
Research Article
A Novel Immune-Related Gene Signature Predicts Prognosis of
Lung Adenocarcinoma

Chao Ma ,1 Feng Li,1 Ziming Wang,2,3 and Huan Luo2

1Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
2Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the
Berlin Institute of Health, Berlin, Germany
3Department of Thoracic Surgery, Klinikum Ernst von Bergmann Potsdam, Academic Hospital of the Charité – Universitätsmedizin
Humboldt University Berlin, Potsdam, Germany

Correspondence should be addressed to Chao Ma; chao.ma@charite.de

Received 29 July 2021; Revised 12 December 2021; Accepted 27 February 2022; Published 9 April 2022

Academic Editor: Kenichi Suda

Copyright © 2022 Chao Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Lung adenocarcinoma (LUAD) is the most common form of lung cancer, accounting for 30% of all cases and 40% of
all non-small-cell lung cancer cases. Immune-related genes play a significant role in predicting the overall survival and monitoring
the status of the cancer immune microenvironment. The present study was aimed at finding an immune-related gene signature for
predicting LUAD patient outcomes. Methods. First, we chose the TCGA-LUAD project in the TCGA database as the training
cohort for model training. For model validating, we found the datasets of GSE72094 and GSE68465 in the GEO database and
took them as the candidate cohorts. We obtained 1793 immune-related genes from the ImmPort database and put them into a
univariate Cox proportional hazard model to initially look for the genes with potential prognostic ability using the data of the
training cohort. These identified genes then entered into a random survival forests-variable hunting algorithm for the best
combination of genes for prognosis. In addition, the LASSO Cox regression model tested whether the gene combination can be
further shrinkage, thereby constructing a gene signature. The Kaplan-Meier, Cox model, and ROC curve were deployed to
examine the gene signature’s prognosis in both cohorts. We conducted GSEA analysis to study further the mechanisms and
pathways that involved the gene signature. Finally, we performed integrating analyses about the 22 TICs, fully interpreted the
relationship between our signature and each TIC, and highlighted some TICs playing vital roles in the signature’s prognostic
ability. Results. A nine-gene signature was produced from the data of the training cohort. The Kaplan-Meier estimator, Cox
proportional hazard model, and ROC curve confirmed the independence and predictive ability of the signature, using the data
from the validation cohort. The GSEA analysis results illustrated the gene signature’s mechanism and emphasized the importance
of immune-related pathways for the gene signature. 22 TICs immune infiltration analysis revealed resting mast cells’ key roles in
contributing to gene signature’s prognostic ability. Conclusions. This study discovered a novel immune-related nine-gene signature
(BTK, CCR6, S100A10, SEMA3C, GPI, SCG2, TNFRSF11A, CCL20, and DKK1) that predicts LUAD prognosis precisely and
associates with resting mast cells strongly.

1. Introduction

Lung cancer is the leading cause of tumor-related death world-
wide and ranks second in incidence among malignancies [1].
Lung adenocarcinoma (LUAD) is the most common histolog-
ical type of lung cancer, accounting for approximately 40% of
lung cancer cases [2, 3]. In the past decade, the treatment of
LUAD patients has made great progress, including surgery,

radiotherapy, chemotherapy, or targeted therapy [4, 5]. How-
ever, the outcomes of patients with LUAD recurrence are still
poor [6]. Recent research has confirmed the potential of the
targeted therapy, which blocks the upgrowth of lung cancer
cells by inhibiting the initiation of vital oncogenic molecules
that drive the progression of LUAD [6]. Although targeted
therapy has achieved gratifying results in the early treatment
of LUAD and shown promising potential, drug resistance’s
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existence and continuous development often directly lead to
treatment failure [7, 8]. Therefore, it is still necessary to con-
tinue efforts to optimize predicting methods to improve the
current situation [9].

Recently, some studies have shown that the prediction
model based on RNA sequencing data could precisely pre-
dict the survival of patients with cancers [10–14]. The
immune microenvironment, including immune cells associ-
ated with immune-related genes, has a significant impact on
predicting the prognosis of cancers, including lung cancer
[11, 15]. In the present study, we first developed an
epigenetic-related prognostic signature based on a TCGA
dataset and then validated it in two GEO datasets. Moreover,
we evaluated the prediction ability of the signature via the
Kaplan-Meier estimator, univariate and multivariate Cox
analysis, and ROC curve. More importantly, we further
studied the functional annotation and the immune microen-
vironment characteristics of the gene signature.

2. Materials and Methods

2.1. Public Dataset Selection. We downloaded the level 3 gene
expression data and the clinical characteristics of LUADpatients
from the GDC Xena Hub (project: TCGA-LUAD, https://gdc
.xenahubs.net) and GEO database (datasets: GSE72094 and
GSE68465, https://www.ncbi.nlm.nih.gov/geo/). We excluded
the samples without prognostic record. In the present work,
we listed TCGA-LUAD as a training cohort for model training
and used datasets of GSE72094 and GSE68465 for validating
the model we built. Since the TCGA and GEO databases are
open to researchers, we fully comply with publication guidelines
and database access policies.

2.2. Immune-Related Genes. The Immunology Database and
Analysis Portal (ImmPort, updated: July 2020, https://www
.immport.org/home) [16] is developed under the ImmPort
Contract by the Northrop Grumman Information Technol-
ogy Health Solutions team for the National Institutes of
Health, National Institute of Allergy and Infectious Diseases,
and Division of Allergy, Immunology, and Transplantation.
In this study, we found 1793 unique immune-related genes
in the ImmPort database, which are displayed in Table S1.

2.3. Prognostic Immune-Related Gene Signature Construction
and Validation. The immune-related genes of the training
cohort were put into a univariate Cox proportional hazard
model for the selection of potential prognostic genes
(p < 0:05). Subsequently, the random survival forests-
variable hunting (RSFVH) algorithm was performed on
these potential prognostic genes for further filtering. The
prognosis of the optimized combination of genes was found.
The combination of genes was examined by the LASSO Cox
regression (10-fold cross-validation) to identify a shrinkage
possibility and discover the best penalty parameter
[17–20]. The risk scores were calculated as shown in the fol-
lowing equation:

Risk score = 〠
n

i

Expi ∗ βi: ð1Þ

where n is the number of hub genes; Expi is the gene expres-
sion level; and βi is the coefficient.

According to the median risk score, patients were divided
into low-risk or high-risk groups. Kaplan-Meier estimator was
deployed to compare the survival difference between the high-
and low-risk groups. Based on the patient’s risk score data, we
established univariate and multivariate Cox hazard models
and ROC receiver operating characteristics (ROC curves) in
the training cohort and validation cohort to evaluate the prog-
nostic ability of the gene signature.

2.4. Function Annotated by Gene Set Enrichment Analysis
(GSEA). We conducted GSEA (http://www.broadinstitute
.org/gsea/index.jsp) to identify the possible mechanisms
between high- and low-risk groups in LUAD patients. We
downloaded the HALLMARK gene set collection from the
Molecular Signatures Database (v7.1, https://www.gseamsigdb
.org/gsea/msigdb/genesets.jsp). For each analysis, the number
of permutations was set to 1000 times, and we defined ∣NES
∣ >1, NOM p value <0:05, and FDR q value <0:25 as statisti-
cally significant.

2.5. 22 Tumor-Infiltrating Immune Cells (TICs) Analysis. The
CIBERSORT algorithm was applied to calculate the relative
proportion of 22 TICs in the training cohort [21, 22]. The
Pearson coefficient tested the correlations between 22 TICs.
In order to determine the relationship between 22 TICs
and signatures, we conducted a comprehensive analysis
including Spearman’s coefficient and Wilcoxon rank sum
test. Additionally, we used univariate Cox proportional haz-
ard models and Kaplan-Meier estimators to evaluate the
prognostic ability of each TIC. In the end, we combined
the above analysis results and tried to find out potential can-
didate TICs that play vital roles in the prognostic ability of
the gene signature.

2.6. Statistical Analysis. The RSFVH algorithm was imple-
mented with the “randomForestSRC” R package. We used
the “glmnet” R package for performing the LASSO regres-
sion analysis. Kaplan-Meier estimator was built by applying
the “survival” and “survminer” R packages. Also, the
“survival” R package construed the Cox proportional hazard
models. In addition, the “pROC” R package helped in plot-
ting the ROC curves. In the present study, p value <0:05
indicates statistical significance.

3. Results

3.1. Cohorts’ Characteristics. The present study’s flow dia-
gram is displayed in Figure 1. We took 500 LUAD cases from
the TCGA-LUAD into the training cohort for model training.
The datasets of GSE72094 (n = 442) and GSE68465 (n = 443)
were chosen for model validating. In addition, we collected
the clinical characteristics from these cohorts and showed
them in Table 1.

3.2. Construction of a Prognostic Immune-Related Gene
Signature. We performed overall survival-based univariate
Cox analysis on the LUADs in the training cohort to screen
1,793 immune genes and found that 267 of them have
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potential prognostic significance (Table S2 and Figure 2(a)).
Subsequently, from the 267 genes, we screened out top 20
genes (DKK1, VEGFC, INSL4, F2RL1, RFXAP, FCGRT,
CCR6, S100A10, SHC1, SEMA3C, OXTR, BTK, PSMC1,
CCL20, FURIN, PSMD2, ADIPOR2, TNFRSF11A, SCG2,
and GPI) by the random forest-supervised classification
algorithm (Figure 2(b)). Since 20 genes can form a total of
220 − 1 = 1,048,575 signatures, we used Kaplan-Meier
analysis to further evaluate the above signatures to screen for
the best one. By assessing the p values in the log-rank test of
these 1,048,575 signatures, we discovered a nine-gene
signature comprising DKK1, CCR6, S100A10, SEMA3C,
BTK, CCL20, TNFRSF11A, SCG2, and GPI ranked top
(Figure 2(c)). We listed the top 1000 signatures in Table S3.
Furthermore, a LASSO Cox model was built using the above
nine genes to check whether further minimizing the number
of genes was possible (Figure 3(a)). And we found that when

all nine genes were present, the LASSO Cox model could
achieve its best state (Figure 3(b)). Table 2 shows the
regression coefficient of each gene.

3.3. Validating the Prognostic Capacity of the Nine-Gene
Signature. According to the median risk score, LUADs were
assigned to a high-risk group or a low-risk group. In
Figure 4, we showed the specific distribution of risk scores,
the distribution of patients’ survival status and survival time,
and the expression distribution of genes in the signature in
the high- and low-risk groups. Besides, we checked the nine-
gene signature’s distribution overall view along with the distri-
butions of survival status, survival times, and signature’s gene
expression in a five-year period (Figure S1) and found a highly
consistent pattern with those shown in Figure 4.

Kaplan-Meier estimators found significant survival dif-
ferences between high- and low-risk groups in all the cohorts

Validation
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(TCGA-LUAD, 500 cases)

Univariate cox regression 
analysis identified 267
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Figure 1: Flowchart of the critical step in the study. LASSO: the least absolute shrinkage and selection operator Cox regression model;
RSFVH: random survival forests-variable hunting algorithm; ROC: receiver operating characteristic; LUAD: lung adenocarcinoma; TICs:
tumor-infiltrating immune cells.
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we have tested. In specifically, the high-risk patients suffered
unfavorable outcomes in TCGA-LUAD (p value < 0.0001,
Figure 5(a)), GSE72094 (p value = 0.0011, Figure 5(b)), and
GSE68465 (p value = 0.0099, Figure 5(c)). Consistently, in
the five-year overall survival-based Kaplan-Meier estimators,

the high-risk groups exhibited a poorer prognosis than the
low-risk groups (Figure S2).

In order to test the prognostic ability and independence
of gene signature, we established univariate and multivariate
Cox proportional hazard models (Figure 6) in all cohorts in

Table 1: Clinical characteristics of patients involved in the study.

Characteristics
Training cohort

(TCGA-LUAD, 500 cases)
Validation cohort

(GSE72094, 442 cases)
Validation cohort

(GSE68465, 443 cases)

Age

<65 219 (43.8%) 115 (26.02%) 214 (48.31%)

≥65 271 (54.2%) 306 (69.23%) 229 (51.69%)

Unknown 10 (2%) 21 (4.75%) 0

Gender

Female 270 (54%) 240 (54.3%) 220 (49.66%)

Male 230 (46%) 202 (45.7%) 223 (50.34%)

T classification

T1 167 (33.4%) NA 150 (33.86%)

T2 267 (53.4%) NA 251 (56.66%)

T3 45 (9%) NA 28 (6.32%)

T4 18 (3.6%) NA 12 (2.71%)

Unknown 3 (0.6%) NA 2 (0.45%)

N classification

N0 324 (64.8%) NA 299 (67.49%)

N1 94 (18.8%) NA 88 (19.86%)

N2 69 (13.8%) NA 53 (11.96%)

N3 2 (0.4%) NA 0

Unknown 11 (2.2%) NA 3 (0.68%)

M classification

M0 332 (66.4%) NA NA

M1 24 (4.8%) NA NA

Unknown 144 (28.8%) NA NA

Tumor stage

Stage I 268 (53.6%) 265 (59.95%) NA

Stage II 119 (23.8%) 69 (15.61%) NA

Stage III 80 (16%) 63 (14.25%) NA

Stage IV 25 (5%) 17 (3.85%) NA

Unknown 8 (1.6%) 28 (6.33%) NA

Race

White 386 (77.2%) 399 (90.27%) 295 (66.59%)

Black or African American 52 (10.4%) 13 (2.94%) 12 (2.71%)

American Indian or Alaska native 1 (0.2%) 0 1 (0.23%)

Asian 7 (1.4%) 3 (0.68%) 6 (1.35%)

Unknown 54 (10.8%) 27 (6.11%) 129 (29.12%)

Ethnicity

Hispanic or Latino 7 (1.4%) 10 (2.26%) NA

Not Hispanic or Latino 381 (76.2%) 402 (90.95%) NA

Unknown 112 (22.4%) 30 (6.79%) NA

Vital status

Alive 318 (63.6%) 298 (67.42%) 207 (46.73%)

Dead 182 (36.4%) 122 (27.6%) 236 (53.27%)

Unknown 0 22 (4.98%) 0

4 BioMed Research International



this section and incorporated available factors into these
models, which included risk score, gender, age, race, tumor
stage, ethnicity, T classification, or N classification. The
Cox models established based on the TCGA-LUAD cohort
data showed that the gene signature was a powerful prognos-
tic factor, whether in univariate (p value = 4.77E-20) or mul-
tivariate (p value = 1.00E-14) analysis. Similarly, we found
that gene signature showed strong and stable prognostic
ability in all established Cox models in the two validation
cohorts (p value ≤ 4.33E-02). The above results have
exhibited that whether it was tested in the training cohort
or the validation cohorts and whether it underwent through

univariate or multivariate Cox analysis, the gene signature
we found showed stable, independent, and powerful prog-
nostic ability.

The ROC curves were established to evaluate the
capacity of the nine-gene signature in the LUAD outcome
predicting. Figure 7(a) shows the ROC curve we built using
the training cohort data. Through comparison, we found
that the AUC of the gene signature reached 0.735, which
is the highest value among all clinical characteristics.
Figure 7(b) confirmed the superiority of the gene signature
in the validation cohort of GSE72094. In this model, the
risk score AUC reaches 0.685, which topped among all

−2 −1 0 1 2

0

2

4

6

8
Volcano plot of the univariate cox regression analysis

−l
og

10
 (P

 v
al

ue
)

Univariate cox coefficient

(a)

0.000 0.002 0.004 0.006 0.008

GPI
SCG2

TNFRSF11A
ADIPOR2

PSMD2
FURIN
CCL20

PSMC1
BTK

SEMA3C
SHC1

S100A10
CCR6

RFXAP
F2RL1
INSL4

VEGFC
DKK1

Random survival forest analysis screened 20 genes

FCGRT

OXTR

Variable importance

(b)

0
0
0
0
0
0
0
0
0
0
0
1.11E-16
1.11E-16
1.11E-16
1.11E-16
1.11E-16
1.11E-16
1.11E-16
1.11E-16

DKK1|CCR6|S100A10|SEMA3C|BTK|CCL20| TNFRSF11A|SCG2| GPI
DKK1| F2RL1|CCR6|SEMA3C|PSMC1|CCL20|ADIPOR2| TNFRSF11A|SCG2| GPI
F2RL1|RFXAP| FCGRT |CCR6|PSMC1|CCL20|PSMD2|ADIPOR2|SCG2| GPI
DKK1| F2RL1| FCGRT |CCR6|SEMA3C|PSMC1|CCL20|ADIPOR2| TNFRSF11A|SCG2| GPI
DKK1|CCR6|S100A10|SEMA3C| OXTR|BTK|CCL20|PSMD2| TNFRSF11A|SCG2| GPI
DKK1|S100A10|SHC1|SEMA3C| OXTR|BTK|CCL20|ADIPOR2| TNFRSF11A|SCG2| GPI
F2RL1|RFXAP|CCR6|S100A10|PSMC1|CCL20| FURIN|PSMD2|ADIPOR2|SCG2| GPI
INSL4| F2RL1|RFXAP|CCR6|S100A10|PSMC1|CCL20| FURIN|PSMD2|ADIPOR2|SCG2| GPI
F2RL1|RFXAP| FCGRT |CCR6|S100A10|PSMC1|CCL20| FURIN|PSMD2|ADIPOR2|SCG2| GPI
DKK1|CCR6|S100A10|SHC1| OXTR|BTK|CCL20| FURIN|PSMD2|ADIPOR2| TNFRSF11A|SCG2| GPI
DKK1| INSL4|CCR6|S100A10|SHC1| OXTR|BTK|CCL20| FURIN|PSMD2|ADIPOR2| TNFRSF11A|SCG2| GPI
DKK1|SHC1| OXTR|BTK|CCL20|PSMD2| TNFRSF11A|SCG2| GPI
INSL4| F2RL1|RFXAP|CCR6|PSMC1|CCL20|ADIPOR2| TNFRSF11A| GPI
DKK1| INSL4|CCR6|S100A10|SEMA3C|BTK|CCL20| TNFRSF11A|SCG2| GPI
DKK1| F2RL1| RFXAP |CCR6|SEMA3C|CCL20|ADIPOR2| TNFRSF11A|SCG2| GPI
DKK1|SHC1| OXTR|BTK|CCL20| FURIN|PSMD2| TNFRSF11A|SCG2| GPI
CCR6|S100A10|SHC1|SEMA3C|BTK|CCL20| FURIN|PSMD2| TNFRSF11A|SCG2
DKK1| INSL4| F2RL1| FCGRT |CCR6|SHC1|PSMC1| FURIN|ADIPOR2| TNFRSF11A|SCG2
DKK1| FCGRT |S100A10|SHC1|SEMA3C| OXTR|BTK|CCL20| TNFRSF11A|SCG2| GPI

Number of genes Logrankp-value Gene combination

9 genes
10 genes
10 genes
11 genes
11 genes
11 genes
11 genes

11 genes
11 genes

12 genes
12 genes
13 genes
14genes

9genes
9genes

10genes
10genes
10genes
10genes

Top 20 signatures screened by kaplan–meier analysis

(c)
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of the univariate Cox regression analysis. (b) Random survival forest analysis screened 20 genes. (c) After performing KM analysis on
220 − 1 = 1,048,575 combinations, the log-rank p value sorted the top 20 signatures. The selected signature included nine genes. KM:
Kaplan-Meier.
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factors. Finally, Figure 7(c) showed that the gene signature
AUC reached 0.684, better than the second-ranked N clas-
sification (AUC = 0:656).

3.4. GSEA. In order to learn more about the mechanism and
related pathways of the gene signature, we conducted the
GSEA enrichment analysis between the high-risk group
and the low-risk group based on the risk score of each case
in the TCGA cohort. As shown (Figure 8 and Table S4),
the enriched gene sets were all detected in the high-risk
group and primarily involved in mechanism associated
with glycolysis, mTORC1, MYC, hypoxia, unfolded protein
response, estrogen, G2/M checkpoint, E2F, and reactive
oxygen species.

3.5. 22 TICs Analysis. The GSEA analysis suggested that the
difference between the two groups was related to the
immune response, so we conducted 22 TIC analysis to fur-
ther learn the interactions between the signature and the
immune microenvironment. We run the CIBERSORT algo-
rithm to calculate the relative content of 22 TICs in each

patient in the TCGA cohort. As shown in Figure S3, we
used the R software to output the 22 TIC visualization
panorama and calculate the correlation of each two TICs.

After combining the results from the Wilcoxon rank sum
test (Figure 9(a)) and Spearman’s coefficient (Figure 9(b) and
Table S5), we found nine TICs (Figure 9(c)), including
macrophage M0, mast cell resting, mast cell activated, T cell
CD4 memory resting, neutrophils, dendritic cell resting,
dendritic cell activated, T cell CD8, and B cell memory, that
were determined to be associated with the nine-gene
signature. Among them, macrophage M0, mast cell activated,
neutrophils, and dendritic cell activated positively correlated
with risk score while the remaining negatively.

Also, to confirm each TIC’s prognostic ability, the
Kaplan-Meier estimator and univariate Cox proportional
hazard model were further built. The results of the univari-
ate Cox proportional hazard model shown in Figure 10 con-
firmed that mast cell resting and mast cell activated can
significantly affect the patient’s prognosis. The Kaplan-
Meier estimator (Table S6) emphasized that mast cell
resting and dendritic cell resting can clearly distinguish the
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Figure 3: Combination of nine prognostic genes tested in the LASSO regression model. (a) Cross-validation for tuning parameter screening
upon LASSO regression analysis. (b) Screening of optimal parameter (lambda) at which the vertical lines were drawn. LASSO: the least
absolute shrinkage and selection operator Cox regression model.

Table 2: Immune-related prognostic genes with risk coefficient obtained from LASSO Cox regression model.

Gene symbol Description
Risk

coefficient
Category

BTK Bruton tyrosine kinase -0.219628874 BCR signaling pathway

CCR6 C-C motif chemokine receptor 6 -0.176444716
Antimicrobials, Chemokine_Receptors, and

Cytokine_Receptors

S100A10 S100 calcium binding protein A10 0.109696741 Antimicrobials

SEMA3C Semaphorin 3C 0.11695307 Chemokines and cytokines

GPI Glucose-6-phosphate isomerase 0.132449603 Cytokines

SCG2 Secretogranin II 0.188369623 Cytokines

TNFRSF11A TNF receptor superfamily member 11a 0.229854137 Cytokine_Receptors and TNF_Family_Members_Receptors

CCL20 C-C motif chemokine ligand 20 0.272150603 Antimicrobials, chemokines, and cytokines

DKK1 Dickkopf WNT signaling pathway inhibitor 1 0.339588505 Cytokines
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survival difference from LUAD patients. In the light of the
results of Cox analysis and Kaplan-Meier estimator, mast
cell resting has the potential prognostic ability in LUAD.

In view the correlation result of this section, we noticed
that mast cell resting was closely related to the gene signa-
ture. Furthermore, survival analyses, including Cox and
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Figure 4: The overall distributions of the risk score (upper), survival status (middle), and gene expression profiles (bottom) of the nine-gene
signature in the training (a) and validation (b and c) cohorts.
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Kaplan-Meier analyses, also confirmed that mast cell resting
could predict the LUAD prognosis. Accordingly, it is not dif-
ficult to infer that the significant infiltration from mast cell
resting may play a vital role in the gene signature’s prognos-
tic power in LUAD patients.

4. Discussion

In this research, we found an immune-related nine-gene sig-
nature for predicting the LUAD prognosis by mining public
datasets from the TCGA and GEO. Univariate Cox analysis
was adopted to screen the immune-related potential progno-
sis genes using the data of the TCGA-LUAD dataset. Then,
the RSFVH and LASSO models were built on these progno-
sis genes, and a nine-gene signature was constructed which
was associated with LUAD prognosis. Univariate and multi-
variate Cox proportional hazard model, ROC curves, and
Kaplan-Meier estimator were further used to test the prog-
nosis ability of the gene signature in the validation cohorts.
The validation results showed that the signature we found
strongly predicted LUAD outcomes. The function annota-
tion analysis detailed vital mechanism associated with the
signature. TIC results displayed that mast cell resting may
act as a backbone for the signature’s prognosis ability. Com-
pared with previous studies, our work is innovative. This
study incorporated three cohorts, immune-related genes,
RSFVH, LASSO, Cox model, Kaplan-Meier estimator, and
ROC curve for processing. Our findings will help LUAD’s
in-depth research.

The signature we have found exhibited stable prognostic
ability in all three cohorts. The signature consists of nine
genes (Table 2), including BTK, CCR6, S100A10, SEMA3C,
GPI, SCG2, TNFRSF11A, CCL20, and DKK1. In our

research, BTK and CCR6 were showing favorably influence
on LUAD prognosis, while the remaining genes showed
adverse effects on the outcome. It has been studied that the
expression of BTK is correlated with clinic characteristics
(tumor staging and metastasis) negatively and related to
the survival of LUAD patients positively, and BTK may be
responsible for maintaining the immunodominant state of
the tumor microenvironment [23]. CCR6 has been shown
to be related to cancerous adrenal that developed lung
metastases. However, there is no direct evidence on whether
CCR6 in tumors is a prognostic marker for LUAD patients’
survival [24, 25]. In many cancers, S100A10 has been dem-
onstrated to play a vital role in promoting tumorigenesis.
The overexpression of S100A10 is related to the poor prog-
nosis of lung cancer. Recent studies have determined that
S100A10 is one of the three gene expression characteristics
that independently predict LUAD survivals [26–28]. The
expression of SEMA3C is related to tumor progression,
and it has been reported that SEMA3C is directly associated
with the poor prognosis of lung cancer, breast cancer, gastric
cancer, and ovarian cancer [29, 30]. In many cancers includ-
ing lung cancer, increased SEMA3C expression is related to
unfavorable prognosis and tumor progression [29, 30]. In
the past decade, more and more studies have been con-
ducted showing that different GPI-anchored proteins are
profoundly involved in many cancers. However, it is not
clear how GPI plays a role in the progression and outcome
of LUAD [31]. It has been known that TNFRSF11A is
related to glioma and breast cancer in existing studies, but
its relationship with lung cancer is still unclear [32, 33].
Wang et al. [34] found that IL-1β can stimulate lung cancer
cells to produce CCL20 by activating the MAPK and PI3K
signaling pathways, and the autocrine of CCL20 can
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Figure 5: Kaplan-Meier estimator evaluating the prognosis capacity of the nine-gene signature in the training (a) and validation (b and c)
cohorts. The bottom part indicates the number of patients at risk. The two-sided log-rank test measured the differences between the high-
and low-risk groups with a p value < 0.05.
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promote the migration and proliferation of lung cancer cells
by initiating the ERK and PI3K signaling pathways. CCL20
has the potential to become a new therapeutic target for lung
cancer [34]. Kimura et al. presented that the cytoskeleton-
associated protein 4 of the DKK1 receptor mediates DKK1
signaling to promote cancer cell proliferation through the
PI3K/AKT pathway and is correlated with the poor out-
comes of lung cancer patients [35]. J. Zhang et al. concluded
that DKK1 boosts the invasion and migration of non-small-
cell lung cancer through the β-catenin signaling pathway
[36]. It is worth noting that, according to previous reports,
no evidence has been found that SCG2 is related to tumors
or LUAD, so it is very likely that SCG2 is a potential new tar-
get, which is worthy of further research.

The GSEA results displayed that the gene sets about gly-
colysis, mTORC1, and MYC were top enriched. Glycolysis is
a cytoplasmic pathway which breaks down glucose into two
three-carbon compounds and generates energy [37]. Since
the German scientist Otto Warburg put forward the
“Warburg hypothesis” called the “Warburg effect,” people
have known that there is a link between aerobic glycolysis
and tumorigenesis for decades [38, 39]. Glycolysis has been
proven to induce tumor cell proliferation and metastasis,
by stimulating DNA mutation and peroxide production
[40, 41]. Lung cancer cells that consume a lot of glucose

can interfere or block the nutrient supply of neighboring
normal cells [40, 41]. PKM2 was confirmed to be highly
expressed and secreted in lung cancer cells and clinical sam-
ples [42]. mTOR, a pathway, is seen as dysregulated in many
diseases including lung cancer [43, 44]. Studies have shown
that inhibiting mTOR signaling can destroy angiogenesis,
induce apoptosis and autophagy, and also block tumor cell
progression [43, 44]. The activation of mTORC1 can regulate
DNA damage, enhance nucleotide synthesis, help protein syn-
thesis, accelerate body metabolism, and promote cell survival
[45, 46]. Therefore, targeting mTOR is an attractive and
promising strategy for developing therapeutic agents for lung
cancer [44]. MYC family oncogenes are dysregulated in more
than 50% of human cancers, and this dysregulation is usually
associated with poor prognosis and poor patient survival [47].
Recent studies have shown that the expression and function of
MYC potentially help develop new cancer treatments [48].
The MYC oncogene is usually amplified in cells grown from
lung tumors [49]. Studies have shown that drug-like molecules
can inhibit the activation of MYC, thereby causing tumors in
the body to be suppressed [48]. The transfection of MYC
enhanced the in vitro proliferation rate of human small-cell
lung cancer cells [49].

In addition, based on the CIBERSORT algorithm and
survival analysis, we uncovered that mast cell resting owns
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Figure 6: Univariate and multivariate Cox proportional hazard models built for testing the predicting ability of the nine-gene signature in
three studied cohorts. ∗Hispanic or Latino vs. non-Hispanic or Latino. HR: hazard ratio; CI: confidence interval.
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clear correlations with the gene signature and strong prog-
nostic abilities as well, indicating that the infiltration of these
cells plays a key role in the gene signature’s predictive power.
Mast cells are a type of white blood cells, which are found in
the connective tissues throughout the body, especially sub-
cutaneous, near blood vessels and lymphatic vessels, nerves,
lungs, and intestines [50]. Mast cells contain granules rich in
histamine and heparin and are part of the immune and neu-

roimmune system [50]. Mast cells in peripheral blood also
play a role in tumor invasion, proving their role in regulating
tumor biology [51]. Crosstalk between mast cells and other
tumor-infiltrating cells seems to be a potential target for
anticancer therapy [51]. The increase in mast cells in the
tumor environment is associated with poor prognosis,
increased metastasis, and reduced survival rates for several
human cancers [51]. Welsh et al. reported that in non-
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Figure 7: ROC curves constructed for examining the predictive ability of the nine-gene signature in the training (a) and validation (b and c)
cohorts. ROC: receiver operating characteristic; AUC: area under the ROC curve; Tclass: T classification; Nclass: N classification.
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Figure 8: Top enriched item of GSEA performed with the nine-gene signature in LUAD using HALLMARK collection. ∣NES ∣ >1, NOM
p value < 0.05, and FDR q value <0.25 are set as the significance threshold. GSEA: gene set enrichment analysis.
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small-cell lung adenocarcinoma, the number of mast cells in
the tumor stroma has nothing to do with tumor progression,
while the increase in the number of mast cells in the islets of

tumor cells is associated with a favorable prognosis [52].
Reducing mast cells number is a therapeutic approach in
macrocytosis and other diseases in which mast cells’ number
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Figure 9: Integrating analysis for the relationship between TICs and the nine-gene signature. (a) The Wilcoxon rank-sum test was used to
find TICs with significant distribution differences among patients with high- and low-risk scores. (b) The Spearman coefficient was applied
to detect the correlation between each TIC and the nine-gene signature. Only correlations with p value < 0.05 were plotted. (c) The Venn
diagram that integrating the results from (a) and (b). TIC: tumor-infiltrating immune cell; ∗p value < 0.05; p value < 0.05 was considered
statistically significant.
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is increased [53, 54]. Mast cells might act as a new target for
the adjuvant treatment of tumors through the selective inhi-
bition of angiogenesis, tissue remodeling, and tumor-
promoting molecules, permitting the secretion of cytotoxic
cytokines and preventing mast cell-mediated immune sup-
pression [53–56]. According to the findings of our work,
mast cell resting has a promising potential to target the
nine-gene signature and LUAD therapy. However, more
efforts are needed to study these immune cells.

In the end, we must clarify the limitations of this research.
The signature we derived was from retrospective data. We
believe that more prospective data can make our results more
effective and rigorous. In addition, although it has been vali-
dated in two independent cohorts, its proof was derived from
the analysis results of public databases. There is still no wet

laboratory data to explain and support the prognostic ability
of these 9 genes and their role in immune infiltration. There-
fore, ongoing research is needed to reveal more evidence to
for the nine-gene signature’s promising future.

5. Conclusion

This study has discovered a novel and powerful immune-
related nine-gene signature that can predict the prognosis
of LUAD. We validated the signature’s stableness and appli-
cability via examining it in other two GEO cohorts. More
importantly, the key role of mast cell resting was identified,
which may help the signature in prognostic ability. Our
work potentially advances a new LUAD treatment discovery.
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Figure 10: Univariate Cox proportional hazard model (a) and Kaplan-Meier estimator (b) built for evaluating the 22 TICs’ prognostic
capacities. (a) The asterisks shown specify a p value < 0.05. (b) We only showed the Kaplan-Meier estimators with p value < 0.05. TIC:
tumor-infiltrating immune cell; p value < 0.05 was considered statistically significant; LUAD: lung adenocarcinoma.
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