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Abstract: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the
TNF protein superfamily, represents a multifaceted cytokine with unique biological features including
both proapoptotic and pro-survival effects in different cell types depending on receptor interactions
and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a
growing body of experimental and clinical evidence over the past two decades suggests a protective
role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This
evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation
of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention
and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene
delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with
T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications
such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in
diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore
the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number
of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in
diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney,
and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on
adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for
investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities,
caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further
research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship
and delineate its therapeutic implications in metabolic disease.

Keywords: tumor necrosis factor-related apoptosis-inducing ligand (TRAIL); TRAIL receptors; type
1 diabetes mellitus (T1DM); type 2 diabetes mellitus (T2DM); obesity; insulin resistance

1. Introduction

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) belongs to
the TNF superfamily of proteins. The TNF superfamily of ligands and their receptors
play an important role in regulating multiple fundamental cellular processes such as cell
death and survival, proliferation, differentiation and immune surveillance [1]. The first
characterized biological function of TRAIL was its ability to induce apoptosis in cancer
cells and regulate host defense against tumor initiation and progression [2]. Beyond the
originally described anti-tumor effects, TRAIL has demonstrated important immunomodu-
latory properties and is considered to act as a valuable safeguard against malignant and
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autoimmune diseases maintaining immune homeostasis [3,4]. Its unique biological feature,
compared to other TNF superfamily members such as CD95L (Fas Ligand; FasL) and
TNF-α, is the ability to selectively induce apoptosis in most transformed cells such as the
malignant or virally infected ones, while preserving normal (non-transformed) cells [5,6].
TRAIL can activate not only apoptosis, but also pathways promoting cell survival and
proliferation [7–10]. Of note, the ultimate biologic outcome of TRAIL stimulation is deter-
mined in a cell type-specific context by the coordinated interaction of various different
elements, comprising—but not restricted to—the expression, localization, and redistribu-
tion of membrane receptors and other critical intracellular components that can switch cell
phenotypes between proapoptotic and anti-apoptotic ones [10,11].

Over the last two decades, several research groups have addressed the pleiotropic roles
of TRAIL not only in malignancy but also in other diseases. There has been an increased
interest in exploiting the potential of TRAIL to treat metabolic diseases [12,13], based on
a growing body of experimental and clinical evidence suggesting that the TRAIL system
plays an important role in the development and progression of both autoimmune (T1DM)
and obesity-associated (T2DM) diabetes mellitus [13,14]. The association of TRAIL with
diabetes becomes evident through a number of findings provided by animal and human
studies, which briefly comprise the following: (i) the onset and severity of T1DM and T2DM
can be accelerated and exacerbated by TRAIL blockade or TRAIL genetic deficiency [15–17],
(ii) T1DM and T2DM can be effectively prevented and ameliorated by recombinant TRAIL
treatment or systemic TRAIL gene delivery [18–22], (iii) circulating soluble TRAIL lev-
els are significantly reduced in patients with T1DM, T2DM and diabetes-related macro-
and microvascular complications [23–29], (iv) serum TRAIL levels of patients with T2DM
progressively increase upon antidiabetic treatment [30]. To explore the underlying mecha-
nisms accounting for the TRAIL-diabetes relationship, several in vitro studies have been
conducted and report direct effects of TRAIL on several tissues involved in diabetes patho-
physiology, such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and
immune and vascular cells [7,20,31–34].

The scope of the present narrative review was to critically summarize the most recent
experimental and clinical findings regarding the role of TRAIL in T1DM and T2DM, discuss
possible underlying mechanisms for the protective role of TRAIL in T1DM and T2DM by
focusing on tissue-specific effects, provide an update for the role of TRAIL in important
diabetes-related complications such as ischemic heart disease and diabetic nephropathy,
and highlight controversies and open questions in the field of TRAIL and metabolic disease.

2. Literature Search and Review Criteria

The studies selected for this review were identified by a computer search program
using PubMed electronic database for scientific literature published in English until Febru-
ary 2022. The following search terms were applied: “TRAIL type 1 diabetes mellitus”,
“TRAIL type 2 diabetes mellitus”, “TRAIL obesity”, “TRAIL insulin resistance”, “TRAIL
diabetes complications”, “TRAIL diabetic nephropathy”, and “TRAIL diabetes cardiovas-
cular disease”. Additional references were retrieved from reviewing the references cited
in the original articles. Our literature search included both animal and human studies.
Mechanistic in vitro studies were also included to elucidate the pathophysiological traits of
the relationship between TRAIL biology and diabetes in different tissues.

3. Brief Overview of TRAIL Biology and Signaling Pathways

Since its discovery in 1995 [5], TRAIL (also known as TNF superfamily member 10;
TNF-SF10) has been recognized as a cytokine with pleiotropic biological effects in multiple
different cell types. Human TRAIL is a 281 amino acid type II transmembrane protein whose
molecular structure is characterized by the presence of a TNF homology domain, which
binds to cysteine-rich regions of specific receptors [1]. Endopeptidases can release soluble
TRAIL, which is the biologically active ligand, by proteolytic cleavage of its membrane-
bound form [1]. After cleavage, soluble TRAIL assembles with two other molecules
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of TRAIL to form a trimeric ligand, and TRAIL homotrimers bind with their specific
receptors [35]. Unlike FasL or TNF-α, which have one or two functional receptors, soluble
TRAIL interacts with four different transmembrane and one soluble receptor, demonstrating
the impressive biological complexity of this ligand.

In humans, TRAIL is implicated in the pathway of extrinsic (death ligand-mediated,
mitochondria-independent) apoptosis by engaging with two death-inducing receptors,
TRAIL-R1 [death receptor 4 (DR4)] and TRAIL-R2 [death receptor 5 (DR5)], which have
functional intracellular death domains that result ultimately in apoptosis through a path-
way dependent on sequential caspase activation [36–39]. TRAIL may also interact with
three other receptors, the decoy receptors DcR1 (TRAIL-R3) and DcR2 (TRAIL-R4), as
well as the soluble decoy receptor osteoprotegerin (OPG; TRAIL-R5), which contain non-
functional cytoplasmic death domains and fail thus to mediate apoptotic signaling [40–42].
The functions of these decoy or else regulatory receptors remain poorly understood, but
they are considered to act by sequestering ligands in a competitive manner and thereby
counteracting and attenuating proapoptotic signals [37,42]. In mice, only one receptor, DR5,
has been described to share 60% degree of structural homology with human TRAIL-R2 [43].
TRAIL and its receptors are expressed in a variety of cell types, including T-cells, B-cells,
macrophages, natural killer (NK) cells, and dendritic cells [44–46], and its expression is
significantly upregulated in activated immune cells upon cytokine stimulation [47]. The
lack of toxicity of TRAIL in most normal cells under physiological conditions and its ability
to induce opposite cellular responses (apoptosis vs. survival/proliferation) in different
cells has been related to the high number of receptors that can mediate TRAIL signaling in
a differential manner, local conditions such as proinflammatory and pro-oxidative states
which can either facilitate or inhibit TRAIL signal transduction, and the interaction with
other circulating TNF-related cytokines such as OPG [48]. As schematically presented in
Figure 1, TRAIL can activate not only extrinsic apoptosis and other pathways of cell death
such as necroptosis [49] and autophagy [9,50], but also opposing non-apoptotic cellular
signaling pathways promoting survival, proliferation, migration and differentiation [51,52].
The latter pathways (non-canonical TRAIL signaling) go along with phosphorylated kinase
and proinflammatory pathways, and are mainly mediated by PI3K/Akt, mitogen-activated
protein kinase (MAPK) signaling, which includes p38, c-Jun N-terminal kinase (JNK), and
extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2), as well as the transcription
factor nuclear factor kappa B (NF-κB) [8,42].

The versatile biology of TRAIL has been related not only to its complex receptor
system and its potential modulation by local stimuli, but also to other factors, such as the
exposure of membrane receptors to different TRAIL concentrations [11] and the balance
between metalloproteinases and tissue inhibitors of metalloproteinases, which is thought
to be involved in the clearance of circulating TRAIL [53].

In the canonical pathway, TRAIL stimulates extrinsic apoptosis by binding to the
two membrane death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5), leading to the
formation of DISC or else the primary complex. This complex triggers in turn a cascade
of sequential self-cleavage and activation of caspases, leading ultimately to apoptosis. In
the non-canonical pathway, TRAIL interacts with the decoy receptors TRAIL-R3 (DcR1)
and TRAIL-R4 (DcR2), which lack functional intracellular death domains, and promotes
the formation of the secondary cytosolic complex alternatively to DISC. The secondary
complex activates in turn a number of pathways related to cell survival and proliferation,
such as pathways mediated by PI3K/Akt, MAPK (p38, JNK, ERK1/2), and NF-κB. Whether
TRAIL will preferentially stimulate either the canonical (proapoptotic) or the non-canonical
(anti-apoptotic) pathway is determined by a number of interfering modulating factors
comprising TRAIL circulating concentrations, TRAIL receptor expression, density and
localization, local stimuli such as proinflammatory and pro-oxidative conditions, and the
balance between matrix metalloproteinases and their tissue inhibitors, which is considered
to affect the clearance of circulating TRAIL.
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Figure 1. Schematic presentation of TRAIL signaling pathways at the cellular level.

4. The Role of TRAIL in T1DM

Table 1 summarizes the most representative experimental and clinical studies investi-
gating the relationship of TRAIL with T1DM in animals and humans [15,18,21–23,31,54].

Table 1. A summary of the major experimental and clinical studies investigating the relationship of
TRAIL with T1DM in animal models and humans.

First Author
(Year of Publication)

Experimental Model or
Study Population

TRAIL-Related
Intervention

(If Applicable)
Study Methods Key Findings

Animal data

Lamhamedi-Cherradi
(2003)

NOD mice challenged with
cyclophosphamide

Normal and TRAIL-deficient
C57BL/6 mice treated with

multiple low doses of
streptozotocin

Soluble TRAIL receptor
(sDR5) to block
TRAIL function

TRAIL gene knockout

Induction of diabetes,
production of recombinant

human sDR5, ELISA,
histochemistry,

quantification of islet
inflammatory lesions, cell
cultures, analyses of cell
viability and apoptosis

Accelerated diabetes onset
↑ severity of autoimmune
insulitis in
pancreatic islets
↑ GAD65-specific
immune responses
↑ incidence and extent of
islet inflammation in
TRAIL-deficient mice

Mi (2003)

NOD mice challenged with
cyclophosphamide

NOD mice receiving
diabetogenic spleen T-cells

from newly-diagnosed
diabetic NOD mice

Soluble TRAIL receptor
(sDR5) to block
TRAIL function

Induction of diabetes,
production of recombinant
human sDR5, splenic T-cell
isolation and proliferation

assays, T-cell adoptive
transfer, cell cultures, gene

expression profiling of
pancreatic islets, analyses of
cell viability and apoptosis,

ELISA, immunoblotting

↑ incidence of
cyclophosphamide-
induced T1DM
↑ incidence and earlier
onset of T1DM
post-transfer of
diabetogenic T-cells



Int. J. Mol. Sci. 2022, 23, 3225 5 of 21

Table 1. Cont.

First Author
(Year of Publication)

Experimental Model or
Study Population

TRAIL-Related
Intervention

(If Applicable)
Study Methods Key Findings

Animal data

Dirice (2009) Rats treated with multiple
low doses of streptozotocin

Adenovirus-mediated
TRAIL gene delivery into

pancreatic islets
(Ad5hTRAIL)

Ex vivo genetic engineering
of pancreatic β-cells,

transplantation of
genetically modified
pancreatic islets in

streptozotocin-induced
diabetic rats, metabolic

assays, ELISA,
pancreas histology

Prolonged normoglycemia
↓ severity of insulitis
Extended islet graft
survival and function

Zauli (2010)
C57BL/6 mice treated with

multiple low doses
of streptozotocin

Recombinant TRAIL
treatment (intraperitoneal

injections) for 5 days
In vitro exposure of

human/mouse PBMCs
and isolated human islets

to recombinant TRAIL

Islet isolation, cell cultures,
RNA and protein analyses,
metabolic assays, ELISA,

pancreas histology

↓ hyperglycemia
↑ body weight
↑ insulin secretion
Partially preserved islet
morphology and function
↓ TNF-α, ↓ OPG,
↓ VCAM-1 expression in
TRAIL-treated mice
↑ SOCS1 expression in
PBMCs and human islets
exposed in vitro to TRAIL

Kang (2010) NOD mice
Adenovirus-mediated

systemic human TRAIL
gene delivery (iv injection)

Metabolic assays, cell
cultures, RNA extraction

and RT-PCR in pancreas and
liver, pancreatic islet

isolation and
histopathological analysis,

cell viability and flow
cytometry apoptosis assays,
Western blot analysis, ELISA

for plasma cytokine and
TIMP-1 measurements,

gelatin zymography for the
inhibition of MMPs

↓ hyperglycemia
↑ TIMP-1 expression
↓ pancreatic MMP activity
↓ cytokine-induced
insulitis and apoptosis
Prevention of
T1DM development

Clinical data

Tornese (2014)

507 pediatric subjects
n = 387 patients with T1DM

n = 98 healthy controls
n = 22 healthy

AA-positive subjects

NA
Retrospective study

ELISA for serum soluble
TRAIL measurements

↓ serum soluble TRAIL
levels in T1DM vs.
other groups
↓ serum soluble TRAIL
levels in T1DM patients
presenting with DKA at
onset (vs. those
without DKA)
Inverse correlation
between serum TRAIL
levels at diagnosis and
insulin requirements up to
2 years of follow-up

Tornese (2015)

n = 11 pediatric patients
with newly diagnosed

T1DM complicated by DKA
and secondary DKA

NA

Pilot study
ELISA for serum soluble
TRAIL measurements at

sequential time points after
admission, blood gas
analysis for metabolic

status assessment

↑ serum soluble TRAIL
levels shortly after insulin
administration and
metabolic stabilization
Inverse correlation
between serum TRAIL
levels and the degree of
metabolic decompensation

Abbreviations: AA-positive: autoantibody-positive; DKA: diabetic ketoacidosis; ELISA: enzyme-linked im-
munosorbent assay; GAD65: glutamic acid decarboxylase 65; iv: intravenous; MMPs: matrix metalloproteinases;
NA: not applicable; NOD: non-obese diabetic; OPG: osteoprotegerin; PBMCs: peripheral blood mononuclear cells;
RT-PCR: reverse transcriptase polymerase chain reaction; sDR5: soluble death receptor 5; SOCS1: suppressor of
cytokine signaling 1; T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; TIMP-1: tissue inhibitor of
metalloproteinase 1; TNF-α: tumor necrosis factor-α; TRAIL: tumor necrosis factor-related apoptosis-inducing
ligand; VCAM-1: vascular cellular adhesion molecule-1.
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A number of sophisticated experimental studies from as long as 20 years ago have used
mouse models of autoimmune diabetes to explore the role of TRAIL in the pathogenesis of
T1DM [15,31]. Two commonly studied animal models sharing several clinical and histolog-
ical resemblances with human T1DM include non-obese diabetic (NOD) mice treated with
cyclophosphamide to accelerate diabetes onset, and C57BL/6 mice treated sequentially
with multiple low doses of streptozotocin to induce pancreatic inflammatory damage [55].
It has been shown that TRAIL gene and protein is overexpressed in pancreatic islets of mice
during the development of autoimmune diabetes [31], in pancreatic sections of children
with acute-onset fatal T1DM [56], and in β-cell cultures upon cytokine activation [31]. In
NOD mice, the exact role of TRAIL has been examined using a soluble TRAIL receptor
(sDR5) to inhibit the endogenous TRAIL biological activity. TRAIL functional blockade
by systemic administration of sDR5 was shown to exacerbate cyclophosphamide-induced
diabetes in NOD mice, augment the severity of pancreatic islet inflammation (insulitis), and
enhance the T1DM-specific immune response driven by anti-GAD65 autoantibodies [15]. In
the second model of streptozotocin-induced diabetes, TRAIL genetic deficiency (knockout)
was found to increase the incidence of diabetes and aggravate the histological pattern of
islet inflammation [15]. The above data clearly suggest that a defective TRAIL function may
upregulate pancreatic autoimmune responses by enhancing autoreactive T-cell activation,
and act thereby as an accelerator for the development of T1DM. It has been also intriguingly
proposed that islet cells may have a self-defense system which can control their survival
by locally regulating autoimmune reactions mediated by TRAIL, considering that TRAIL
expression is upregulated in cytokine-activated or apoptotic pancreatic islets [31]. This
initial stimulation of TRAIL expression and activity during the course of destructive in-
sulitis has been suggested as a potential protective mechanism to counteract or even delay
the onset of the disease. However, with sustained insult and in the absence of additional
interventions, progression into overt diabetes may occur.

In agreement with the above studies revealing a detrimental role of TRAIL depletion
for T1DM development, additional experimental studies using either recombinant TRAIL
treatment [18] or systemic adenoviral vector-mediated TRAIL gene therapy [21,22] could
further substantiate the protective role of TRAIL signaling for the prevention and treatment
of T1DM. In this context, recombinant TRAIL treatment has been shown to ameliorate
streptozotocin-induced diabetes in mice by reducing hyperglycemia, preventing catabolic
manifestations such as weight loss, and partially preserving pancreatic islet morphology
and residual insulin secretion [18]. These beneficial effects of TRAIL treatment in terms
of alleviating the metabolic and histological manifestations of autoimmune diabetes were
associated with a significant anti-inflammatory activity, as shown by the reduced expression
of cytokines involved in both systemic (TNF-α and OPG) and pancreatic (vascular cellular
adhesion molecule-1; VCAM-1) inflammation [18]. With regard to the second intervention
leading to TRAIL effect augmentation, namely systemic TRAIL gene delivery via an
adenovirus, this approach has been shown to prevent T1DM in NOD mice [21]. This effect
was mediated by an enhanced inhibition of pancreatic matrix metalloproteinases (MMPs),
which is thought to suppress the transmigration of diabetogenic T-cells into pancreatic
islets and further protect β-cells from cytokine-induced apoptosis [21]. Furthermore, it
has been shown that adenovirus-mediated TRAIL gene delivery into pancreatic islets was
associated with sustained normoglycemia in streptozotocin-induced diabetic rats compared
with animals grafted with mock-infected islets [22].

In humans, it has been demonstrated that the serum circulating levels of TRAIL are
significantly reduced in patients with T1DM, with the lowest levels observed in those
presenting with ketoacidosis at onset and those with the highest insulin requirements,
reflecting an advanced severity of the underlying disease [23]. In detail, a retrospective
Italian study conducted in a pediatric cohort of children with T1DM, reported a significant
decrease in circulating TRAIL levels in patients with new-onset T1DM having ketoacidosis
as initial presentation, compared to healthy individuals with or without islet-specific
autoantibodies, and also found an inverse correlation between serum TRAIL levels at
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diagnosis and insulin needs up to 2 years of follow-up [23]. Of note, the reduction of
circulating TRAIL levels persisted even after disease onset, namely at least one year after
diagnosis. These clinical data suggest that circulating soluble TRAIL levels are significantly
affected by the presence of T1DM, both at and after disease onset. Although the profound
suppression of circulating TRAIL levels in T1DM patients with ketoacidosis and increased
daily insulin requirements indicates a possible association between TRAIL and the severity
of autoimmune reaction, not all findings of this study support this hypothesis, since
there was no difference in TRAIL levels between T1DM patients with and without islet-
specific antibodies, and there was no difference between diabetic patients with and without
other autoimmune diseases which often coexist with T1DM [23]. It remains also unclear
whether the observed reduction in circulating TRAIL levels in patients with T1DM is the
result of reduced production/secretion or increased consumption at sites of inflammation.
Considering that TRAIL expression is significantly upregulated in the pancreatic islets
of animals with autoimmune diabetes, the theory of enhanced consumption accounting
for the reduced circulating TRAIL concentrations seems most likely. Although the above
study provides interesting data for the role of TRAIL in human T1DM, especially in light
of the relative paucity of related clinical studies, it is limited by its retrospective design,
which precludes any causal inferences regarding the modulation of TRAIL system in the
setting of human T1DM. Further limitations of this study include the lack of serial blood
samples from the same patients at different time points after ketoacidosis and the lack
of information about the metabolic status at each time point of blood sampling. These
limitations were addressed in a subsequent pilot study of the same group, which reported a
significant increase of serum TRAIL levels shortly after the initiation of insulin treatment in
newly diagnosed pediatric patients with T1DM and ketoacidosis, and also a strong inverse
correlation between circulating TRAIL levels and the degree of metabolic decompensation
assessed by blood gas analysis [54].

5. The Role of TRAIL in T2DM

Table 2 summarizes the major experimental and clinical studies investigating the
relationship of TRAIL with T2DM in animals and humans [16,17,19,20,24,27,28,30,33,57].

Table 2. A summary of the major experimental and clinical studies investigating the relationship of
TRAIL with T2DM in animal models and humans.

First Author
(Year of Publication)

Experimental Model
or Study Population

TRAIL-Related
Intervention

(If Applicable)
Study Methods Key Findings

Animal data

Di Bartolo (2011) ApoE (−/−)
HFD-fed mice TRAIL gene knockout

Metabolic assays, RNA
extraction and gene
expression analysis,

pancreatic islet histology,
immunohistochemistry,

morphometric analysis of
atherosclerotic plaques

↑ body weight
↑ glycemia
↓ insulinemia
↓ islet insulin
↑ serum lipids
↑ pancreatic islet
inflammation/apoptosis
IGT
B-cell dysfunction
Exacerbated atherosclerosis and
plaque instability

Bernardi (2012) HFD-fed
C57BL/6 mice

Weekly intraperitoneal
injections of recombinant

human TRAIL for
12 weeks

Metabolic assays, gene
expression analysis in

adipose tissue, ELISA for
cytokine measurements

↓ weight gain
↓ hyperglycemia
↓ hyperinsulinemia
↑ peripheral insulin sensitivity
↑ SM FFA oxidation
↓ proinflammatory cytokines
↓ adipogenic gene expression



Int. J. Mol. Sci. 2022, 23, 3225 8 of 21

Table 2. Cont.

First Author
(Year of Publication)

Experimental Model
or Study Population

TRAIL-Related
Intervention

(If Applicable)
Study Methods Key Findings

Animal data

Cartland (2017)

HFD-fed mice
n = 9 healthy humans
n = 10 obese patients
n = 10 patients with

hepatic steatosis
n = 10 patients

with NASH

TRAIL gene knockout

Plasma biochemistry,
glucose and insulin

tolerance tests, ex vivo
glucose uptake studies, liver

histology, tissue cultures,
RNA extraction and RT-PCR
for gene expression analysis,

protein extraction and
Western blotting, ELISA for

serum soluble
TRAIL measurements

In TRAIL-deficient mice:
↑ plasma lipids
↑ plasma glucose and insulin
levels
↑ systemic insulin resistance
↓ Akt phosphorylation, GLUT4
expression and glucose uptake
in SM
↑ hepatic steatosis, inflammation
and fibrosis
↑ hepatic gene expression
related to lipogenesis
and gluconeogenesis
↑ expression of
proinflammatory cytokines
In patients with NASH:
↓ serum soluble TRAIL levels
(vs. steatosis and obese)

Bernardi (2018) HFD-fed
C57BL/6 mice

Weekly injections of
recombinant human
TRAIL for 8 weeks

Metabolic assays, tissue
collection and histology,

in vitro studies on HepG2
cells and mouse

primary hepatocytes

↓ body weight
↓ adipocyte hypertrophy
↓ FFAs
↓ inflammatory markers
↓ liver fat content
↑ hepatic PGC-1α expression
Improved IGT
Improved NAFLD

Toffoli (2021) HFD-fed C57BL/6
and db/db mice

Intraperitoneal injections
of recombinant human
TRAIL for 8–12 weeks

Production of recombinant
human TRAIL, SM

extraction (quadriceps),
glucose uptake studies, FFA
oxidation experiments, gene
expression quantification by

RT-PCR, DR5 silencing,
immunofluorescence,

Western blot
analysis, histology

+ in vitro studies on mouse
C2C12 myoblasts

Effects on SM:
↑ Akt phosphorylation
↑ insulin-stimulated
glucose uptake
↑myofiber size
↑myogenin and
PGC-1α expression
↑myogenesis (muscle
differentiation)
No effect on lipid accumulation
in skeletal myotubes

Clinical data

Bisgin (2012)
n = 22 newly

diagnosed drug-naïve
patients with T2DM

NA ELISA for serum soluble
TRAIL measurements

↓ serum soluble TRAIL levels in
T2DM patients (vs. controls)

Arik (2013)

n = 22 insulin-treated
patients with T2DM,

DN (macroalbuminuria)
and foot ulcers

NA ELISA for serum soluble
TRAIL measurements

↓ serum soluble TRAIL levels in
patients with DN and foot ulcers
(vs. non-diabetic controls)
No correlation between serum
TRAIL levels and HbA1c or
fasting glucose levels

Xiang (2014)
n = 55 newly

diagnosed patients
with T2DM

NA ELISA for serum soluble
TRAIL measurements

↓ serum soluble TRAIL levels in
T2DM patients (vs.
non-diabetic controls)
↑ serum soluble TRAIL levels
after 6 months of
antidiabetic treatment
Absolute change in serum
TRAIL levels ~ absolute change
in HbA1c, fasting and
postprandial glycemia before
and after treatment
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Table 2. Cont.

First Author
(Year of Publication)

Experimental Model
or Study Population

TRAIL-Related
Intervention

(If Applicable)
Study Methods Key Findings

Clinical data

Chang (2018)

n = 42 patients
with T2DM

n = 42 patients
with DN

n = 42 healthy controls

NA

Real-time RT-PCR for TRAIL
mRNA levels in PBMCs

ELISA for serum cytokine
and TRAIL measurements

↓ TRAIL mRNA in PBMCs and ↓
serum soluble TRAIL levels in
patients with T2DM and DN
(vs. controls)
↑ proinflammatory cytokines in
patients with DN (vs. controls)

Choi (2018) n = 112 patients
with T2DM NA ELISA for serum soluble

TRAIL measurements

↓ serum soluble TRAIL levels in
T2DM patients with
microalbuminuria (vs. controls)
Inverse correlation between
serum TRAIL levels and HbA1c

Abbreviations: Akt: protein kinase B; ApoE (−/−): apolipoprotein E knockout; db/db: leptin receptor-deficient
mice; DN: diabetic nephropathy; DR5: death receptor 5; ELISA: enzyme-linked immunosorbent assay; FFA: free
fatty acid; GLUT4: glucose transporter 4; HbA1c: glycated hemoglobin A1c; HepG2: hepatoma G2; HFD: high fat
diet; IGT: impaired glucose tolerance; NA: not applicable; NAFLD: non-alcoholic fatty liver disease; NASH: non-
alcoholic steatohepatitis; PBMCs: peripheral blood mononuclear cells; PGC-1α: peroxisome proliferator-activated
receptor γ co-activator-1α; RT-PCR: reverse transcriptase polymerase chain reaction; SM: skeletal muscle; T2DM:
type 2 diabetes mellitus; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand.

In animal models of high fat diet (HFD)-induced insulin resistance, which is a hall-
mark of T2DM pathophysiology, TRAIL genetic deficiency was found to exacerbate insulin
resistance and aspects of non-alcoholic fatty liver disease (NAFLD) such as hepatic steatosis,
inflammation and fibrosis, generating the hypothesis that increasing TRAIL levels might
represent an appealing therapeutic approach to improve glucose metabolism and liver
histology in diabetic patients [16]. In the same mouse model, systemic TRAIL adminis-
tration by weekly intraperitoneal injections has been shown to prevent and ameliorate
the metabolic perturbations associated with obesity and T2DM, by reducing diet-induced
adiposity, reducing hyperglycemia and hyperinsulinemia, improving peripheral insulin
sensitivity, enhancing skeletal muscle free fatty acid (FFA) oxidation, reducing the ex-
pression of proinflammatory cytokines, and positively modulating adipose tissue gene
expression in the direction of anti-adipogenic and anti-inflammatory effects [19]. Of note,
the ability of systemic TRAIL treatment to induce beneficial cardiometabolic adaptations
persisted even after the onset of T2DM disease. As shown by the same group in HFD-fed
mice becoming obese and profoundly dysmetabolic after 4 weeks of HFD, TRAIL treatment
proved to be effective in reversing a broad spectrum of already established metabolic
abnormalities associated with T2DM [20]. More analytically, TRAIL treatment was able
to reduce body weight, adipocyte hypertrophy, lipotoxicity and systemic inflammation,
restore abnormal glucose metabolism, and interestingly, improve multiple features of
NAFLD by significantly reducing liver fat content and upregulating the hepatic expression
of peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) involved in mito-
chondrial biogenesis both in vivo and in vitro [20]. The above data, combined, corroborate
the potential of TRAIL to improve not only glucose homeostasis but also a broad spectrum
of obesity- and T2DM-associated derangements, both at early and more advanced stages of
cardiometabolic disease.

Although these animal data reveal a beneficial impact of TRAIL upon adipose tissue
homeostasis and suggest a protective effect against obesity which is tightly linked with
T2DM, a number of other experimental studies investigating the direct metabolic effects of
TRAIL on fat cell biology in vitro provide controversial evidence suggesting a rather obeso-
genic effect by promoting an insulin-resistant, inflammatory and dysfunctional phenotype
of adipose tissue [58–60]. It has been shown that TRAIL can regulate human adipocyte
metabolism by interfering with TRAIL-R2 (DR5) and inducing a caspase-mediated cleavage
and thus inactivation of peroxisome proliferator-activated receptor γ (PPAR-γ), leading to
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suppressed de novo lipogenesis and reduced insulin-stimulated glucose uptake reflecting
insulin resistance at the level of adipose tissue [58]. The mediators of TRAIL action in
human adipocytes were found to be caspases, and not the NF-κB or insulin-stimulated
kinase (PI3K/Akt) pathways [58]. In the same direction, TRAIL has been found to in-
hibit human adipocyte differentiation through a caspase-mediated down-regulation of
adipogenic transcription factors [61]. It has been further shown in vitro that TRAIL trig-
gers an inflammatory response in human adipocytes via NF-κB and ERK1/2-mediated
pathways by stimulating the expression of multiple chemokines and cytokines in a dose-
dependent manner [59]. Additional animal data suggest that DR5-knockout mice fed
a HFD display reduced adipose tissue inflammation compared to control mice, further
pointing to a proinflammatory role of TRAIL in adipose tissue [62].

On the other hand, it has been shown that TRAIL acts as a potent mitogen for adipose
tissue-resident precursor cells and stimulates the proliferation of human preadipocytes by
activating ERK1/2 [63]. By increasing the number of adipose progenitor cells being able to
differentiate into mature adipocytes, TRAIL may contribute to the expandability of adipose
tissue, which has been recognized as an important determinant of metabolic health and
flexibility [64]. A possible explanation for the apparent controversy generated by the above
data, which shows both positive and negative effects of TRAIL on adipose tissue function,
could be provided by the hypothesis that TRAIL might exert differential effects on adipose
tissue in the lean and obese state [63]. In the lean state, TRAIL appears to be expressed
predominantly by fat cells, and may contribute to a healthy adipose tissue phenotype by
positively affecting the preadipocyte pool and enhancing adipose tissue expandability [63].
On the other hand, it has been hypothesized that TRAIL is expressed not only by adipocytes
in the obese state, but also by infiltrating macrophages and microvascular structures leading
to considerably high levels of TRAIL expression within adipose tissue in the setting of
obesity. Under these conditions of TRAIL excess, TRAIL might not only affect the pool
of adipose stem cells, but also exert additional effects on adipocytes by modulating their
metabolic functions promoting inflammation and insulin resistance [58]. Detailed studies
quantifying TRAIL expression in different cell subpopulations of adipose tissue would
be required to test this theory. Other possible explanations for the conflicting data on the
effects of TRAIL on adipose tissue may be related to the experimental models of obesity
studied, issues of species- and tissue-specificity, as well as the limited capacity of in vitro
experiments to capture the complex crosstalk of adipose tissue with other tissues and reflect
the in vivo physiology.

Moving to humans, clinical studies in patients with T2DM have shown that circulating
serum TRAIL levels are reduced in newly-diagnosed T2DM patients [24], and they progres-
sively increase after 6 months of antidiabetic treatment but remain still lower compared
to non-diabetic control subjects even after treatment [30]. Of note, the absolute change in
serum TRAIL levels has been related to the absolute change in fasting and postprandial glu-
cose levels as well as the absolute change in glycated hemoglobin (HbA1c) before and after
glucose-lowering treatment [30]. The association of TRAIL with markers of glycemic control
in T2DM patients remains unclear, since some studies have shown an inverse correlation
between serum TRAIL levels and HbA1c [57], while other studies in smaller cohorts did not
confirm this finding [27]. With regard to human obesity, which is closely associated with
T2DM, serum TRAIL levels have been positively correlated with anthropometric measures
of total and central adiposity and serum lipid levels [65–67]. A similar correlation has been
reported in patients with T2DM [68]. Since both the cellular source of circulating TRAIL
and the mechanisms regulating TRAIL secretion are not completely understood, it remains
unclear whether the observed positive correlation of TRAIL levels with obesity reflects an
enhanced production from adipocytes or the consequence of other biological pathways
activated in obesity and hyperlipidemia. Based on the anti-inflammatory properties of
TRAIL, it can be assumed that higher levels of soluble TRAIL in obesity might represent an
adaptive mechanism to counteract the inflammatory burden associated with obesity.
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6. Proposed Mechanisms Underlying the Protective Role of TRAIL in T1DM
and T2DM

T1DM: In animal models of autoimmune diseases such as T1DM, TRAIL has been
shown to inhibit the proliferation of autoreactive T-cells by suppressing interleukin-2
(IL-2), IL-4 and interferon-γ (INF-γ) production, blocking DNA synthesis, preventing cell
cycle progression from G1 to S phase and inhibiting calcium influx, rather than directly
inducing apoptosis of activated autoantigen-specific T-cells [31,69,70]. In addition to
inducing peripheral tolerance, TRAIL may also play a role in the negative selection of
autoreactive T-cells in the thymus [71,72], thus regulating central tolerance as well. Of note,
recent evidence suggests that TRAIL expression in regulatory T-cells (Treg) is not required
for the induction of peripheral tolerance in the setting of autoimmune diabetes [73], contrary
to previous data demonstrating a dual protective effect of TRAIL against autoimmunity
involving both the inhibition of autoreactive T-cell proliferation and the promotion of Treg
expansion [74].

Additional mechanisms implicated in the protective role of TRAIL in T1DM beyond
the direct effects on immune cells infiltrating pancreatic islets involve the suppression
of proinflammatory cytokine signaling by means of upregulating the expression of the
immunoregulatory gene SOCS1 (suppressor of cytokine signaling 1) in pancreatic islets [18],
the inhibition of pancreatic matrix degradation mediated by the elevated expression of
TIMP-1 (tissue inhibitor of metalloproteinase 1), which is thought to exert antidiabetic
effects by preventing MMP-mediated insulin cleavage and cytokine-induced insulitis [21],
the inhibition of β-cell apoptosis (TRAIL resistance in pancreatic islets) [75], and finally the
stimulation of proliferation of pancreatic β-cells through Akt activation [32], as recently
shown in in vitro experiments.

T2DM: The beneficial effects of TRAIL in the setting of T2DM have been mainly
ascribed to its immunosuppressive and immunoregulatory properties, which counteract
inflammation which is a cardinal feature of T2DM [76], proliferative effects on pancreatic
functional β-cell mass [32], insulin-sensitizing and myogenic effects on skeletal muscle
tissue [33], and protective effects on liver consisting mainly in NAFLD amelioration [20].

The direct metabolic effects of TRAIL on skeletal muscle have been recently described
in HFD-fed and genetically obese mice both in vivo and in vitro [33], and highlight the po-
tential of TRAIL to affect whole-body metabolism through effects on skeletal muscle, which
is a highly metabolically active tissue and a major determinant of systemic insulin sensitiv-
ity. In vitro, TRAIL was found to increase markers of muscle differentiation (myogenesis)
and enhance insulin-mediated glucose uptake [33]. In vivo, TRAIL treatment preserved
myofiber size in obese animals and was associated with an elevated skeletal muscle PGC-1α
expression indicating an improved mitochondrial function and oxidative metabolism [33].
The above effects were mediated by DR5 and an increased Akt phosphorylation [33]. These
data imply that TRAIL might hold important therapeutic implications not only for diabetes
but also for sarcopenia, which is often observed in patients with diabetes and accounts for
aging-related insulin resistance [77].

Figure 2 summarizes the major biological effects of TRAIL on a variety of tissues
which are pathogenetically involved in the development of diabetes, as demonstrated in
animal and in vitro mechanistic studies.
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Figure 2. A summary of the major biological effects of TRAIL on a variety of tissues which are
pathogenetically involved in the development of diabetes, as demonstrated in animal and in vitro
mechanistic studies. Abbreviations: Akt: protein kinase B; ECs: endothelial cells; eNOS: endothelial
nitric oxide synthase; ERK1/2: extracellular signal regulated kinases 1 and 2; FFA: free fatty acid;
IL-4: interleukin-4; IL-6: interleukin-6; INF-γ: interferon-γ: NF-κB: nuclear factor kappa B; NO: nitric
oxide; PGC-1α: peroxisome proliferator-activated receptor γ co-activator-1α; PPAR-γ: peroxisome
proliferator-activated receptor γ; TGF-β: transforming growth factor-β; TIMP-1: tissue inhibitor of
metalloproteinase 1; VSMCs: vascular smooth muscle cells.

7. The role of TRAIL in Diabetes-Related Complications
7.1. Atherosclerotic Cardiovascular Disease (ACVD)

The theory that TRAIL plays a functional role in the progression of ACVD is based
on the direct effects of TRAIL on endothelial and vascular smooth muscle cells (VSMCs),
which are both important for maintaining vascular homeostasis. This theory is further
strengthened by the finding that TRAIL expression is reduced in the heart of diabetic dys-
lipidemic mice [78]. TRAIL has been shown to promote the proliferation of endothelial cells
via activation of Akt/ERK pathways [8]; promote the survival, proliferation, and migration
of VSMCs via activation of the ERK pathway [7]; and also increase the phosphorylation
of endothelial nitric oxide synthase (eNOS) leading to an increased NO production and
improved endothelial function [79]. Interleukin-18 (IL-18), which is commonly elevated
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in the setting of ACVD, has been recognized as an important negative regulator of TRAIL
system leading to suppressed TRAIL expression by monocytes, which are thought to be the
primary source of TRAIL production and secretion in the healthy circulation [80]. TRAIL
suppression may in turn modulate the function of monocytes and macrophages in the
direction of promoting inflammation and atherosclerosis [80]. Overall, possible mecha-
nisms underlying the anti-atherosclerotic and vasoprotective effects of TRAIL in CVD
include improved endothelial function [30], atherosclerotic plaque-stabilizing effects by
increasing the number and migration of VSMCs [7,81], suppressive effects on vascular
inflammation by modulating the phenotype and function of monocytes/macrophages [80],
inhibitive effects on calcium-induced vascular calcification via modulation of the receptor
activator of nuclear factor κB ligand (RANKL) [82], and cardioprotective effects by reducing
cardiac fibrosis and adverse cardiac remodeling as shown in a mouse model of diabetic
cardiomyopathy [83].

The major clinical manifestations of ACVD comprise coronary artery disease (CAD),
cerebrovascular disease (stroke) and peripheral artery disease (PAD).

TRAIL is present in coronary atherosclerotic plaques in humans. Its expression is
higher in vulnerable (rupture-prone) than stable atherosclerotic lesions and is induced by
oxidized low density lipoprotein cholesterol (oxLDL) [26]. Circulating TRAIL levels have
been associated with both the volume and qualitative composition of coronary plaques
in humans [84]. In a study using intravascular ultrasound (IVUS) combined with virtual
histology to identify vulnerable plaques, low serum TRAIL levels were associated with
high-risk characteristics such as an increased necrotic core and a thin fibrous cap, suggesting
a role of TRAIL in the maintenance of atherosclerotic plaque integrity [84]. Soluble serum
TRAIL levels have been found to be reduced in patients with acute coronary syndromes
such as acute myocardial infarction [25] or unstable angina [26] compared to patients with
stable CAD or healthy individuals, and inversely correlated with serum inflammatory
markers such as C-reactive protein (CRP) [26]. Interestingly, reduced serum TRAIL levels
in patients with acute myocardial infarction may also have prognostic implications, since
they were able to predict adverse outcomes such as death and heart failure one year after
diagnosis, independently of traditional CVD risk factors [25]. The prognostic role of TRAIL
is further complemented by the finding that low serum TRAIL levels can predict all-cause
and CVD mortality over a follow-up period of six years in older community-dwelling
subjects with prevalent CVD [85]. Especially in the setting of diabetes, the protective role
of TRAIL against diabetes-related atherosclerosis was demonstrated more than a decade
ago in apolipoprotein E knockout mice ApoE (−/−) which were used as an experimental
model of atherosclerosis [17,81]. In these mice, TRAIL genetic deficiency on the background
of a HFD induced a diabetic phenotype characterized by obesity, impaired glucose toler-
ance, insulinopenia, pancreatic islet inflammation, and dyslipidemia, and exacerbated the
preexisting atherosclerosis by destabilizing atherosclerotic plaques [17]. In the same model
of diabetic atherosclerotic mice, it was also shown that systemic TRAIL delivery stabilized
atherosclerotic plaques by increasing their VSMC content, preserving the endothelial cov-
erage and inducing apoptosis in macrophages infiltrating the vascular wall [81]. Another
interesting piece of evidence provided in a large-scale Swedish epidemiological study is
that patients with T2DM display elevated plasma levels of soluble TRAIL-R2 serving as
a surrogate marker of endogenous TRAIL effect neutralization [86]. This soluble death
receptor is released by peripheral blood mononuclear cells and pancreatic β-cells under
conditions of metabolic stress leading to FasL-mediated apoptosis [86]. After adjustment
for CVD risk factors in multivariate regression models, elevated soluble TRAIL-R2 levels
were found to increase the risk of developing T2DM and CVD (death, myocardial infarction
and stroke) over a period of 20 years [86]. These data highlight the potential role of soluble
TRAIL death receptors as biomarkers of β-cell dysfunction and vascular injury, and as
independent predictors of T2DM and CVD.

Similar findings have been reported for the role of TRAIL in cerebrovascular disease
and PAD. Reduced serum-soluble TRAIL levels have been associated with an increased
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severity of acute ischemic stroke and an increased stroke volume in humans, without any
difference between different stroke subtypes [87]. With regard to PAD, the role of TRAIL
seems promising as well. A significant down-regulation of serum TRAIL levels has been
reported in Korean patients with PAD and vascular calcification [88]. Animal data also
suggest that TRAIL promotes angiogenesis after hindlimb ischemia in vivo [89]. TRAIL-
deficient mice displayed reduced ischemia-induced neovascularization, while adenoviral
TRAIL delivery improved limb perfusion and increased the capillary density and VSMC
content [89]. These data highlight the potential of TRAIL to improve the angiogenic
response to ischemia and increase perfusion recovery in diabetic patients with PAD.

7.2. Microvascular Complications

Diabetic Nephropathy: TNF superfamily members play an important role in renal
pathophysiology by regulating a plethora of biological functions including cell proliferation,
differentiation, apoptosis, necrosis, autophagy, inflammation, angiogenesis, and fibrosis in
different etiologies and stages of kidney disease [90]. Under normal conditions, TRAIL is
expressed mainly by the renal tubules, and less by the glomeruli [91].

In vitro studies have shown that TRAIL exerts proapoptotic effects on renal tubular
cells exposed concomitantly to hyperglycemia and proinflammatory cytokines; therefore, it
has been postulated that TRAIL-induced apoptosis might contribute to the pathophysiology
of diabetic nephropathy [91].

In a mouse model of T2DM, TRAIL deficiency was found to promote diabetic nephropa-
thy, since TRAIL-deficient mice exhibited increased urinary protein loss and more severe
glomerular damage compared with wild-type mice [92]. These data are further strength-
ened by another experimental study in a mouse model of obesity and T2DM (db/db mice)
complicated by diabetic nephropathy, which unraveled the renoprotective effect of thera-
peutic TRAIL administration in severe forms of diabetic disease [34]. This study could show
that TRAIL treatment improved renal function without affecting proteinuria, reversed the
abnormal glomerular and tubular morphology associated with diabetic nephropathy, and
prevented TGF-β (transforming growth factor-β)-mediated renal fibrosis through mecha-
nisms possibly related to suppression of inflammation and rescue of autophagy [34]. These
anti-fibrotic and renoprotective effects were mediated by DR5, and were independent of
glucose control [34].

In humans, reduced circulating TRAIL levels have been reported in several cohorts of
T2DM patients with diabetic nephropathy compared with healthy individuals [27,28,57].
In 112 patients with T2DM, the presence of microalbuminuria was associated with lower
serum TRAIL levels compared to non-diabetic controls [57]. Similarly, serum-soluble TRAIL
levels were found to be significantly suppressed in a cohort of 22 insulin-treated T2DM
patients with diabetic nephropathy expressed as macroalbuminuria and foot ulcers [27].
In line with these findings, both soluble TRAIL levels and TRAIL mRNA expression in
peripheral blood mononuclear cells were significantly reduced in Chinese patients with
diabetic nephropathy in parallel with a significant increase in circulating inflammatory
markers such as interleukin-1 (IL-1), IL-6, TNF-α and monocyte chemoattractant protein-1
(MCP-1) [28]. Of note, renal TRAIL expression has been found to be increased in renal biop-
sies of patients with diabetic nephropathy, in correlation with the clinical and histological
severity of the disease, consistent with the theory of increased TRAIL consumption at sites
of active inflammation [91].

Although the above experimental and clinical data are definitely interesting since they
shed light on the putative modulating role of TRAIL for diabetes-related organ damage,
given the limited number of studies in this field, the role of TRAIL in the development
and progression of diabetic nephropathy and its potential prognostic and therapeutical
implications warrant consolidation in future studies.

Diabetic Retinopathy: The detection of extremely high levels of soluble TRAIL in
the conjunctival sac of the anterior surface of the eye, compared to other body fluids,
has important implications for maintaining the immune surveillance of the eye, and has
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inspired the investigation of a possible role of TRAIL for the pathogenesis of diabetic ocular
complications such as diabetic retinopathy and macular degeneration.

Proliferative diabetic retinopathy (PDR) is caused by widespread ischemia of the inner
retinal layers, leading to new vessel formation. It is considered as a wound-healing process,
characterized by neovascularization, inflammation, and fibrovascular contraction, leading
to potentially sight-threatening complications such as hemorrhage, retinal detachment, and
blindness [93]. Proangiogenic factors produced by the ischemic retina are thought to be the
major causal factors implicated in the neovascularization process. It has been suggested
that TRAIL might protect against PDR by restraining retinal endothelial cell proliferation.
In support of this notion, TRAIL deficiency has been associated with a delayed regression of
retinal neovascularization, and recombinant TRAIL has been shown to promote apoptosis
of retinal endothelial cells in mice [94]. Extrapolating these findings to the clinical setting,
soluble TRAIL levels in the conjunctival sac fluid [95] and in vitreous samples [29] have
been found to be significantly decreased in patients with PDR. The anti-inflammatory and
anti-angiogenic role of TRAIL, which is important to secure the anatomic and functional
stability of the ocular surfaces, lends credence to the hypothesis that a decreased production
and/or release of TRAIL might aggravate PDR by enhancing inflammation and reducing
the degree of apoptosis in retinal endothelial cells.

TRAIL-induced apoptosis has been also implicated in age-related macular degener-
ation (AMD), an important ocular disorder representing a leading cause of irreversible
vision loss in the elderly, especially in the setting of diabetes. Interestingly, lower levels of
TRAIL-R3 have been documented in serum samples of patients affected by AMD compared
to control subjects [96]. The authors suggested that the low levels of TRAIL-R3 in these
patients may actually increase the amount of TRAIL interacting with the proapoptotic
receptors (TRAIL-R1 and TRAIL-R2), resulting in enhanced TRAIL-mediated apoptosis of
photoreceptors and retinal pigment epithelial cells, which is an important contributor to
the pathogenesis of AMD [97].

8. Summary and Concluding Remarks

There is no doubt that TRAIL represents a molecule of unique interest with versatile
biology and complex mechanisms of action. It is distinguished from other TNF-related
cytokines in that it can selectively induce either apoptosis or survival in a cell-type specific
context depending on circulating concentrations, receptor expression and local stimuli. Be-
yond its anti-tumor properties, an accumulating body of experimental and clinical evidence
over the past two decades suggests a protective role of TRAIL in the development of T1DM
and T2DM as well as their complications. The concept of this protective role is strengthened
by the following observations: (i) T1DM and T2DM are accelerated and exacerbated by
TRAIL blockade or genetic deficiency (animal models), (ii) A broad spectrum of metabolic
abnormalities associated with T1DM and T2DM can be prevented and ameliorated with
TRAIL treatment or systemic TRAIL gene delivery (animal models), (iii) circulating serum
soluble TRAIL levels are significantly reduced in patients with T1DM and T2DM both at
onset and in more advanced stages of diabetes-related complications such as atherosclerotic
cardiovascular disease and diabetic nephropathy, (iv) serum TRAIL levels progressively
increase upon antidiabetic treatment, (v) serum levels of soluble TRAIL-R2 are elevated
in diabetic patients and serve as a biomarker with independent predictive utility for the
occurrence of T2DM and CVD in non-diabetic individuals. Animal and in vitro studies
have reported direct biological actions of TRAIL on multiple tissues involved in diabetes
pathophysiology including pancreatic islets, skeletal muscle, adipose tissue, liver, kidney,
immune and vascular cells.

The major suggested mechanisms underlying the protective role of TRAIL in T1DM
involve its direct inhibitory effects on autoreactive immune cells infiltrating pancreatic
islets; the suppression of proinflammatory cytokine signaling; the inhibition of pancreatic
matrix degradation, which is thought to prevent cytokine-induced insulitis; and finally, the
inhibition of apoptosis and stimulation of proliferation of pancreatic β-cells. The beneficial
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effects of TRAIL in the setting of T2DM have been mainly attributed to its immunosuppres-
sive properties which counteract inflammation, proliferative effects on pancreatic β-cell
mass, insulin-sensitizing and myogenic effects on skeletal muscle, and protective effects
on liver consisting in NAFLD amelioration. The possible mechanisms underlying the
anti-atherosclerotic and vasoprotective effects of TRAIL in the setting of CVD include im-
proved endothelial function, atherosclerotic plaque-stabilizing effects, suppressive effects
on vascular inflammation, inhibitive effects on vascular calcification, and cardioprotective
effects achieved by reducing cardiac fibrosis and adverse cardiac remodeling.

Although there is substantial evidence suggesting an important role of TRAIL for
the natural course of T1DM and T2DM, the emerging TRAIL-diabetes relationship is not
without controversies and open questions. TRAIL and its receptors are expressed in a wide
variety of tissues, but the primary cellular source of circulating TRAIL and the precise
mechanisms regulating TRAIL secretion remain incompletely understood. Detailed studies
quantifying TRAIL expression in different cell subpopulations are therefore of special
interest. There is also still residual controversy regarding the effect of TRAIL on fat cell
metabolism, since both positive (adipose tissue expandability) and negative (inflammation
and insulin resistance) effects have been reported. Possible explanations for the conflicting
data on the effects of TRAIL on adipose tissue may be related to the experimental models of
obesity studied, issues of species- and tissue-specificity, and most importantly the limited
capacity of in vitro experiments to capture the complex crosstalk of adipose tissue with
other tissues and accurately reflect the in vivo physiology.

Although the existing evidence is sufficient to inspire the investigation of TRAIL-
related interventions (TRAIL gene therapy, recombinant TRAIL treatment, TRAIL receptor
agonists) as a strategy to improve metabolic risk factors in diabetic patients, especially
considering the acceptable safety profile demonstrated in clinical trials testing TRAIL in
cancer patients, caution is warranted in the extrapolation of animal and in vitro data to the
clinical setting. Further research in humans is imperative in order to fully elucidate all the
aspects of the complex TRAIL-diabetes relationship. Future research in humans should
address the course of circulating soluble TRAIL levels in diabetic patients at different stages
of the disease and in the presence of different diabetes-related comorbidities, and explore
the impact of glycemic control and antidiabetic treatment on TRAIL alterations.
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proliferator-activated receptor γ co-activator-1α; PI3K: phosphatidyl-inositol 3 kinase; PPAR-γ: per-
oxisome proliferator-activated receptor γ; RANKL: receptor activator of nuclear factor κB ligand;
RT-PCR: reverse transcriptase polymerase chain reaction; sDR5: soluble death receptor 5; SM: skeletal
muscle; SOCS1: suppressor of cytokine signaling 1; T1DM: type 1 diabetes mellitus; T2DM: type 2 dia-
betes mellitus; TGF-β: transforming growth factor-β; TIMP-1: tissue inhibitor of metalloproteinase 1;
TNF-α: tumor necrosis factor-α; TNF-SF10: TNF superfamily member 10; TRAIL: tumor necrosis
factor-related apoptosis-inducing ligand; TRAIL-R1: TRAIL receptor 1; TRAIL-R2: TRAIL receptor 2;
TRAIL-R3: TRAIL receptor 3; TRAIL-R4: TRAIL receptor 4; TRAIL-R5: TRAIL receptor 5; Treg: regu-
latory T-cells; VCAM-1: vascular cellular adhesion molecule-1; VSMCs: vascular smooth muscle cells.
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