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Endotoxins are associated with 
visceral fat mass in type 1 diabetes
Mariann I. Lassenius1,2,3,*, Aila J. Ahola1,2,3,*, Valma Harjutsalo1,2,3,4, Carol Forsblom1,2,3,  
Per-Henrik Groop1,2,3,5 & Markku Lehto1,2,3

Bacterial lipopolysaccharides (LPS), potent inducers of inflammation, have been associated with 
chronic metabolic disturbances. Obesity is linked to dyslipidemia, increased body adiposity, and 
endotoxemia. We investigated the cross-sectional relationships between serum LPS activity and 
body adiposity as well as inflammation in 242 subjects with type 1 diabetes. Body fat distribution was 
measured by DXA and serum LPS activity by the limulus amebocyte lysate end-point assay. Since no 
interaction between visceral fat mass and sex was observed, data were pooled for the subsequent 
analyses. LPS was independently associated with visceral fat mass, when adjusted for traditional risk 
factors (age, sex, kidney status, hsCRP, insulin sensitivity). In the multivariate analysis, serum LPS 
activity and triglyceride concentrations had a joint effect on visceral fat mass, independent of these 
factors alone. A combination of high LPS and high hsCRP concentrations was also observed in those 
with the largest visceral fat mass. In conclusion, high serum LPS activity levels were associated with 
visceral fat mass in subjects with type 1 diabetes strengthening its role in the development of central 
obesity, inflammation and insulin resistance.

Bacterial endotoxins or lipopolysaccharides (LPS) are potent inducers of systemic inflammation. Endotoxin 
transport and clearance has been linked to lipoprotein metabolism. Endotoxins are redistributed towards VLDL 
and LDL particles especially in conditions of lower HDL cholesterol concentrations, like in atherosclerosis and 
insulin resistance1,2. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that binds LPS and initiates an 
inflammatory response. Compared to lean individuals, TLR4 expression is up-regulated in the adipose tissue of 
obese subjects3. A low dose LPS infusion augments adiposity, inflammation, insulin resistance, hyperglycemia 
and dyslipidemia in mice4. In humans, a low dose LPS infusion induces insulin resistance and potentiates the 
expression of inflammatory markers in adipose tissue5.

Studies in non-diabetic children and obese adults, have shown an adverse association between endotoxin 
levels, central adiposity and insulin resistance6,7. We have previously shown that a high serum LPS activity is 
associated with features of the metabolic syndrome and the progression of kidney disease in type 1 diabetes8,9. 
Recent studies have further demonstrated a putative link between endotoxins and visceral fat10. Excess visceral 
fat is associated with impaired insulin sensitivity, and the development of vascular complications in diabetes11. It 
has also been suggested that the distribution of body fat could better predict insulin resistance than BMI itself 7,12. 
Evidently, certain human genetic variants may also have a significant impact on BMI and body adiposity13.

Our aim was to investigate the association between serum LPS activity and visceral fat mass, measured by 
dual-energy x-ray absorptiometry (DXA), in subjects with type 1 diabetes.

Subjects and Methods
Data from individuals with type 1 diabetes were collected during the Finnish Diabetic Nephropathy (FinnDiane) 
Study visits taking place in Helsinki between years 2011 and 2016. In the current analyses, we included data 
from all individuals with completed LPS and body composition measurements, and either normal urinary 
albumin excretion rate (T1D-normo, n =  156), microalbuminuria (T1D-micro, n =  42) or macroalbuminuria 
(T1D-macro, n =  46). Renal status was assessed by the albumin excretion rate (AER) in two out of three consec-
utive timed urine collections using the following criteria: normal AER < 20 μ g/min or < 30 mg/24 h, and mac-
roalbuminuria ≥ 200 μ g/min or ≥ 300 mg/24 h. Kidney transplant recipients and those undergoing dialysis were 
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excluded from the analysis. Type 1 diabetes was defined as disease onset before the age of 40 and the initiation of 
insulin injections within one year of diagnosis.

Body composition was measured by DXA (Lunar iDXA by GE Healthcare, Scanex Medical Systems, Finland). 
The iDXA software calculates the body fat distribution including visceral-, android-, and gynoid fat mass. BMI 
was calculated (weight/height2). Insulin sensitivity was assessed calculating the estimated glucose disposal rate 
(eGDR): eGDR =  24.4 −  12.97 ×  WHR −  3.39 ×  AHT −  0.60 ×  A1C, where WHR stands for waist-to-hip ratio 
and AHT for antihypertensive treatment and/or blood pressure ≥ 140/90 mmHg (yes =  1, no =  0). Daily insulin 
dose was self-reported. Serum lipid concentrations were analyzed centrally by automated enzymatic methods 
(Hoffmann-La Roche, Basel, Switzerland). Serum high-sensitive C-reactive protein (hsCRP) concentration was 
measured by immunoassay (Modular analyzer, Roche). LPS activity was measured by the Limulus amebocyte 
lysate (LAL) assay from 1:5 diluted fasting serum samples (Hycult Biotechnology, Uden, the Netherlands). For 
the LAL assay, inter- and intra-assay coefficients of variation were 16.1% and 4.5%, respectively. The sensitivity 
limit for the assay was 0.02 EU/ml.

Statistical analyses. Normality of variable distribution was assessed with the Kolmogorov-Smirnov test. 
Normally distributed variables are reported as mean ±  standard deviation, non-normally distributed variables as 
median [25th–75th quartile]. Correlation coefficients were calculated by Spearman or Pearson’s correlation test as 
appropriate. Differences in frequencies were assessed by Pearson’s Chi squared analysis. Differences in variation 
between groups were calculated using Mann-Whitney U-test, Kruskal-Wallis test and ANOVA, as appropriate. 
The population was divided into tertiles based on serum LPS activity, triglyceride-, or hsCRP concentrations to 
further explore the role of endotoxins, dyslipidemia, and inflammation on visceral fat mass.

The interaction between LPS and gender on visceral fat mass was assessed using a generalized linear model. 
Since no interaction was evident, all data were analyzed together. The interaction between LPS and triglyceride 
concentration on visceral fat mass was analyzed similarly. As LPS and triglyceride concentration showed signifi-
cant interaction, the interaction term was included in the multivariable model. Because LPS and triglycerides are 
highly correlated, we furthermore visualized their relative relationship using the generalized additive modeling 
(GAM) without a priori assumptions of the shape of the relation. The GAM modelling allows the inclusion of 
non-parametric smoothing functions to identify a potential non-linearity in the relationship between the inde-
pendent and the dependent variables14,15. The generalized cross-validation function (GCV) was used as a criterion 

Normal AER n = 154 Microalbuminuria n = 42 Macroalbuminuria n = 46 p

Men, n (%) 66 (43) 19 (45) 31 (67) 0.013

Age (years) 48.3 ±  12.7 49.0 ±  11.4 52.7 ±  8.2 0.085

Diabetes duration (years) 31.1 ±  12.7 35.9 ±  9.6 38.4 ±  9.7 < 0.001

HbA1c, mmol/mol (%) 65 ±  12 (8.1 ±  1.1) 68 ±  13 (8.4 ±  1.1) 66 ±  13 (8.2 ±  1.3) 0.241

Cholesterol (mmol/l) 4.5 (3.9–5.0) 4.7 (4.2–5.2) 4.2 (3.7–4.8) 0.046

HDL cholesterol (mmol/l) 1.58 (1.36–1.94) 1.54 (1.20–2.01) 1.41 (1.12–1.85) 0.157

Triglycerides (mmol/l) 0.88 (0.67–1.16) 1.05 (0.70–1.76) 1.06 (0.84–1.77) < 0.001

LPS (EU/ml) 0.24 (0.20–0.28) 0.24 (0.20–0.31) 0.24 (0.20–0.31) 0.942

Insulin dose (IU/kg) 0.54 (0.43–0.71) 0.65 (0.49–0.76) 0.54 (0.47–0.74) 0.193

Insulin pump, n (%) 32 (21) 10 (24) 15 (33) 0.252

BMI (kg/m2) 24.9 (22.8–27.6) 26.5 (23.0–30.3) 25.5 (23.1–28.7) 0.087

eGDR (mg/kg/min) 5.4 (4.0–8.3) 3.8 (3.0–5.1) 3.9 (2.8–4.7) < 0.001

hsCRP (mg/l) 1.11 (0.51–2.47) 1.63 (0.79–3.06) 1.01 (0.49–3.52) 0.391

Visceral fat mass all (g) 452 (194–1022) 737 (381–2020) 1096 (471–1881) < 0.001

Visceral fat mass, men (g) 724 (372–1511) 1298 (532–3039) 1100 (728–1932) 0.044

Visceral fat mass, women (g) 294 (140–737) 523 (300–1816) 644 (236–1556) 0.017

Android fat mass, all (g) 1686 (1131–2924) 2292 (1456–4018) 2243 (1394–3321) 0.012

Android fat mass, men (g) 1913 (1189–2967) 3047 (1470–4264) 2302 (1499–3028) 0.129

Android fat mass, women (g) 1569 (1096–2412) 1958 (1417–3809) 1960 (759–3838) 0.149

Gynoid fat mass, all (g) 3642 (2945–4735) 4089 (3333–5303) 3689 (2722–4590) 0.267

Gynoid fat mass, men (g) 3343 (2573–3907) 3715 (2466–4889) 3557 (2735–4170) 0.407

Gynoid fat mass, women (g) 4300 (3210–5150) 4360 (3517–5857) 4368 (2222–5496) 0.556

Android/Gynoid ratio, all (g) 0.45 (0.33–0.61) 0.58 (0.40–0.75) 0.63 (0.49–0.78) < 0.001

Android/Gynoid ratio, men (g) 0.57 (0.44–0.80) 0.75 (0.50–0.95) 0.69 (0.53–0.84) 0.077

Android/Gynoid ratio, women (g) 0.38 (0.30–0.51) 0.50 (0.35–0.66) 0.49 (0.33–0.71) 0.028

Table 1.  Clinical characteristics of study participants divided by renal status. Data are presented as 
frequency (percentage) for categorical variables, mean ±  SD for normally distributed continuous variables, 
and median (25th–75th quartile) for non-normally distributed continuous variables. Significance across the 
three groups has been studied with Chi squared, ANOVA and Kruskal-Wallis test, respectively. AER, albumin 
excretion rate; LPS, lipopolysaccharides; eGDR, estimated glucose disposal rate; hsCRP, high-sensitive 
C-reactive protein.
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for selection of the smoothing parameters to determine an appropriate level of smoothing. Analyses were carried 
out using IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp, Armonk, NY, USA), and R open source 
software (http://www.r-project.org). GAM models were fitted using the mgcv library in R16.

Ethics. The study protocol was approved by the Ethics Committee of the Hospital District of Helsinki and 
Uusimaa. The study was carried out in accordance with the approved guidelines. Participants gave their written 
informed consent prior to participating in the study.

Results
Patient characteristics divided by renal status are shown in Table 1. The proportion of men was highest among 
T1D-macro. The diabetes duration and visceral fat mass increased with worsening renal status. Insulin sensitivity 
(eGDR) was highest in T1D-normo. No differences were observed in HbA1c, HDL cholesterol concentration, LPS 
activity, insulin dose, use of insulin pump, BMI or hsCRP concentration amongst the three groups.

Serum LPS activity correlated positively with BMI (r =  0.274, p <  0.001), visceral fat mass (r =  0.248, 
p <  0.001), android to gynoid fat ratio (r =  0.231, p <  0.001), serum triglyceride concentration (r =  0.477, 
p <  0.001), and hsCRP concentration (r =  0.276, p <  0.001). Negative correlation was observed between insulin 
dose and eGDR (r =  − 0.205, p =  0.002). Supplementary Figure S1a and S1b show that triglyceride concentration 
seems to overrun the effect of LPS on the visceral fat mass. However, the relationship between LPS and triglycer-
ides is complicated and interaction between LPS and triglyceride concentration was found, indicating that LPS has 
an effect on certain levels of triglyceride concentration. Therefore, the effect of serum LPS activity and triglyceride 

Figure 1. (A) Visceral fat mass (g) according to LPS and triglyceride tertiles (low/medium/high) in subjects 
with type 1 diabetes. Higher visceral fat mass was observed in those with a combination of high LPS 
activity/high triglyceride concentration (N =  50) compared to those with low LPS activity/low triglyceride 
concentration (N =  43, p <  0.001). (B) Visceral fat mass (g) according to LPS and hsCRP tertiles (low/medium/
high) in subjects with type 1 diabetes. Higher visceral fat mass was observed in those with a combination of 
high LPS activity/high hsCRP concentration (N =  32) compared to low LPS activity/low hsCRP concentration 
(N =  38, p <  0.001).

http://www.r-project.org
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concentration on visceral fat mass were further explored in LPS and triglyceride tertiles (low/medium/high). 
Subjects in the high triglyceride tertile presented the highest visceral fat mass. Notably, within each LPS tertile, the 
visceral fat mass was observed to increase towards the higher TG tertiles (p <  0.001, all) (Fig. 1A). Moreover, the 
visceral fat mass among those with high LPS activity and high triglyceride level was higher compared to the group 
with both low LPS activity and low triglyceride level (high/high vs. low/low, median [IQR]: 1452 [767–2001] vs. 
343 [144–515] g, p <  0.001). The Supplementary Figure S2 provides a deeper view on the interaction effect of LPS 
and triglyceride levels on the visceral fat mass focusing on the 75% of the population in the area with the densest 
accumulation of observations. Similarly, subjects in the high-LPS/high-hsCRP tertile presented greater visceral 
fat mass compared to those with low-LPS/low-hsCRP concentrations (median [IQR]: 1452 [813–2014] vs. 379 
[156–818] g, p <  0.001) (Fig. 1B).

The independent association between LPS activity and visceral fat mass was analyzed in a number of multi-
variable models (Table 2). With Model 1, we aimed at looking at this association while taking inflammation into 
account. In this model, LPS activity was positively associated with the visceral fat mass (B =  1253.2, 95% Wald 
Confidence Interval 386.4–2120.0, Wald Chi-Squared 8.029, p =  0.005). Further adjusting for insulin sensitivity 
(eGDR), LPS remained a significant predictor of visceral fat mass (Model 2: B =  848.6, 95% Wald CI 48.4–1648.8, 
Wald Chi Squared 4.320, p =  0.038). However, after further adjusting for triglyceride concentration (Model 3), LPS 
no longer predicted visceral fat mass. To the final model (Model 4) we incorporated a LPS*triglyceride interaction 
term, which was significantly associated with the visceral fat mass (B =  − 634.2, 95% Wald CI − 1092.6–− 175.7,  
Wald Chi-Squared 7.350, p =  0.007), independently of the two factors entered in the model separately.

Discussion
Inflammation and insulin resistance are intertwined processes that are strongly linked to overweight and 
intra-abdominal obesity. We observed that serum LPS activity is associated with visceral fat mass in type 1 diabe-
tes, independent of the traditional risk factors such as age, insulin sensitivity, and inflammation.

High serum LPS activity has been associated with central obesity and insulin resistance, and it has also been 
shown to predict the development of type 2 diabetes6,17. Intestinal and oral microbial communities are the most 
likely sources of bacterial endotoxins in humans. Frequent use of antibiotics may have adverse effects on gut 
homeostasis accompanied by dysbiosis and increased intestinal permeability of bacterial compounds. Childhood 
hospitalizations related to infections have been associated with an increased risk of obesity and metabolic syn-
drome in adulthood18. In conditions of intestinal inflammation, such as Crohn’s disease, visceral fat accumulation 
is evident19.

B 95% Wald Confidence Interval Wald Chi-squared p

Model 1

LPS activity 1253.2 386.4–2120.0 8.029 0.005

Women − 595.1 − 810.5–− 379.6 29.303 < 0.001

Age 12.0 3.1–20.9 7.038 0.008

Nephropathy 211.4 − 52.6–475.4 2.463 0.117

hsCRP 64.7 38.4–91.0 23.299 < 0.001

Model 2

LPS activity 848.6 48.4–1648.8 4.320 0.038

Women − 309.8 − 524.6–− 95.1 7.995 0.005

Age 4.9 − 3.4–13.3 1.344 0.246

Nephropathy − 19.0 − 269.8–231.8 0.022 0.882

hsCRP 32.8 6.9–58.6 6.174 0.013

eGDR − 158.0 − 205.9–− 110.1 41.763 < 0.001

Model 3

LPS activity − 678.9 − 1558.8–201.1 2.286 0.131

Women − 171.5 − 373.5–30.6 2.766 0.096

Age 6.1 − 1.6–13.8 2.392 0.122

Nephropathy 0.1 − 230.3–230.6 0.000 0.999

hsCRP 10.1 − 14.7–34.9 0.635 0.426

eGDR − 126.7 − 171.8–− 81.6 30.292 < 0.001

Triglycerides 452.6 309.3–596.0 38.295 < 0.001

Model 4

LPS activity 453.8 − 737.1–1644.8 0.558 0.455

Women − 156.4 − 355.3–42.5 2.376 0.123

Age 5.4 − 2.2–13.0 1.959 0.162

Nephropathy 1.3 − 225.2–227.7 0.000 0.991

hsCRP 5.0 − 19.7–29.7 0.158 0.691

eGDR − 125.0 − 169.3–− 80.6 30.519 < 0.001

Triglycerides 732.7 486.0–979.4 33.892 < 0.001

LPS*TG interaction − 634.2 − 1092.6–− 175.7 7.350 0.007

Table 2.  Factors associated with visceral fat mass. Generalized linear model. LPS, lipopolysaccharides; 
hsCRP, high-sensitivity C-reactive protein; eGDR, estimated glucose disposal rate; TG, triglycerides.
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Dietary fat intake may increase systemic LPS activity, driving adipose inflammation20. In a recent study, circu-
lating LPS activity levels correlated with intra-abdominal fat volumes, but only modestly with the subcutaneous 
fat volumes in patients undergoing bariatric surgery. Notably, a significant decrease in serum endotoxin levels 
was still evident one year after the operation21. Higher CRP levels may arise through a local inflammation of the 
adipose tissue associated with an increased bacterial burden19.

Serum triglycerides and LPS are strongly correlated9. Indeed, we observed an interaction between LPS and 
triglycerides on visceral fat mass. Importantly, the interaction term was independent of the individual factors 
alone, indicating that the combination of high serum LPS and triglycerides have additive effects on visceral fat 
mass. This observation is in concordance with previous rat studies, showing that a low dose intraperitoneal LPS 
injection increases liver triglyceride production, while high doses decrease triglyceride-rich lipoprotein clear-
ance22. Moreover, in healthy volunteers, a small intravenous dose of LPS acutely increased serum triglyceride 
levels23, while in mice a subcutaneous infusion of LPS for four weeks significantly increased visceral fat mass4. 
Cross-sectional nature and small study population are potential limitations of the current study. Moreover, due to 
the exclusion of individuals with end-stage renal disease, the results may not be generalizable to these individuals. 
Prospective studies are needed to establish the causalities related to the observations.

In conclusion, independent of traditional risk factors, serum LPS activity is associated with visceral fat mass 
in type 1 diabetes. The LPS-association with visceral fat is pronounced at high triglyceride concentrations. This 
strengthens the hypothesis that both bacterial endotoxins and dyslipidemia contribute to the development of 
central obesity, inflammation and insulin resistance and thus may subsequently be associated with adverse 
cardio-metabolic outcomes.
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