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Abstract: Bombyx mori silk fibroin (SF) is widely used in the field of biomaterials due to its excellent
biocompatibility and mechanical properties. However, SF cannot be used directly in many appli-
cations and needs to be dissolved first. Lithium bromide (LiBr) is a traditional solvent which is
usually used to dissolve SF. However, LiBr has several limitations, e.g., it is expensive, it is toxic to
organisms, and it is environmentally unfriendly. Herein, we investigate the possibility of developing
a ternary reagent system that is inexpensive, non-toxic to organisms, and environmentally friendly as
an alternative for silk fibroin solubilization. The results confirm that regenerated silk fibroin (RSF)
prepared using a ternary reagent has the same morphology and amino acid composition as that
prepared using LiBr, but the RSF prepared using a ternary reagent still had a small amount of calcium
residue even after long-term dialysis. Further research found that the residual calcium does not cause
significant differences in the structure and biological performance of the RSF, such as its cytotoxicity,
blood compatibility, and antibacterial properties. Therefore, we believe that ternary reagents are an
ideal alternative solvent for dissolving SF.

Keywords: silk fibroin; dissolution; ternary reagent; lithium bromide; biocompatibility; hemolysis

1. Introduction

Silk fibroin (SF), a natural protein purified from Bombyx mori silkworm cocoons, has
been used as a biomaterial in numerous applications, including tissue engineering, drug
delivery, and implanted devices. The reasons for its widespread use include the ease
with which it can be processed, its excellent biocompatibility, and its tunable mechanical
and degradation properties [1–4]. Natural SF in silkworms is water soluble and behaves
like a typical soluble polymer in solution [5,6]. However, when silkworms are spun,
the spun fiber is insoluble in water due to protein hydration and structural transition to
β-sheets [7]. Therefore, insoluble silk fibers require multiple processing steps before being
processed into different forms. The processing of SF predominantly involves degumming,
dissolution, dialysis, and forming. Among these, dissolution is an essential step. There are
various dissolution systems to dissolve the SF [8,9], such as high-concentration neutral salt
solvents [9], strong acids such as sulfuric acid [10] and formic acid [11,12], ionic liquids [13],
and composite solvents such as salt-alkali [14], salt-alcohol, and salt-acid [9,15]. More novel
solvents that can dissolve SF have also been discovered and reported [16,17]. Different
solvents have different solubilities [18] and affect the molecular weight distribution [19],
aggregate structure, morphology, and viscosity [9] of the regenerated silk fibroin (RSF).

Among these solvents, lithium bromide (LiBr) and calcium chloride (CaCl2) have
attracted the attention of researchers. A 9.0–9.3 mol LiBr aqueous solution can swiftly
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dissolve SF at 70 ◦C–80 ◦C [9]. A CaCl2 aqueous solution can still dissolve silk fibroin,
but the dissolution rate is slower than that of LiBr at the same temperature because Ca2+

cannot easily penetrate the crystalline region of the SF. Nevertheless, calcium chloride has
attracted the attention of researchers [8,9]. The addition of small-molecule plasticizers can
significantly alleviate this problem [20–22]. For example, CaCl2-methanol can easily break
down silk fibroin into nanofibers [20]. The mixture of CaCl2, EtOH, and H2O, with a molar
ratio of 1:2:8, also known as Ajisawa’s reagent or a ternary reagent, can dissolve SF rapidly
because EtOH can bring Ca2+ into the crystalline region of the SF [21]. We anticipate the
use of the ternary reagent in industrial production due to the small amount of inorganic
salt required (1 mol CaCl2) and its low cost [23].

However, some studies suggest that the two solvents still produce differences in the
dissolution and regeneration of SF. For example, RSF prepared with a ternary reagent
has a high aggregation rate during the dialysis step. However, RSF dissolved in aqueous
LiBr does not form aggregates during dialysis and shows high stability [24]. The varia-
tion between them can further influence the final properties of the RSF materials, such
as the degree of crystallinity, conformational transitions, thermal stability, and surface
structures [21]. More importantly, the reserves of Li on the earth are very low, and this
coupled with the demand for it in the new energy industry has meant that the price of
lithium salt has become unfeasible. In addition, many studies report that Li is highly toxic
to humans and the environment, and that it will cause great environmental pollution if
it is directly discharged into the environment without treatment [25–27]. The treatment
of lithium-containing wastewater increases production costs and corporate burdens, so
LiBr is not economically viable for large-scale production of RSF [17]. In contrast, Ca is an
essential component of living organisms, has no apparent environmental toxicity, and is
inexpensive. Therefore, it is crucial to systematically and extensively study the differences
between lithium bromide and ternary solvents to find an inexpensive alternative solvent
for the large-scale production of RSF.

For this paper, we prepared two RSFs, one using LiBr (RSF-Li) and one using a
ternary reagent (RSF-Ca), and comprehensively investigated their compositions, structures,
biocompatibility, antibacterial properties, and applications, with the aim of identifying
a cost-effective and environmentally friendly solvent for the large-scale production of
RSF. The solubilization and regeneration of SF is a long, multi-step process. Every tiny
difference in processing results in a change in the final properties of the RSF [28]. Molecular
weight is one of the key parameters [29]. Lower molecular weight leads to difficulty
in shaping the fibers during spinning, weaker mechanical properties, and an enhanced
degradation rate [30–32]. It can be regulated by dissolution conditions, such as temperature
and time [33]. To avoid this effect, the RSF samples prepared from the two different solvents
in this study, under controlled conditions, had identical molecular weight distributions.
Similarly, we selected cocoons of the same variety and production season as the raw
material for SF extraction.

2. Material and Methods
2.1. Materials

Bombyx mori cocoons were kindly supplied by the Langzhong Silkworm Breeding
Farm, Sichuan, China. EtOH (Ethanol, purity > 99.5%) was obtained from Chuandong
Chemical Co., Ltd., Chongqing, China. LiBr was obtained from Aladdin Chemical Co.,
Ltd., Shanghai, China. CaCl2 was obtained from Kelong Co., Ltd., Chengdu, China. All
chemicals used were of analytical grade.

2.2. Preparation of Silk Samples

Silk solutions were prepared according to our previously published procedures [21].
Cocoons were cut into small pieces and boiled in 0.02 M Na2CO3 solution for 30 min,
followed by a rinsing process with copious amounts of distilled water to extract sericin pro-
teins. The degummed silk was air-dried at room temperature to obtain the SF. The different
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fibroin samples were dissolved in a LiBr aqueous solution and a ternary reagent under
controlled conditions (Table 1). The resulting solutions were dialyzed in deionized water
using a dialysis tube (molecular weight cutoffs of 3500) for 3 days at least, during which
time the water was constantly changed. Then, the solution was centrifuged at 5000 rpm for
30 min to remove insoluble impurities. The final concentration was approximately 3–4 wt.%
as determined by weighing the remaining solids after drying at 60 ◦C. The RSF solution
was freeze-dried or cast into a thin film to produce the experimental samples. To prepare
the silk films, 10 mL of RSF solution was cast on polystyrene dishes (diameter 90 mm)
and then dried into films under controlled film-formation conditions (20 ± 5 ◦C, relative
humidity of 65%) for 2 days. In order to unify the standards of films, all silk solutions were
diluted to 2 wt.% exactly.

Table 1. Preparation of RSF under controlled conditions.

Solvent Preparation Temperature (◦C) Time (min) Bath Ratio

LiBr 9 M LiBr aqueous solution 80 3 1:10

Ternary reagent CaCl2–EtOH–H2O with a molar ratio of 1:2:8 75 15 1:10

2.3. Molecular Weight Detection

The molecular weight distribution of the RSF was determined with sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Separating gel (15%) and stacking
gel (5%) were used in the experiments. An amount of 10 µL of 5× loading buffer was
added to 40 µL of RSF solution as the loading sample, 10 µL per well. The electrophoresis
voltage of the stacking gel was 80 V, and the voltage of the separating gel was 120 V. After
electrophoresis, the samples were stained with Coomassie brilliant blue R250 for 40 min
and photographed after destaining.

2.4. Morphologic Observation

The morphology of the RSF molecules in solution was observed with an atomic force
microscope (AFM; Dimension ICON, Bruker, Germany). Two microliters of the diluted RSF
solution (0.1 wt.%) was dropped onto freshly cleaved mica surfaces. The morphology of
the RSF in water was observed with an AFM in air. A 225 µm long silicon cantilever, with a
spring constant of 3 Nm−1 was used in tapping mode with a scan rate of 1 Hz.

Transmission electron microscopy (TEM; JEM-2100, JEOL, Tokyo, Japan) was also
employed to observe the morphology of the RSF molecules. The diluted silk solution
(0.1 wt.%) was placed on a carbon-coated Cu electron microscopy grid. The excess liquid
was absorbed by filter paper and then air-dried. The sample grid was observed at 80 kV. To
enhance the contrast of the image, the sample was dyed with phosphotungstic acid.

2.5. Amino Acid Analysis

The amino acid composition of the RSF was determined using an automatic amino
acid analyzer (L-8800, Hitachi, Tokyo, Japan). A 50 mg fibroin sample was incubated in
6 M hydrochloric acid at 110 ◦C for 24 h, then the hydrolyzed solution was transferred to a
beaker and evaporated to dryness. The dry mixture was dissolved again with 0.02 mol/L
hydrochloric acid and filtered with a 0.22 µm filter. The percent composition of different
amino acids was subsequently determined.

2.6. Element Content Analysis

Raw SF and the RSF prepared with the two solvents were dried in an oven at 80 ◦C
to a constant weight, and in each case a 0.1 g dry sample was dissolved in 10 mL 65–68%
nitric acid at 130 ◦C, and the solution was evaporated to dryness. The dried mixture was
dissolved again with 4 mL of nitric acid and diluted to 50 mL with water. Measurements
were performed with an Optima 8000 inductively coupled plasma emission spectrometer
(PerkinElmer, Waltham, MA, USA). All measurements were performed in triplicate.
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2.7. Antibacterial Assays

The microbial growth curve method was employed to evaluate the antibacterial
property of the RSF. Escherichia coli and Staphylococcus aureus were cultured until the mid-
log phase (A600 of 0.5–0.6) at 37 ◦C overnight. A total of 100 µL of lysogeny broth medium
was blended with 20 µg fibroin in weight. Each of the blended mixtures was inoculated
with bacterial suspensions. The total volume of all groups was 200 µL. All samples were
incubated at 37 ◦C, and the A600 values at different intervals were measured by a Bioscreen
C microorganism growth curve meter (Bioscreen, Turku, Finland).

2.8. Cell Growth Assessment

The mouse L929 cells used in this study were purchased from Lonza Group Ltd. They
were cultured in basal medium supplemented with 10% fetal bovine serum (FBS) in a CO2
incubator at 37 ◦C, according to the published procedure [34]. According to the basic cell
culture conditions, 30 µg/mL of RSF solution was added to the basic cell culture medium
as the treatment group. Subsequently, a cell counting kit-8 (CCK8) assay was carried out
to evaluate L929 cell viability. Using the same cell number and volume, the survival rate
was determined by optical density (OD) at 570 nm, with background subtraction at 650 nm,
using a Varioskan Flash full wavelength microplate reader (Thermo Scientific, Waltham,
MA, USA). Cell images were recorded with an optical microscope.

2.9. Hemolysis Test

Whole blood from a rabbit was collected with a vacuum blood collection tube (sodium
citrate 1:9), and then diluted with 0.9% sodium chloride for the experiment (0.2 mL in
10 mL saline). The lyophilized RSF was dissolved in 0.9% sodium chloride to prepare three
solutions with fibroin concentrations of 100 mg/mL, 10 mg/mL, and 1 mg/mL, respectively,
and then centrifuged to remove impurities. An amount of 1 mL of RSF solution was added
into a centrifuge tube and incubated in a 37 ◦C water bath for 30 min. An equal volume
of diluted rabbit blood was then added, and incubation continued for 1 h. Physiological
saline and distilled water were added as positive and negative controls, respectively. After
hemolysis, samples were centrifuged at 12,000 r/min for 2 min. The absorbance of the
supernatant was measured at 545 nm using a Synergy H1 microplate reader (BIOTEK,
Winooski, VT, USA). The hemolysis rate was calculated according to the following equation:

Hemolysis rate (%) = (A2 − A1)/(A3 − A1) × 100

where A1, A2, and A3 are the optical density (OD) of the negative control, sample, and
positive control, respectively.

2.10. Platelet Adhesion Analysis

The experiment was designed with reference to methods in the published litera-
ture [35]. The whole blood was mixed with sodium citrate buffer and centrifuged at
1500 r/min for 15 min to obtain platelet rich plasma (PRP) supernatant. Then it was diluted
1-fold with phosphate buffer saline (PBS, pH7.4), and centrifuged to obtain the supernatant
for the experiment. Each RSF film sample was cut into a 1 cm × 1 cm square and placed in
a 6-well plate. An amount of 1 mL PBS was added, and it was incubated in a 37 ◦C water
bath for 1 h, and then removed. An amount of 1 mL of PRP diluent was re-added, and then
it was placed in an incubator (static test) or a shaker (dynamic test) at 37 ◦C for 3 h. After
the platelets adhered, the RSF film was taken out and gently washed three times with PBS.
The film sample was fixed with 2.5% glutaraldehyde solution for 12 h, then dehydrated
and dried with different concentrations of ethanol gradient, and then observed with a
Crossbeam 350 scanning electron microscope (Zeiss, Jena, Germany).
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2.11. Film Structural Characterization

Fourier Transform Infrared Spectroscopy (FTIR) analysis of the silk samples was per-
formed with a Nicolet iS5 spectrometer (Thermo Scientific, Waltham, MA, USA) equipped
with an attenuated total reflection (ATR) ZnSe crystal. The silk film was attached to the
crystal surface with a compressive bar. For each measurement, 32 scans were coded at a res-
olution of 4 cm−1. The wavenumber ranged from 400 to 4000 cm−1. The FTIR spectra were
fitted with Gaussian profiles in the amide I region between 1600 and 1700 cm−1 by PeakFit
4.12 software. Please refer to the supplementary data for the details of the procedures.

The crystal structure of each film sample was measured with X-ray diffraction (XRD)
(X′ Pert3 powder, Malvern Panalytical, Worcestershire, UK) using Cu Kα radiation (20 mA,
36 kV) with a scanning speed of 4◦/min. The thermal properties of the silk films were
measured in a differential scanning calorimeter (HSC-1, Shanghai, China) under a dry
nitrogen gas flow of 10 mL·min−1. The samples were heated at 10 ◦C per min from 25 ◦C
to 350 ◦C.

The surface morphology of each film was also observed by AFM (Dimension ICON,
Bruker, Germany). A small piece of RSF film was placed onto freshly cleaved mica, and
its surface morphology was observed in the same way. The operating procedure is as
described above.

3. Results
3.1. Molecular Weight Distribution of the RSF

Native SF is composed of a heavy protein chain (350 kDa) and a light protein chain
(26 kDa), which are connected by a disulfide linkage [36]. Since the SF peptide chain
is hydrolyzed during the dissolution process, the RSF has a broad molecular weight
distribution of 35 kDa to 270 kDa [21,28,29], showing a broad smeared band in the SDS-
PAGE gel. From the SDS-PAGE results (Figure 1a), it can be seen that the band distributions
of RSF-Li and RSF-Ca are almost the same. This indicates that we successfully prepared two
RSFs with the same molecular weight in different solvents by controlling the dissolution
conditions. These samples were used for subsequent test comparisons, which effectively
avoided the interference of molecular weight on the results and improved the reliability of
the test results.
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Figure 1. Molecular weight and morphology of the RSF. (a) The SDS-PAGE result. (b–e) The
AFM images of the RSF-Ca (b,c) and the RSF-Li (d,e) in solution. (f,g) The TEM images of the
RSF-Ca (f) and the RSF-Li (g). The arrows (e,f) indicate the RSF.

3.2. Morphology of the RSF in Solution

In order to compare the molecular-scale morphology of the two SFs, we prepared a
fibroin solution at a concentration of 1 mg/mL. Samples were dropped onto a mica surface
and observed directly by AFM. The results revealed that the RSF-Li and RSF-Ca molecular
structures were uniform and characterized by globular beds of protein (Figure 1b–e). These
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proteins exhibited the typical long-elliptic morphology, reaching an apparent height of
1.7 nm and a width of 20 nm, approximately. This result was significantly as it corresponded
to a previous publication [37]. Using high-resolution AFM, Koebley observed that RSF is
granular in aqueous solution [37]. Moreover, TEM images also exhibited the same long-
elliptic morphology of the fibrils generated under the same concentration as was seen in
the AFM analysis (Figure 1f,g).

3.3. Amino Acid Composition of the RSF

The SF consists of 18 amino acids, the most abundant being glycine (G), alanine (A),
and serine (S). These three amino acids make up the GAGAGS motif. This motif is repeated
in large numbers and constitutes the main structure of SF [38]. It is believed that the
composition and sequence of amino acids are closely related to the structure and properties
of RSF [39]. Compared with raw SF, the amino acid type in RSF does not change after
dissolution and regeneration; only the amino acid content changes slightly [40]. To verify
whether the solvent has an effect on the amino acid composition, we tested the amino acid
compositions of the two different RSF samples. The results (Figure 2a) showed that the
amino acid composition of the SF differed very little before and after dissolution, except
for glutamic (Glu) and proline (Pro). The content of glutamic acid in the RSF-Li samples
was significantly higher than in the RSF-Ca samples. In addition, the content of proline in
the RSF was significantly reduced (Figure 2b). However, the content of these two amino
acids in SF is very small, and there is no clear evidence that they can obviously affect the
structure of SF.
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3.4. Content of Ca and Li in the RSF

Natural SF contains trace amounts of Ca, which plays a key role in maintaining the
structural and mechanical properties of SF [41,42]. Studies carried out in vitro have also
revealed that Ca can induce the formation of β-sheet structures within silk proteins, which
improves mechanical properties and promotes gelation in RSF materials [22,43–45]. It has
been reported that a small amount of Ca is retained in RSF solution which is prepared with
calcium salt after dialysis [46]. Therefore, it is necessary to investigate the residual amount
of metal elements from the solvent in the two RSF samples prepared using different solvents.
Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was employed for
the determination of Ca and Li content, and the results are shown in Figure 3. The Ca
content of the native SF (NSF) was 181.7 ± 0.503 mg/kg, but the RSF-Ca had a Ca content
of up to 1139.46 ± 3.45 mg/kg, which was about 6 times that of the control. This has
demonstrated that a small amount of Ca from the solvent remained in the RSF after dialysis,
corresponding to a previously published report [46]. The content of Ca in the RSF-Li was
280.43 ± 3.44 mg/kg, slightly higher than the control, but significantly lower than the
RSF-Ca. We speculate that the RSF-Li adsorbs trace amounts of Ca from water during
the dialysis process, resulting in a higher Ca content than in NSF (Figure 3a). Li is not
present in NSF, so it cannot be detected in the RSF-Ca. However, after three days of dialysis,
117.8 ± 16.89 mg/kg of Li remained in the RSF-Li (Figure 3b). Yet, if the dialysis time is
extended (for example, to 7 days), Li will not be detected in the RSF-Li (Figure 3d). This
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shows that Li can be completely removed from RSF by dialysis. Surprisingly, there will
still be a small amount of Ca in the RSF-Ca after 7 days of dialysis (Figure 3c). In addition,
the Ca content in the RSF-Li will gradually increase with the extension of dialysis time
(Figure 3c). Obviously, the SF molecules can easily and firmly bind to Ca. Previous studies
have confirmed that Ca ions can combine with silk protein molecules to form a stable
complex structure [46–48].
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3.5. Antibacterial Properties of the RSF

Silk protein exhibits weak antibacterial activity, and the seroin is considered its an-
tibacterial component [49]. To verify whether the solvent has an effect on the antibacterial
activity of RSF, we tested the antibacterial activity of the two RSF samples. The results
(Figure 4a) show that the RSF has a visible inhibitory effect on E. coli, and the two RSF
samples exhibit the same antibacterial activity. the survival of E. coli in the treatment group
was only 75% of that in the control group after 12 h (Figure 4c). However, neither of the
two RSF samples inhibited the growth of S. aureus, and they even promoted its growth
to some extent (Figure 4b). We speculate that the silk protein provides nutrients for the
growth of S. aureus. These results indicate that under the current experimental conditions,
the solvent has no significant effect on the antibacterial properties of RSF.
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3.6. Cytocompatibility and Hemolysis of the RSF

SF has good biocompatibility and can be used as a medium for animal cell cultures [50].
The two RSF samples were added to a cell culture medium to investigate whether the
samples affected cell growth. The results show that the L929 cells grew well in both the
media with the silk protein and the control medium. Normal cell morphology was also
observed (Figure 5a). More specifically, cellular morphology was normal on the first day
of culture. On the third day, the number of cells increased significantly, and their outlines
were clear. The cell morphology then changed from fusiform to round, and the cells began
to die on the fifth day. No significant differences in cell morphology in terms of cell size,
shape, and outline, were observed between the cells cultivated in each medium.
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Figure 5. The cytocompatibility and hemolysis of the RSF. (a) The cellular morphology and (b) cell
survival rate of mouse L929 cells in the control medium and the RSF-added media. Cellular morphol-
ogy was observed on the first day, the third day, and the fifth day. (c) The hemolysis rate of the RSF
that directly contacted red blood cells in a solution state. The scale bars in (a) represent 100 µm.

Cell survival was measured using the CCK8 assay. From the results, we found that
the L929 cells showed similar overall survival rates in both the fibroin-added media and
the control medium, and that the survival rates reached a maximum on the fourth day
(Figure 5b). The survival rate of the RSF-added cells, especially the RSF-Ca-added cells,
was slightly higher than that of the control cells. In addition, the survival rate of the cells
exposed to the RSF-Ca was slightly higher than that of the cells exposed to the RSF-Li. Ca2+

is a critical factor for a wide range of physiological processes, and it also plays a regulatory
role in cell migration [51]. Therefore, we speculate that the higher Ca content in the RSF-Ca
leads to a slightly higher cell survival rate compared with the control. In summary, both
RSF-Ca and RSF-Li have no obvious cytotoxicity and have no obvious influence on cellular
morphology and cell survival rate.

Previous studies have confirmed that insoluble RSF film does not cause significant
hemolysis [34]. Here, we measured the hemolysis rate of the RSF that directly contacted
red blood cells in a solution state. It can be seen from the results that the hemolysis rates
of the RSF solutions of 1 mg/mL and 10 mg/mL were very low, while the hemolysis
rate of the 100 mg/mL RSF solution was high, exceeding 2% (Figure 5c). This shows that
high concentrations of fibroin protein are more likely to cause red blood cells to rupture
and increase hemolysis when directly contacting red blood cells. However, there is no
significant difference in the hemolysis rate between RSF-Li and RSF-Ca, indicating that
there is no notable difference in the degree of hemolysis caused by the RSF prepared with
either of the two solvents we selected.

3.7. Structure of the Silk Film

Thin film is not only an important material form for SF application, but also an
important medium for studying the structural transition of fibroin protein. Therefore, we
prepared films from two RSF samples and characterized their structures. To ensure the
reliability of the results, we strictly controlled the parameters of the film, using the same
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RSF concentration, temperature, humidity, etc. The FTIR results showed that all samples
produced strong absorption bands at 1640 cm−1 (amide I) and 1510 cm−1 (amide II), and
we attribute these bands to random coil and β-sheet conformations, indicating that the
two silk films have similar structures (Figure 6a). Further quantitative analysis found that
the β-sheet content of the RSF-Ca film was higher than that of the RSF-Li film, while the
content of random coils/α-helices was lower (Figure 6b and Figure S1).
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The XRD testing showed similar results. All samples exhibited a broad diffraction
peak at around 2θ = 22◦, indicating the presence of both silk I (type II β-turn) and silk II
(anti-parallel β-pleated sheet) structures in the silk film (Figure 6c) [21,52]. The RSF-Li film
was a little different, simultaneously showing a typical silk I structure X-ray diffraction
peak at 11.8◦. This indicates that the silk structure of the RSF-Ca film is mainly composed
of stable silk II, which is consistent with the FTIR data. Silk I is a metastable structure, and
it is the key intermediate secondary structure formed by silk II, so its thermal degradation
temperature is lower than that of the stable silk II structure [52]. The test curve of DSC
(Figure 6d) shows that the thermal decomposition temperature of the RSF-Li film is 268 ◦C,
which is slightly lower than that of the RSF-Ca film (284 ◦C). This is because the RSF-Ca
film has a higher β-sheet content, so the thermal stability is higher.
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The surface roughness, hydrophilicity, and other micro- and nanostructures of bio-
materials are key properties of the materials that can affect various biological properties
such as cell adhesion, growth, and aggregation. The surface microstructures of the two silk
films were observed using AFM, and the results showed that the two films were not very
smooth, but evenly distributed with tiny spherical protrusions (Figure 6e). The roughness
analysis results show that the roughness (Ra) of RSF-Ca is slightly higher than that of RSF-
Li (Figure S2). Notably, although the secondary structure content, thermal degradation
temperature, and surface roughness of the two RSF films were slightly different, the data
did not reach a statistically significant level (p < 0.05).

As mentioned above, Ca2+ can bridge with acidic amino acids in silk protein, thereby
promoting the formation of β-sheet structures [22,43–45]. Most silks in nature rely on
this mechanism, so Bombyx mori silk contains trace amounts of Ca to maintain its good
mechanical properties [42]. When dissolving SF with calcium salts (e.g., a ternary reagent),
after long-term dialysis about 1000 mg/mL of Ca is still bound to the fibroin molecules.
Therefore, we speculate that the residual Ca in RSF-Ca forms more β-sheets than in RSF-
Li, thereby increasing the thermal degradation temperature and roughness of the film
(Figure 6f). The difference was not significant due to the low residual Ca content and the
presence of intrinsic Ca in the RSF-Li.

3.8. Platelet Adhesion of the RSF Film

Tissue engineering materials are usually not necessary to cause platelet aggregation,
especially materials that contact blood directly, such as artificial blood vessels. In addition,
Ca2+ is a procoagulant factor that can cause platelet aggregation to stop bleeding. There are
trace Ca residues in RSF-Ca, so it is necessary to evaluate its platelet adhesion performance.
In this experiment, the adhesion of rabbit platelets to RSF films was evaluated. The
experimental results showed that platelets did adhere more to the RSF film under static
conditions, but that they did not adhere well under dynamic conditions that mimicked
blood flow (Figure 7a and Figure S3). In addition, we conducted a statistical analysis of
the number of platelets per unit film area. It was found that the number of platelets was
higher on the RSF-Ca film than on the RSF-Li film, but the difference was not significant
(Figure 7b). This shows that these two kinds of RSF are safe and can be used to prepare
biological materials that contact with blood directly.
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4. Conclusions

The effect of a ternary reagent and of LiBr on the structure and properties of RSF
were systematically investigated in the present study. The results demonstrated that RSF
prepared using a ternary reagent was not significantly different from that prepared using
LiBr in terms of amino acid composition, morphology, bacteriostatic activity, cytotoxicity,
film structure, and properties. Therefore, we believe that a ternary reagent is an ideal
alternative solvent for dissolving SF. Notably, compared with LiBr, trace amounts of Ca
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remained in the RSF dissolved by the ternary solvent, which is hard to remove completely,
even after long-term dialysis. This resulted in subtle changes in the structure and properties
of the material. The study also reminds us that the electronegativity of SF molecules and
specific amino acid residues (e.g., Asp and Glu) make it relatively easy to bind it to metal
elements such as Ca, Mg, Fe, and Zn, so its solubility and preparation process should be
considered carefully.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14183903/s1, Figure S1: Multimodal fitted curves of
the FTIR spectra of RSF-Ca (a) and RSF-Li (b). The black curve is the original spectrum, the red is
the fitted total spectrum, and the green is the individual peaks. R2 is the residual value; Table S1:
Vibrational band assignments for the amide I region of silk fibroin; Figure S2: The AFM photos and
roughness analysis of RSF-Ca (a) and RSF-Li (b); Figure S3: Morphology of rabbit platelets adhered
to the RSF film. Reference [53] is cited in the supplementary materials.
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