is more intri-

cate because some parts of the main arm need to be glued together, therefore individual parts

cannot just be swapped and a full new arm needs to be preassembled. Methods videos S3 and

S4 present the procedure to remove and replace the main arm. Please note that while the gearbox

modifications are very reproducible, main armmodifications generally require de novo characteriza-

tion of the stretcher.

Problem 5

Modifications of the stretcher have been carried out and it needs to be characterized or calibrated.

Alternatively, the user may want to perform a quality control check on the performances of its device.

Potential solution

The stretcher needs to be calibrated by characterizing its motion. Using a permanent black ink

marker, the user needs to add a dot on top of the main arm as a marker (see Methods video S1).

A second dot can be added on a steady part of the stretcher as control for vibrations. Add a

PDMS plate on the stretcher and operate the stretcher. Position a ruler by the side of the stretcher

to calibrate distances. Video record the stretcher in action from the top in order to record the move-

ment of the dots (such as in Methods video S1). Download the free Tracker tool (see KRT). Load the

movie to the Tracker software. Calibrate distances using Trajectories>New>Calibration Tools>Ca-

libration ribbon, measure the distance on the ruler using the ribbon and enter the actual measure-

ment and unit. Define the tracking dot: Trajectories>New>Point Mass, shift-click on the dot to track.

Open the autotracker feature, control-shift-click on the dot to track. Adjust tracking parameters and

click search to automatically track the motion of the dot. From the motion curves, determine fre-

quency and stretch extent.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Chloé C. Féral (chloe.feral@inserm.fr).
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Materials availability

The LEGO� cyclic uniaxial cell stretcher and PDMS casting molds plans and assembly booklet are

provided with this article or available directly from the authors with latest updates.

Data and code availability

No code was developed. Supplementary File are available at https://data.mendeley.com/datasets/

m594s3s5h7/1.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100437.
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