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Abstract

Background: Different hypotheses have been proposed in life course epidemiology on

how a time-varying exposure can affect health or disease later in life. Researchers are of-

ten interested in investigating the probability of these hypotheses based on observed life

course data. However, current techniques based on model/variable selection do not pro-

vide a direct estimate of this probability. We propose an alternative technique for a con-

tinuous exposure, using a Bayesian approach that has specific advantages, to investigate

which life course hypotheses are supported by the observed data.

Methods: We demonstrate the technique, the relevant life course exposure model (RLM),

using simulations. We also analyse data from a case-control study on risk factors of oral can-

cer, with repeated measurements of betel quid chewing across life. We investigate the rela-

tive importance of chewing one quid of betel per day, at three life periods: �20 years, 21–

40 years and above 40 years of age, on the risk of developing oral cancer.

Results: RLM was able to correctly identify the life course hypothesis under which the

data were simulated. Results from the case-control study showed that there was 74.3%

probability that betel quid exposure earlier in life, compared with later, results in higher

odds of developing oral cancer later in life.

Conclusions: RLM is a useful option to identify the life course hypothesis supported by

the observed data prior to the estimation of a causal effect.
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Introduction

Life course epidemiology aims to understand the long-term

effects of exposures that occurred during different life

periods, particularly their effects on adult health and

disease.1,2 To be able to test these effects, Ben-Shlomo and

Kuh proposed a typology of life course models that are

broadly classified into critical/sensitive period and accumu-

lation/chains of risk.1 More recently, the hierarchy among
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life course hypotheses and need for statistical techniques

that account for this hierarchy have been recognized.3,4

The development of analytical techniques to identify

the life course hypothesis that best describes the exposure-

outcome relationship is a constantly evolving field. The

structured approach for a binary exposure, proposed by

Mishra et al., has attracted considerable interest.5–8 The

method compares a set of nested models, each capturing

one life course hypothesis, with a saturated model. The

goodness-of-fit statistic is used to select the nested model

that shows statistically non-separable model fit compared

with the saturated model.9

Although this approach is useful, there are conceptual

and pragmatic concerns. First, it assumes that there is one

true model among the tested models, whereas in reality the

data may result from a mixture of models. In addition, this

structured approach is limited by the influence of sample

size on P-values. For example, situations may exist in

which all life course hypotheses have P-values greater than

a threshold value, due to small sample size. Conversely, in

studies with large sample sizes, all nested models might

have P-values lower than the threshold. Moreover, when

more than one nested model fit the data equally, the find-

ings from these models may contradict each other. Also,

model selection based on two different criteria (F-test,

Akaike Information Criterion) may result in the identifica-

tion of different models. This uncertainty in model selec-

tion is not reflected in the estimates of the selected model.

Furthermore, the number of nested models increases as the

number of life periods to test increases. This results in mul-

tiple testing and requires strategies to control type 2 error

inflation.

Extending Mishra et al.’s model to continuous exposure

measurement is challenging, as the number of parameters

in the saturated model may be close to the sample size.

Recently, Smith et al. suggested a modification to Mishra

et al.’s structured approach, using least angle regression

(LARS) for both continuous and binary exposure measures

under a linear regression model.10,11 In their simulation

studies for binary exposures, the LARS method

outperformed both the F-test and AIC-based structured ap-

proach in most of the scenarios tested, except for highly

correlated exposure measures and the sensitive period

model. However, the performance of the LARS method for

the structured approach has not been tested for binary out-

come measures, a common scenario in life course epidemi-

ology of chronic diseases. In addition, this method does

not consider the hierarchical nature of life course hypothe-

ses and includes model selection. Hence, there is a need to

develop a strategy that can accommodate a wide variety of

exposure and outcome variables and considers the hierar-

chy among life course hypotheses.

In the case of a single exposure measure, testing life

course models is an investigation of the relative importance

of the exposure in different periods of life in relation to an

outcome (Figure 1a). In this context, the accumulation hy-

pothesis (periods have the same importance) and critical

period hypothesis (only one period is important) could be

seen as special cases of a more general sensitive period hy-

pothesis (different periods have different importance).

We propose a modelling strategy to test life course hy-

potheses with continuous exposures: the relevant life course

exposure model (RLM). This technique: (i) does not require

model/variable selection; (ii) incorporates the hierarchical

nature of life course hypotheses; (iii) can be used for both

continuous or categorical outcome variables; (iv) can

accommodate missing values and measurement errors.

Relevant life course exposure model

The RLM assumes a weight for the exposure experienced

during each life period. The weight relates to the relevance

of exposure during that period to the development of the

outcome of interest later in life. Then, the relevant life

course exposure is conceptualized as the product of the ex-

posure metric and its corresponding weight over each life

period, summed over all life periods.

The relevant life course exposure varies according to

the different life course hypotheses. For example, under a

critical period hypothesis, the relevant life course exposure

Key Messages

• Current strategies to investigate life course hypotheses have shortcomings, and analytical techniques to accommo-

date the hierarchical nature of life course hypotheses are warranted.

• We demonstrate the strength of Bayesian inference to directly estimate the posterior probabilities of different life

course hypotheses.

• We propose a novel model to analyse life course hypotheses, which circumvents several shortcomings of previous

approaches.
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is entirely constituted of exposure in one period that is con-

sidered critical for the later life outcome. By contrast, un-

der a sensitive period hypothesis, the exposure during

periods that are sensitive will be allocated greater weights

compared with other periods. Finally, in the pure accumu-

lation hypothesis, exposure in every period has equal

weight. Figure 1b illustrates these concepts using three life

periods.

Because in RLM the values of the weights inform the

life course hypothesis, we estimate them from the data. In

addition, we also estimate the lifetime effect of the expo-

sure, that is the overall effect of relevant exposures accu-

mulated over a person’s lifetime. Similar weighting systems

have been proposed in other contexts.12–14 In this article,

we describe our adaptation and expansion of this method

to life course epidemiology using a Bayesian approach. We

Figure 1. Life course conceptual models of the relative importance of exposures at different periods in relation to adult health or disease.

1(a). Illustrated example for protracted exposures. 1(b). Example with three life periods (childhood, early adulthood, late adulthood). Gradients repre-

sent examples of the relative importance of life course exposure, white indicating lowest importance and black indicating highest importance.
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show its applicability to epidemiological research employ-

ing simulations and an analysis of real-life data. We also

compare our method with the structured approach using

simulated data. Finally, we discuss how to include prior

knowledge into the analysis and make inferences on the

life course hypotheses given the data.

Methods

Let t ¼ 1; 2; 3; . . . ;T denote the temporal ordering of the

repeated measurements of the exposure, xti, be the exposure

measurement at time t, and yi be the outcome of interest mea-

sured at the last time point, for the ith ði ¼ 1; 2; . . . ; NÞ par-

ticipant. The time scale (t) could be age at exposure or denote

particular life periods (e.g. childhood, adolescence and adult-

hood). The weight for exposure at time t is modelled as an ar-

bitrary function ðwt ¼ f tð ÞÞ; it is assumed that each weight

takes a value between 0 and 1 and that the sum of all weights

is equal to 1. The relevant life course exposure is then defined

as the weighted sum of exposures in all time periods

(Equation 1):

lxi ¼
XT

t¼1

wt � xti (1)

Subsequently, the association between the relevant

life exposure variable and the outcome yi could

be modelled in a generalized linear model framework,

g E yið Þf g ¼ li; where g :f g is a link function, as below:

li ¼ b0 þ d � lxi þ k �Ci (2)

where, d is the lifetime effect for the exposure. Lambda ðkÞ
is the column vector of coefficients for the covariates

Ci ¼ ðc1i; c2i; . . . ; cpiÞ.
To fit the RLM, we use a Bayesian approach that

requires the specification of prior probability distributions

(often referred to as ‘priors’) on the weights, the lifetime ef-

fect of the exposure and other unknown parameters in the

model.

Stating priors for life course hypotheses

In Bayesian RLM, priors on the weights can be used to ex-

press the level of uncertainty about the life course hypothe-

sis behind the data generating process. Because the weights

are modelled as a unit-simplex, a Dirichlet distribution

(Dir) is the natural choice for a conjugate prior.

Alternatively, priors can be placed on marginal distribu-

tions of weights (e.g. Beta distributions). Figure 2 shows

examples of Dirichlet prior distributions for the weights

using three life periods. For instance, a non-informative

prior on weights for the three life periods can be specified

jointly as Dir(1, 1, 1) (Figure 2b) or Beta(1, 1) for each

weight separately. Both of these distributions specify equal

densities over supported values. Such non-informative pri-

ors are particularly useful if the goal is to identify the life

course hypothesis supported by the data alone (see below).

As is generally the case with Bayesian analysis, if the data

have sufficient information to update the parameters, the

choice of distribution for non-informative priors will only

have a trivial effect on the results.

An informative prior favouring the critical period over

the accumulation hypothesis could be stated as a Dirichlet

distribution with higher densities along the vertices

(Figure 2c), whereas a prior favouring the accumulation

hypothesis could be stated as a Dirichlet distribution with

a higher density at the centre (Figure 2d). A Dirichlet prior

with a relatively higher density near one vertex could be

used to state prior evidence of a critical period hypothesis

(Figure 2e).

Identifying the life course hypothesis
supported by the data using Bayesian RLM

In Bayesian RLM, the posterior distribution of weights

conditioned on a non-informative prior can be used to

identify the life course hypothesis supported by the data. A

measure of the difference between the estimated and

expected weight vectors (e.g. Euclidean distance) can be

used for this purpose (Table 1).15 The shortest Euclidean

distance identifies the life course hypothesis most sup-

ported by the data. However, the true situation may result

from a combination of different life course hypotheses and

this method can identify the correct ‘mixture’ of them. In

the next section, we demonstrate the Bayesian RLM using

simulated and real-life data examples.

Simulation study

The objectives of the simulation study were: (i) to assess

whether the RLM estimates the ‘true’ values for the param-

eters (the weights ½wt� and lifetime effect ½d�), and hence,

identifies the life course hypothesis correctly; (ii) to assess

the performance of the model under different sample sizes

using absolute bias; (iii) to compare the method with

Mishra et al.’s structured approach.

For simplicity, we simulated a three-period life course

study assuming no measurement error in the variables. We

simulated three Gaussian exposure variables with a correla-

tion of 0.7 and 0.49 between adjacent and non-adjacent

measures, respectively. A binary dependent variable was sim-

ulated using a logistic likelihood function. Datasets were sim-

ulated for all combinations of the three life course hypotheses

1626 International Journal of Epidemiology, 2018, Vol. 47, No. 5



and three sample sizes (n¼700, 1500, 3000). The hypotheses

and corresponding weight values were: (i) third life period as

a critical period [w1¼w2¼ 0 and w3¼1]; (ii) pure accumu-

lation hypothesis [w1¼w2¼w3¼ 0.333]; and (iii) first life

period as a sensitive period [w1¼ 0.75, w2¼ 0.20,

w3¼ 0.05].

Bayesian RLM using a logistic regression were fitted ap-

plying a non-informative Dirichlet prior for weights

[W � Dirichletð1; 1; 1Þ� and a weakly informative Cauchy

prior on the lifetime effect ½ d � Cauchy 0; 2:5ð Þ�. The

Cauchy distribution was chosen because its fatter tails allow

more support for extreme values compared with a normal

Figure 2. Examples of multivariate priors for weights in Bayesian relevant life course exposure models. 2(a). The three sides of the triangle plots rep-

resent three weights in percentage, one for each life period considered. The vertices represent corresponding extreme weights [(1, 0, 0), (0, 1, 0), (0, 0,

1)] and the midpoint of the plot represents equal weights (0.33, 0.33, 0.33). The concentration of dots represents the density of the corresponding

Dirichlet distribution at that point. 2(b) illustrates equal distribution of density (equal probability for any combination of weights). 2(c) illustrates

higher probabilities at the vertices compared with midpoint (favours critical period compared with accumulation hypothesis). 2(d) illustrates higher

probabilities at the midpoint, favouring a pure accumulation hypothesis (w1¼w2¼w3). 2(e) illustrates higher probability at one vertex (favouring

critical period at one vertex; w1¼ 0, w2¼ 0, w3¼ 1).
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distribution. For each dataset, we ran four parallel

Hamiltonian Monte Carlo chains and considered the first

25 000 iterations for burn-in and subsequent 25 000 itera-

tions for inference. Convergence was assessed using trace

plots and Rhat values.16,17 We plotted the posterior distribu-

tions of weights and the lifetime effect of the exposure along

with their 95% credible intervals (95% CrI). We also com-

puted Euclidean distances from five reference weight vectors

(one accumulation, one sensitive period and three critical pe-

riod hypotheses) to the estimated values of weights.

We considered that the Bayesian RLM correctly identified

the life course hypothesis if the shortest Euclidean distance

corresponded to the ‘true’ life course scenario and the 95%

CrI for estimated weights included the true parameter value.

Comparing Bayesian RLM with the structured

approach

We compared Bayesian RLM with the structured approach

suggested by Mishra et al.,9 using the simulated dataset de-

scribed above. As previously indicated, the saturated

model used in the structured approach cannot be estimated

for continuous exposures, and therefore we cannot use the

likelihood ratio test to select the best model. Hence, we

compared these approaches from a Bayesian perspective

using the Watanabe-Akaike information criterion (WAIC)

where the model with the lowest WAIC was selected in the

structured approach.18–20 We then compared the WAIC

for the selected model from the structured approach with

the WAIC for the Bayesian RLM model.

Real-life data example: life course betel quid

chewing and risk of oral cancer—HeNCe Life

Study—India

We used data from the Indian arm of the HeNCe Life

study, an international hospital-based case-control study

investigating life course risk factors of head and neck

cancers (HNC) in three countries (India, Canada and

Brazil), as previously described.21–23 Briefly, during the

period 2008 to 2012, 350 participants with histologically

confirmed, primary squamous cell carcinoma of the oral

cavity were recruited from two tertiary care centres in

Kozhikode, South India. Non-cancer controls (n¼ 371)

were recruited from the same hospital as cases and

frequency-matched by age (5-year groups) and sex to cases

using incidence density sampling. An array of exposures

throughout participants’ lives were measured with the help

of life grid-based structured interviews, which have good

reliability for retrospective life course data collection.24,25

Betel quid chewing, a popular smokeless tobacco habit

in South-East Asia, is a known risk factor for oral can-

cers.26,27 In the current analysis, we investigate the relative

impact of this habit during three life periods (0–20, 21–40

and above 40 years of age) on the risk of developing oral

cancer later in life. Chew-years, the unit of exposure in

each period, corresponds to chewing one betel quid per

day for 1 year.21

We modelled the weights and lifetime effect hierarchi-

cally, allowing these parameters to vary by age group at in-

terview (below 40, 41–50, 51–60, 61–70, above 70 years

of age) centred around an average value for the population

(details in Supplementary data are available at IJE online).

This stems from the hypothesis that participants from dif-

ferent birth cohorts may have lived diverse experiences.

For participants below 40 years of age, the weight for the

last period (>40 years) was constrained to be zero, and the

first two period weights constrained to sum to one.

Age at interview, sex, pack-years of tobacco smoking,

education, lifetime consumption of alcohol (litres of etha-

nol) and a material deprivation index were considered as

potential confounders. Continuous variables among poten-

tial confounders were rescaled to Z-scores to improve mix-

ing of Markov Chain Monte Carlo (MCMC) chains. To

account for the qualitative difference between an ever user

of betel quid (at least 1 year of use before interview) and a

Table 1. Three main life course models and corresponding weight functions

Life course model Weight function

Pure accumulation

model

w1 ¼ w2 ¼ w3 ¼ 1
3

Critical period

models

w1 ¼ 1 and w2 ¼ w3 ¼ 0

w2 ¼ 1 and w1 ¼ w3 ¼ 0

w3 ¼ 1 and w1 ¼ w2 ¼ 0

Sensitive period

models

0 < wt < 1; for t ¼ 1; 2; 3 and w1 > w2 and w3

0 < wt < 1; for t ¼ 1; 2; 3 and w2 > w1 and w3

0 < wt < 1; for t ¼ 1; 2; 3 and w3 > w1 and w2

t denotes the time points of measurements.
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never user, a binary indicator variable was included in the

model. With this strategy, the lifetime effect [d� can be

interpreted as the effect of the relevant life course exposure

of betel quid chewing among ever users only. There were

37 (5.1%) participants with missing values in the material

deprivation variable. To account for the uncertainty in the

missing information, we performed a full Bayesian imputa-

tion of missing values. Because this variable represents the

number of items possessed out of 34 indicators of depriva-

tion,28 a binomial regression model was used for imputa-

tion. We used non-informative priors for the hyper

parameters and a weakly informative prior on all other

parameters (details in Supplementary data are available at

IJE online).

Results

Simulation

The Bayesian RLM correctly identified the life course hy-

pothesis under which the data were simulated for all

sample sizes studied. Figures 3 and 4 display the posterior

mean and 95%CrI of estimated weights and the Euclidean

distances. Estimates from the smallest dataset (n¼ 700)

had higher absolute bias compared with others (Figure 5

and Supplementary Table 2, available as Supplementary

data at IJE online). Although Bayesian RLM provided bi-

ased estimates of weights under a critical period scenario,

the identification of the correct hypothesis was not affected

by this bias (Supplementary Tables 1 and 2, available as

Supplementary data at IJE online). The 95% CrI for the

lifetime effect ½d� included the true parameter of the life-

time effect, with which data were simulated, for all combi-

nations of sample sizes and scenarios tested.

The structured approach to model selection provided the

same inference as Bayesian RLM. In the structured approach,

the model corresponding to the true hypothesis had the low-

est WAIC value for each life course hypothesis. The WAIC of

the Bayesian RLM was close to the lowest WAIC model from

the structured approach (Supplementary Table 3, available as

Supplementary data at IJE online).

Figure 3. Mean and 95% credible intervals of posterior distributions of weights under three life course scenarios and sample sizes. The dashed verti-

cal lines denote the true parameter values: first column—critical period scenario (w1¼ 0, w2¼ 0, w3¼ 1); second column—accumulation scenario

(w1¼w2¼w3¼ 0.33333); third column—sensitive period scenario (w1¼ 0.75, w2¼ 0.20, w3¼ 0.05). The grey horizontal bars represent 80% posterior

credible intervals and horizontal solid line represents the 95% credible intervals. N—sample size, Model—life course scenario.
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Real-life data example: HeNCe Life study

Life course exposure to betel quid chewing across age groups

showed variation; older age groups had relatively higher aver-

age amounts of chew-years at each life period

(Supplementary Table 4, available as Supplementary data at

IJE online). The Bayesian RLM results showed evidence for a

sensitive period with exposures earlier in life having greater

relevance in all cohorts (Figures 6 and 7 and Supplementary

Figure 1 and Table 5, available as Supplementary data at IJE

online). On average, the amount of betel quid chewed in the

age periods �20, 21–40 and >40 years contributed 70.2%,

23.6% and 6.1%, respectively, to the relevant life course ex-

posure (Table 2). Among betel quid users, there was 85.3%

posterior probability for the hypothesis that 20 years and

younger is a sensitive period for betel quid exposure com-

pared with later life periods (w1>w2 and w3) for the risk of

oral cancer. In addition, there was 74.3% posterior probabil-

ity that betel quid exposure earlier compared with later in life

(w1>w2>w3) results in higher odds of developing oral

cancer.

Among ever users of betel quid, one chew-year increase

in life course cumulative exposure to betel quid increased

the odds of developing oral cancer by a factor of 1.04

[odds ratio (OR)¼ 1.04, 95% CrI¼ 1.00–1.15]

(Supplementary Table 7, available as Supplementary data

at IJE online).

Discussion

The pioneers of life course epidemiology, Kuh and Ben-

Shlomo, have recently identified the need to investigate life

course hypotheses by considering them as special cases of

an all-inclusive model rather than as separate hypothe-

ses.3,4,29 Current life course analytical strategies do not

take into account this hierarchy and rely on P-values. To

address this shortcoming, we propose the Bayesian relevant

life course exposure model which identified the correct life

course hypotheses in our simulation studies. We further

demonstrated the method using a real-life data example

from oral cancer research. Betel quid chewing earlier in

Figure 4. Means and 95% credible intervals of posterior distributions of Euclidean distances under three life course scenarios and sample sizes.

Columns represent the life course scenario under which data were simulated and rows represent different sample sizes. The Y-axis of each plot

shows the following reference vectors to estimated weights: CP-1 (w1¼ 1, w2¼ 0, w3¼ 0); CP-2 (w1¼ 0, w2¼ 1, w3¼ 0); CP-3 (w1¼ 0, w2¼ 0, w3¼ 1);

A (w1¼w2¼w3¼ 0.3333); SP (w1¼ 0.75, w2¼ 2.0, w3¼ 0.05).
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life, compared with later, resulted in a higher risk of devel-

oping oral cancer.

Latency and life course effects

As cancers of other anatomical sites, oral cancers have a la-

tency period. The life course effect is influenced by the la-

tency of disease, age-dependent vulnerability and social

factors that determine the life course trajectory of expo-

sures. For example, exposures occurring during life periods

closer to the average age of cancer incidence in a popula-

tion may not be important for the disease risk due to the la-

tency of cancer. This might result in evidence for a

sensitive period earlier in life, even without any ‘true’ age-

dependent effect. Although disentangling the latency effect

from the ‘true’ life course effect may be challenging, a step

toward this goal is to test the life course models in different

age groups. For instance, in our real-life data example we

performed a hierarchical Bayesian RLM in which different

age groups were allowed to follow different life course

hypotheses. However, all age groups showed a sensitive pe-

riod during the first 20 years of life.

Bayesian RLM for protracted exposures with

closely spaced measurements

In life course studies with an exposure measured at multi-

ple closely spaced time points, estimating weights for each

period separately may require sample sizes that are not

achievable. One solution is to assume a parametric shape,

as in latency models, to arbitrarily weigh the function in

Equation 1.30 However, this method is not suitable in the

life course setting where the shape of the weight function is

of particular interest. Although not specific to life course

research, a similar weighting of exposure approach has

previously been used assuming a B-Spline with prior speci-

fication of the number of interior knots and degree of

spline.12 Sylvestre et al.14 further extended this idea to pro-

portional hazard models, and used a model selection pro-

cedure based on the BIC to choose the number and

Figure 5. Means and 95% credible intervals of posterior distributions of bias from true parameter values under three life course scenarios and sample

sizes. Columns represent the life course scenario under which data were simulated and rows represent different sample sizes. The Y-axis of each plot

shows the following reference vectors to estimated weights: CP-1 (w1¼ 1, w2¼ 0, w3¼ 0); CP-2 (w1¼ 0, w2¼ 1, w3¼ 0); CP-3 (w1¼ 0, w2¼ 0, w3¼ 1);

A (w1¼w2¼w3¼ 0.3333); SP (w1¼ 0.75, w2¼ 2.0, w3¼ 0.05).
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position of the knots for the B-Spline. The overall effect

and the weight function were combined into a single pa-

rameter to increase identifiability and ease of fitting the

model in standard statistical software. An extension of this

method has recently been developed, in which the nonlin-

ear effect of exposure at each time point may also be

estimated.31,32 Alternatively, a time window-specific

analysis has been proposed using a Bayesian hierarchical

approach to allow deviations from a parametric latency

function.33 Our approach differs from these methods by di-

rectly estimating the weight function and subsequent prob-

ability of life course hypotheses, which is of interest in life

course epidemiology.

Techniques that aim to extract parameters, which de-

scribe individual exposure trajectories, and then relate

these to outcomes have been proposed in life course epide-

miology. Super imposition by translation and rotation

(SITAR) models34 and random effect models using

splines35 are examples of such models, particularly used in

studies investigating how childhood growth is associated

with adult health. An extension of the SITAR model to

multivariate surfaces (involving trajectories of more than

one life course variable) has also been proposed.36 All of

these techniques provide effect measures for deviations

from the average trajectory of exposure. For example,

McCarthy et al. estimated that the velocity of growth from

1 year and 9 months to 5 years was the strongest predictor

of adult BMI.37 Compared with these approaches,

Bayesian RLM facilitates direct inference on life course hy-

potheses of critical, sensitive periods and accumulation.

RLM can be extended to exposure measurements made

in closely spaced windows by using a summary of expo-

sures (e.g. averages, cumulative sum) in wider age strata.

However, the choice of cut-off points to define the age

strata may affect the results. For example, if the true

Figure 6. Marginal posterior densities of weights (average weights

across age groups), estimated for exposure to betel quid chewing dur-

ing three life periods for the risk of developing oral cancer. The vertical

solid line represents the median, and the shaded area represents the

80% credible interval.

Figure 7. Densities and credible limits of prior and posterior joint distributions of weights for exposure to betel quid chewing during three life periods

with regard to risk of developing oral cancer. Darker areas represent higher densities. The solid line represents the 50% credible limit and the dashed

line represents the 90% credible limit.

Table 2. The relative importance of betel quid chewing exposure at different life periods for the risk of developing oral cancer,

HeNCe Life study, India

Life periods (age, in years) Mean (%) Median (%) 95% credible interval (%)

�20 70.2 77.1 10.3–96.4

21–40 23.6 17.9 1.4–75.8

>40 6.1 4.0 0.2–24.7
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critical or sensitive period is divided between two strata,

the corresponding weights will be distributed across these

strata. Stone et al. have investigated how to best define age

strata in life course studies, and found that theory-driven

categories have superior properties compared with data-

driven approaches.38

Alternatively, RLM could be extended to estimate the

shape of the weight function using Bayesian adaptive pri-

ors for the splines,39,40 with the advantage of not having to

perform model selection.

Advantages and limitations of Bayesian RLM

Bayesian RLM can directly estimate the probabilities that

different life course hypotheses are true, conditioned on

the observed data and prior beliefs. In the example above,

we estimated the posterior probability of the hypothesis

that people chewing betel quid earlier in life have a higher

risk of developing oral cancer.

The Bayesian approach in RLM also provides the flexibil-

ity of simultaneously estimating the weights and the lifetime

effect, without the need for specialized estimators. For exam-

ple, it is relatively easy to impose inequality constraints on

parameters (e.g. weights add up to 1) in a Bayesian approach

compared with the classical statistical approach.41,42

The Bayesian approach offers additional advantages

such as the ability to formally include prior knowledge,

easily accommodate missing values, and incorporate the

hierarchical nature of data and parameters.43–48 Both the

structured approach9 and the LARS approach10,11 require

additional steps to account for uncertainty associated with

missing information on covariates. As demonstrated in our

example, in Bayesian RLM the uncertainty in missing in-

formation can be propagated to the inference on life course

hypotheses by including an imputation model.

In the Bayesian approach, prior distributions can be

used to transparently incorporate theory into the analyses.

As demonstrated in our example, the incorporation of the-

ory is not limited to prior distributions. For example, there

could be a cohort effect for the relative importance of an

exposure at different ages. This scenario occurs when using

data from life course case-control studies, in which

participants might come from different birth cohorts.

Furthermore, because the disease might occur at different

ages in adulthood, participants from the same birth cohort

might not contribute to exposure during later life periods if

disease onset is early, and this can also be incorporated us-

ing a hierarchy of parameters in Bayesian RLM.

An ‘Empty model’ in which the life course exposure var-

iable is not included, is a scenario tested by some research-

ers.49 Such a scenario can be assessed in Bayesian RLM, by

using a non-informative prior for the lifetime effect and the

weights. If the exposure was not associated with the out-

come, the posterior distribution would be very similar to

the non-informative prior.

Bayesian RLM is not devoid of limitations. Because the

overall effect of the life course variable is captured by a single

parameter (lifetime effect), the model assumes that the expo-

sure will have the same direction of association in all periods.

However, this assumption is likely to be valid for most expo-

sures. For example, betel quid chewing is unlikely to increase

the risk of oral cancer in one period and reduce it in another

without the influence of any other variable.

RLM assumes that there is no time-dependent con-

founding or effect measure modification. This is a common

limitation of other strategies proposed for the investigation

of life course hypotheses.9–11 One reason for such effect

measure modification is the mediation effect by subsequent

periods. Although techniques are available to estimate the

mediation effect, recent reports recognize the difference in

research questions addressed by the life course approach

and causal modelling techniques such as marginal struc-

tural models.50,51 The relevance of life course investiga-

tions alongside more complex causal modelling techniques

is also recognized.50,51

The accurate reconstruction of exposure histories across

extended periods of participants’ lives is a challenge faced

by researchers working in this field. For studies that do not

have prospectively collected measures, techniques such as

life grid-based interviews have proven useful to mitigate

the issue to an extent.24,25 With the rapid growth in the use

of ‘big data’ for epidemiological studies, accurate exposure

histories might become easier to compile.

The adoption of Bayesian methods might be considered

a daunting task by some researchers, because of the in-

volvement of programming in MCMC software. We pro-

vide the code to fit Bayesian RLM in both RStan52 and

SAS (SAS Institute, Inc., Cary, NC) in the Supplementary

data, available at IJE online.

In conclusion, Bayesian RLM is a viable alternative for

the investigation of life course hypotheses involving contin-

uous exposures, as it allows for formal integration of prior

knowledge, does not depend on P-values or variable selec-

tion procedures, and can provide direct inference on the

probability of life course hypotheses.

Supplementary data

Supplementary data are available at IJE online.
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