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Abstract  

CD40 is a central co-stimulatory receptor implicated in the development of productive anti-tumor 

immune responses across multiple cancers, including bladder cancer. Despite strong preclinical 

rationale, systemic administration of therapeutic agonistic antibodies targeting the CD40 pathway 

have demonstrated dose limiting toxicities with minimal clinical activity to date, emphasizing an 

important need for optimized CD40-targeted approaches, including rational combination therapy 

strategies. Here, we describe an important role for the endogenous IL-15 pathway in contributing 

to the therapeutic activity of CD40 agonism in orthotopic bladder tumors, with upregulation of 

trans-presented IL-15/IL-15Rα surface complexes, particularly by cross-presenting cDC1s, and 

associated enrichment of activated CD8 T cells within the bladder tumor microenvironment. In 

bladder cancer patient samples, we identify DCs as the primary source of IL-15, however, they 

lack high levels of IL-15Rα at baseline. Using humanized immunocompetent orthotopic bladder 

tumor models, we demonstrate the ability to therapeutically augment this interaction through 

combined treatment with anti-CD40 agonist antibodies and exogenous IL-15, including the fully-

human Fc-optimized antibody 2141-V11 currently in clinical development for the treatment of 

bladder cancer. Combination therapy enhances the crosstalk between Batf3-dependent cDC1s 

and CD8 T cells, driving robust primary anti-tumor activity and further stimulating long-term 

systemic anti-tumor memory responses associated with circulating memory-phenotype T and NK 

cell populations. Collectively, these data reveal an important role for IL-15 in mediating anti-tumor 

CD40 agonist responses in bladder cancer and provide key proof-of-concept for combined use of 

Fc-optimized anti-CD40 agonist antibodies and agents targeting the IL-15 pathway. These data 

support expansion of ongoing clinical studies evaluating anti-CD40 agonist antibodies and IL-15-

based approaches to evaluate combinations of these promising therapeutics for the treatment of 

patients with bladder cancer. 
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Main Text 

 
Introduction 

CD40, a member of the tumor necrosis factor superfamily of receptors (TNFRSF), plays a central 

co-stimulatory role in both innate and adaptive immunity, serving as a proximal regulator of the 

adaptive immune cascade driving the development of antigen-specific T cell responses (1). 

Evidence across multiple preclinical models for the ability of CD40 activation to induce robust 

anti-tumor responses (2), as well as the association of CD40 expression with improved clinical 

outcomes and markers of type-I immunity in pan-cancer human tumor analyses (3), have 

provided strong rationale for the clinical development of CD40 agonist approaches for cancer 

therapy, including agonistic anti-CD40 antibodies. Despite this promise, however, the clinical 

activity reported to date for these agents, particularly as systemic monotherapy, has been 

disappointing (2, 4), with transaminitis and thrombocytopenia reported at doses of 0.2 mg/kg, thus 

limiting the ability to achieve therapeutic doses for evaluation. These prior studies highlighted an 

important need for continued optimization of current CD40-targeted therapies. 

We and others have previously implicated CD40 as an important pathway in the context of 

bladder cancer (5-9), a disease area of significant unmet clinical need with an estimated 550,000 

new cases and nearly 200,000 disease-associated deaths annually worldwide (10). Using 

humanized orthotopic bladder cancer murine models, we have also recently identified the ability 

to substantially enhance therapeutic anti-tumor immune responses through the use of novel 

agonistic anti-CD40 antibodies engineered for optimal engagement of the FcγRIIB receptor 

essential for in vivo agonistic activity (5), an approach now being tested in an early-phase clinical 

study (NCT05126472) for the treatment of non-muscle invasive bladder cancer (NMIBC) 

unresponsive to front-line therapy. Here, we report on the mechanisms of the CD40 agonist 

response in preclinical bladder cancer models, with the identification of complementary pathways 

that provide a basis for rational combination therapy strategies for future clinical evaluation. 
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Results 

Dendritic cells in the bladder microenvironment of mice responding to CD40 agonism have 

higher expression of IL-15Rα.  

As noted above, we previously identified CD40 as an important pathway in the immunoregulation 

of bladder cancer and further elucidated the ability of in situ CD40 agonism (via local intravesical 

treatment with agonistic anti-CD40 antibodies) to drive productive anti-tumor immunity in this 

disease context (5). While we previously found that anti-tumor immunity was critically dependent 

on conventional type 1 dendritic cells (cDC1s) and CD8 T cells, other signals participating in this 

response remain unknown. We hypothesized that IL-15 may be an important contributor to CD40 

agonist therapeutic activity given the role of the IL-15 pathway in driving immune-stimulatory 

interactions between activated dendritic cells (DCs) and effector CD8 T cells and NK cells in 

multiple physiologic and pathologic contexts (11). To investigate this question in a bladder 

cancer-relevant setting, we utilized an immunocompetent orthotopic murine tumor model in which 

the syngeneic MB49 bladder cancer cell line is implanted into the bladders of C57BL/6J mice 

using a urethral catheter-based technique (Fig. 1A)(12, 13). This approach results in efficient 

engraftment of progressive bladder tumors recapitulating the enriched expression of CD40 within 

the bladder tumor microenvironment found in human disease (5, 6). We first evaluated for the 

presence of IL-15Rα on myeloid subsets in the TME of orthotopic MB49 bladder tumors in mice 

responsive versus unresponsive to intravesical CD40 agonism, as measured by luminescent 

signal at day 24 post-implantation (Fig. 1B). We found significantly higher amounts of cell surface 

expressed IL-15Ra on cDC1 and cDC2 subsets in responding tumors, without significant 

differences in expression on macrophages or neutrophils (Fig. 1C). These data demonstrate 

elevated IL-15Ra is associated with response to intravesical CD40 immunotherapy, suggesting 

that a direct role for IL-15/IL-15Ra may be driving the therapeutic effects of CD40 agonist 

antibodies in the bladder TME. 

 

Endogenous IL-15 participates in the therapeutic activity of CD40 agonism 
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To further evaluate the role of IL-15/IL-15Rα in the therapeutic response to CD40 agonism, 

mice bearing orthotopic bladder tumors were treated intravesically with a murine agonistic anti-

CD40 antibody (IgG1 clone 1C10, capable of engaging murine FcγRIIB) either in the presence or 

absence of an IL-15 blocking antibody (Fig. 2A). Consistent with our prior study (14), intravesical 

anti-CD40 agonist antibody treatment results in decreased tumor burden, as assessed by both 

tumor cell bioluminescence and bladder weights (Fig. 2B). Notably, concurrent IL-15 blockade 

was associated with a reduced therapeutic effect in response to anti-CD40 agonist antibody 

treatment, suggesting that endogenous IL-15 participates at least in part in the therapeutic activity 

of CD40 agonism in this tumor model.  

We have previously demonstrated that productive responses to CD40 agonist therapy in 

the orthotopic bladder tumor setting is CD8 T cell-dependent (5, 15), thus we further examined 

the tumor-infiltrating CD8 T cell compartment. Prior work has demonstrated that antigen-specific 

CD8 T cells expressing the IL-2Rβ chain (CD122) are potently activated when seeing IL-15 in 

trans from DCs in the TME, and their positioning to this niche is driven by the chemokine receptor 

CXCR6 (16). We found the therapeutic activity induced by anti-CD40 agonist antibody treatment 

was associated with increased proportions of activated CD44hiCD122+ CD8 T cells in the bladder 

microenvironment, which was reduced in the setting of concurrent IL-15 blockade (Fig. 2C, top). 

Interestingly, anti-CD40 agonist antibody treatment was also associated with increased 

proportions of activated CD8 T cells expressing CXCR6 (Fig. 2C, bottom), further supporting its 

important role in optimizing intratumoral IL-15-driven interactions between DCs and effector T 

cells necessary for sustained tumor control. 

 

Dendritic cells in the TME of non-muscle invasive bladder cancer patients express high 

levels of CD40 and IL-15 but are limited in their expression of IL-15Rα 

To determine whether similar pathways in dendritic cells may be operative in patients with 

bladder cancer, we next used single cell RNA sequencing (scRNAseq) to evaluate patients with 

NMIBC who were untreated (n=3) or from NMIBC patients that were identified to be BCG 

unresponsive (n=5). Cells were filtered according to minimum gene count (n=200); genes were 
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filtered according to minimum expression totals (n=3); cells with high mitochondrial gene counts 

(>20%) were filtered out; samples were normalized and log-transformed; and all samples were 

concatenated together. A total of 28,324 cells were isolated in the final population of this analysis. 

6,921 tumor cells; 6,391 CD4+ T cells; 3,714 B cells; 2,621 monocytes/macrophages; 2,641 

CD8+ T cells; 1756 stromal cells; 1281 NK cells; 1144 fibroblasts; 23 plasma cells; 563 

endothelial cells; 145 mature DCs; and 581 unknown cells were labelled. We first used canonical 

lineage markers for cell populations were utilized to assign cell identities to each cluster (Fig. 3A). 

tSNE plots were created for four representative markers: CD40, CD40L, IL15, and IL15RA (Fig. 

3B). Of the scaled expression values across patients, these data confirmed that dendritic cells 

were among the highest expressors of both CD40 and IL-15 (Fig. 3C). However, at baseline DCs 

did not demonstrate increased levels of IL-15RA, which was higher in endothelial cells and 

plasma cells, as previously demonstrated(17). Notably, T cells were the highest expressors of 

CD40 ligand (CD40L, CD154), representing their known role for their ability to provide T cell help 

to DCs and B cells. These data confirm that while DCs of the NMIBC TME express high levels of 

CD40 and IL-15, the expression IL-15RA, which is necessary for optimal trans-presentation to 

effector CD8 T cells, is limited.  

 

IL-15/IL-15Rα is upregulated on dendritic cells in the bladder tumor microenvironment in 

response to CD40 agonism 

IL-15 is known to be co-expressed in trans with IL-15Rα by myeloid cells, including by DCs, 

where IL-15Rα binds to IL-15 intracellularly and functions as a chaperone protein on the cell 

surface (18-23). Surface IL-15/IL-15Rα complexes are trans-presented to opposing lymphocytes 

during cell-cell interactions are primary mechanism by which physiologic IL-15 signals are 

delivered in vivo (24). We therefore investigated the expression of IL-15Rα in our orthotopic 

bladder tumor models. We observed that intravesical anti-CD40 agonist antibody treatment leads 

to upregulation of IL-15Rα on DCs and other myeloid cells within the bladder tumor 

microenvironment (Fig. 4A and B). Notably, the highest expression of IL-15Rα was found in the 

DC compartment, the population that has been likewise identified to be the highest expressors of 
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CD40 in the bladder tumor context (5). Moreover, the cDC1 subset, previously implicated as the 

key antigen presenting cell (APC) in the bladder tumor microenvironment essential for cross-

presenting antigen to CD8 T cells and driving productive responses to CD40 agonist therapy (5), 

was identified to have the highest expression of IL-15Rα. Of note, IL-15Rα upregulation was not 

similarly observed upon treatment with BCG (Fig. 4A and B), a live-attenuated bacterium 

routinely used clinically as a therapeutic immune stimulus in the treatment of localized bladder 

cancer, supporting the potential unique cooperation of the CD40 and IL-15 pathways in the 

bladder tumor microenvironment. 

To corroborate our findings in the MB49 model, we examined an additional 

immunocompetent orthotopic bladder cancer model derived from the syngeneic UPPL1541 

bladder tumor cell line, a cell line generated from a genetically engineered murine model of 

bladder cancer (Upk3a-CreERT2; Trp53L/L; PtenL/L; Rosa26LSL-Luc) that recapitulates the luminal 

molecular subtype of human high-grade urothelial carcinoma (25). IL-15Rα upregulation in 

response to CD40 agonism was similarly observed in the setting of mice bearing orthotopic 

UPPL1541 tumors (SI Appendix, Fig. S1). These observations across two immunocompetent 

bladder tumor models suggest that CD40 agonist-driven upregulation of the IL-15 pathway may 

be a broader phenomenon in the bladder tumor microenvironment. 

IL-15Rα protein expression has been previously postulated to likely exceed that of IL-15, 

given readily detectable IL-15Rα on a range of cell types and much more limited detection of 

surface-associated IL-15 (26). Concurrent surface staining of IL-15Rα and IL-15 revealed 

upregulation of surface IL-15/IL-15Rα complexes on cDC1s in the bladder microenvironment in 

response to CD40 agonism (Fig. 4C and D). However, a notable proportion of the IL-15Rα 

expressed on the cell surface was not found to be occupied by IL-15, both at baseline and 

following CD40 agonist therapy (Fig. 4D, bottom right quadrant). 

 

Combination therapy with a fully-human Fc-optimized anti-CD40 agonist antibody and IL-

15 enhances primary anti-tumor activity in humanized mouse models of bladder cancer 
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The above data and the prior literature (18-23) thus support the hypothesis that exogeneous IL-

15 might provide an opportunity to further enhance CD40 agonist therapeutic activity. We tested 

this hypothesis using a CD40 and FcyR humanized C57BL6 mouse and the fully-human anti-

CD40 agonist antibody 2141-V11, an antibody Fc-engineered for enhanced FcγRIIB binding 

necessary for optimal CD40 agonist activity (27) that is under active clinical evaluation for the 

intravesical treatment of NMIBC (NCT05126472). The humanized hCD40/hFcγR model 

recapitulates the expression patterns and function of human CD40 and human FcγR to allow full 

in vivo assessment of the interaction of fully-human anti-CD40 antibodies within the unique 

human FcγR landscape, necessary for accurate evaluation of the in vivo activity of these 

antibodies (15, 27). 

Using this humanized immunocompetent hCD40/hFcγR in vivo platform, we examined the 

therapeutic activity of the human anti-CD40 agonist antibody 2141-V11 either alone or in 

combination with IL-15 against orthotopic MB49 bladder tumors (Fig. 5A). In this setting, the 

combination of intravesical 2141-V11-driven CD40 agonism and systemic IL-15 was found to 

substantially decrease tumor burden assessed at earlier time points by tumor cell 

bioluminescence (Fig. 5B), as well as significantly improve rates of complete and durable 

response and long-term overall survival (Fig. 5C). We similarly observed improved anti-tumor 

activity against orthotopic UPPL1541 bladder tumors in response to combined therapy with the 

anti-CD40 agonist antibody 2141-V11 and IL-15, as visualized by serial bladder ultrasound and 

the time to tumor detection (SI Appendix, Fig. S2). These data indicate the capability of this 

combination in promoting strong primary anti-tumor activity across immunocompetent orthotopic 

bladder cancer models. Of note, while CD40 agonist therapy results in robust induction of IL-

15/IL-15Rα (Fig. 2 and SI Appendix, Fig. S2), exogenous IL-15 therapy was not observed to 

reciprocally enhance CD40 expression by any of the examined CD40-expressing myeloid cell 

populations within the bladder tumor microenvironment (SI Appendix, Fig. S3). 

 

CD8 T cells and Batf3 are required for the anti-tumor activity of combined therapeutic 

targeting of CD40 and IL-15 
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We further evaluated the cellular mediators by which combined therapeutic activation of CD40 

and IL-15 results in anti-tumor responses in the bladder tumor context. Depletion of CD8 T cells 

using an anti-CD8 depleting antibody largely abrogated the anti-tumor activity of the therapeutic 

combination, as assessed by tumor cell bioluminescence and bladder weights (Fig. 5D). This 

suggests that the therapeutic response to combined CD40 agonist and IL-15 targeting requires 

CD8 T cells in this setting. 

Given the central role of cDC1s in mediating responses to CD40 agonist monotherapy (5) 

and the high expression of IL-15Rα induced in this population by CD40 agonism within the 

bladder tumor microenvironment (Fig. 4 and SI Appendix, Fig. S1), we hypothesized that cDC1s 

were likewise important in driving the anti-tumor activity of CD40/IL-15-targeted combination 

therapy. We and others have previously shown that Batf3-/- mice are deficient in cDC1s, while 

other populations, including cDC2s and macrophages, remain intact (5, 28, 29). We observed 

that the reduced bladder tumor burden driven by combination therapy with anti-CD40 agonist 

antibody (1C10) and IL-15 was lost in the Batf3-/- background (Fig. 5E), indicating a requirement 

for Batf3 in the therapeutic activity of this combination. Taken together, these data support the 

conclusion that the cDC1-CD8 T cell axis, impaired in the Batf3-/- setting, plays a critical role in 

driving the response to combined targeting of the CD40 and IL-15 pathways in this context. 

 

Combined therapeutic targeting of CD40 and IL-15 promotes systemic anti-tumor memory 

responses 

Prior studies have described an important role for IL-15 in supporting the induction and 

maintenance of immune effector cell memory responses (21, 26, 30, 31). Using the humanized 

hCD40/hFcγR in vivo model, we further interrogated the ability of combined treatment with the 

anti-CD40 agonist antibody 2141-V11 and IL-15 to induce long-term protective systemic 

immunity. Mice surviving long-term (>90 days) from the initial therapy were rechallenged at a ten-

fold higher dose of tumor cells in a different tissue compartment (subcutaneous rather than within 

the bladder) in the absence of any additional therapy (Fig. 6A). Mice previously treated with 

2141-V11-driven CD40 agonism and IL-15 uniformly rejected tumor rechallenge (Fig. 6B), 
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indicating that this treatment is capable of inducing an in situ vaccination effect driving durable 

protective systemic anti-tumor immunity. 

Given this evidence of a robust systemic memory response, we further examined 

lymphocytes in the peripheral blood of these mice surviving long-term after both primary tumor 

treatment and subsequent tumor rechallenge to assess potential phenotypic changes associated 

with this response. Mice initially treated with the anti-CD40 agonist antibody 2141-V11 and IL-15 

demonstrated increased proportions of circulating CD44hiCD122+CD62L+ CD8 T cells (Fig. 6C, 

top and middle), consistent with enrichment of CD8 T cells bearing a central memory phenotype. 

Combination therapy targeting CD40 and IL-15 was also associated with increased proportions of 

circulating, CD27-CD11b+KLRG1+ NK cells (Fig. 6C, bottom), a phenotype associated with a 

population of mature NK cells that has been implicated in contributing to durable immune 

responses in several contexts (32). Together, these data suggest that combined therapeutic 

targeting of the CD40 and IL-15 pathways results in enrichment of memory-phenotype CD8 T cell 

and NK cell populations, which correlate with long-term enhanced systemic anti-tumor memory 

responses. 

 

Discussion  

Our group has previously described the importance of FcyRIIB engagement for optimal in vivo 

activity of anti-CD40 agonistic antibodies (5, 27). While the potential of this Fc-optimized 

approach to improve activity in patients is encouraging, optimal clinical benefit is most likely to be 

achieved through additional rationally selected combination(33). We thus set out to define such 

pathways in the context of therapeutic CD40 agonism and establish proof-of-concept for potential 

concurrent therapeutic targeting with direct implications for clinical translation. 

Here, we identify an important role for the endogenous IL-15 pathway in contributing to 

the therapeutic activity of CD40 agonism in the bladder TME, associated with the interaction 

between cross-presenting Batf3-dependent cDC1s and CD8 T cells, as well as trans-presented 

IL-15/IL-15Rα surface complexes. DCs, in particular cDC1s, have been increasingly implicated 

as a critical component of cancer immune surveillance and effective immunotherapy responses 
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(34-37), with cytokines such as IFNγ and IL-12 previously described to play important roles in the 

productive interaction between DCs and T cells driven by CD40 activation in the tumor 

microenvironment (38, 39). The current study identifies IL-15 as a key additional signal in the 

bladder cancer context. The substantial (but not complete) abrogation of CD40 agonist-driven 

anti-tumor activity associated with IL-15 blockade suggests a mechanism involving multiple 

signals including, but not limited to, IL-15, consistent with the likely additional involvement of IL-12 

and IFNγ discussed above. Indeed, cooperation between IL-12, IL-15, and IFNγ in orchestrating 

protective immunity has been suggested in cancer and other contexts (22, 40, 41). Di Pilato et al 

has also recently observed a critical role for a population of intratumoral IL-12-expressing DCs in 

mediating the survival and local expansion of effector-like CD8 T cells via an IL-15 trans-

presentation mechanism, found to be necessary for sustained tumor control and orchestrated in 

perivascular niches within the tumor microenvironment through the CXCR6-CXCL16 chemotactic 

axis (16). In the present study, we observed an IL-15-dependent enrichment of activated CXCR6-

expressing CD8 T cells in the bladder tumor microenvironment following CD40 agonist therapy. 

Interestingly, RNA sequencing analysis of patient tumor specimens has also recently revealed a 

correlation between the expression of CD40 and CXCR6 across multiple human tumor types (4). 

Our own sequencing data demonstrated that indeed DCs in the NMIBC TME are the highest 

expressors of CD40 and IL-15, however, they do not express high levels of IL-15RA. It is 

intriguing to consider whether the anti-tumor activity of therapeutic CD40 activation might be 

mediated in significant part through augmentation of this specific DC-T cell axis involving IL-15, 

IL-12, and CXCR6, which may occur spontaneously in certain immunogenic tumors (16), but is 

likely to be at least suboptimal in many other cancer settings like NMIBC. Whether the activity of 

DCs in the present context occurs primarily within the intratumoral microenvironment or at the 

level of the tumor-draining lymph nodes is an additional question of interest, one that may have 

important therapeutic implications, for instance, in selecting optimal routes and sequencing of 

therapeutic delivery. 

Notably, in this study we further identify the opportunity to augment this productive anti-

tumor DC-T cell interaction through combined therapeutic targeting of the CD40 and IL-15 
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pathways. Using two humanized immunocompetent orthotopic bladder tumor models and a 

clinically-relevant investigational approach, including use of the fully-human, Fc-optimized anti-

CD40 agonist antibody 2141-V11 that is under active clinical evaluation for the treatment of 

bladder cancer and other indications (NCT05126472, NCT04059588, NCT04547777), we noted 

substantial improvement in the therapeutic activity of 2141-V11-induced CD40 agonism through 

concurrent stimulation with exogenous IL-15, including robust generation of both primary and 

systemic memory responses. This combination therapy approach was found to critically depend 

on an intact cDC1-CD8 T cell axis, and is likely to be leveraging the observed upregulation (but 

incomplete occupancy) of surface IL-15Rα, which has been shown to be capable of incorporating 

exogenous IL-15 into the trans-presentation pathway (42, 43). Other groups have also observed 

the ability of CD40 agonists to overcome SOCS3-mediated impairment of CD4 T cell help 

induced by immunotherapy with common cytokine receptor gamma chain (γc) family members 

like IL-15 (44), providing additional mechanistic support for the combined therapeutic activation of 

the CD40 and IL-15 pathways. While the therapeutic activity was found to be primarily CD8 T cell-

dependent in this setting, notable pharmacodynamic changes were also observed in the NK cell 

compartment, consistent with the enhancement of effector lymphocyte activity likely to be broadly 

relevant across tumor contexts (45-47). 

In recent years, IL-15 has gained considerable interest as a cancer immunotherapy target 

given its potent physiologic role in promoting the activation, proliferation, survival, cytotoxicity, 

and other functions of CD8 T cells and NK cells, including the development and maintenance of 

memory CD8 T cell and NK cell populations (11, 48). Indeed, deficits in IL-15 expression have 

been associated with worse clinical outcomes and reduced intratumoral immune infiltrates in 

analysis of patient tumor cohorts (49). In addition, in contrast to the related common γc cytokine 

IL-2, IL-15 has not been similarly implicated in mediating activation-induced cell death of effector 

T cells or promoting the activity of regulatory T cells (50-53). Multiple IL-15-based therapeutic 

formats are currently under active clinical evaluation for cancer therapy, including monomeric 

formulations modified for improved pharmacokinetics and biologic activity, as well as several 
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heterodimeric approaches incorporating partial or full-length IL-15Rα, mimicking the biologically-

active IL-15/IL-15Rα complexes found physiologically in vivo (54, 55).  

Of particular interest in the bladder cancer setting is N-803 (formerly ALT-803), an IL-15 

superagonist complex consisting of an IL-15 mutein (N72D) associated with a dimeric IL-15Rα 

sushi domain/IgG1 Fc fusion protein (56). N-803 in combination with BCG is currently being 

investigated in the phase 2/3 QUILT 3.032 study (NCT03022825) for the treatment of patients 

with NMIBC unresponsive to front-line BCG therapy. Updated clinical results for 160 patients 

treated with N-803 + BCG [83 patients with carcinoma in situ (CIS); 77 patients with papillary-only 

disease] were recently presented, reporting a 71% complete response rate with a 26.6 month 

median duration of response in patients with CIS, as well as a 51% disease-free survival rate at 

18 months in patients with papillary-only disease (57). These results compare favorably to the 

outcomes for patients with BCG-unresponsive disease receiving historical salvage therapies (58, 

59), as well as outcomes from the registrational phase 2 KEYNOTE-057 study of the PD-1 

inhibitor pembrolizumab, which was recently-approved for treatment of the BCG-unresponsive 

CIS patient population (60). While these clinical data provide strong evidence for the therapeutic 

utility of IL-15 pathway activation in bladder cancer, continued rates of non-response and disease 

recurrence despite this therapy highlight an ongoing need for improved approaches. In this 

setting, we propose further investigation of novel IL-15-based combinations incorporating 

optimized CD40 agonists. Building on our current work establishing preclinical proof-of-concept 

for concurrent therapeutic targeting of CD40 and IL-15 in the bladder cancer context, as well as 

our ongoing phase 1 evaluation of the Fc-enhanced anti-CD40 agonist antibody 2141-V11 in 

patients with BCG-unresponsive NMIBC (NCT05126472), our group is now actively assessing 

specific IL-15-based therapeutic formats that may optimally synergize with 2141-V11-driven 

CD40 agonism to directly inform the near-term development of combination therapy clinical trials 

for this patient population. 

 Collectively, these data reveal an important role for IL-15 in mediating anti-tumor CD40 

agonist responses in bladder cancer and provide key proof-of-concept for a rationally designed 

immune-based therapeutic approach combining use of Fc-optimized anti-CD40 agonist 
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antibodies and agents targeting the IL-15 pathway, capable of driving enhanced cDC1 and CD8 T 

cell interaction and robust primary and memory anti-tumor responses. These data provide a 

rationale for expansion of ongoing clinical studies evaluating the Fc-optimized CD40 agonist 

antibody 2141-V11 to include novel IL-15-based combinations for the treatment of patients with 

bladder cancer. 
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Materials and Methods 

Mice 

C57BL/6J (WT; RRID:IMSR_JAX:000664) and B6.129S(C)-Batf3tm1Kmm/J (Batf3-/-; 

RRID:IMSR_JAX:013755) mice were purchase from The Jackson Laboratory. Mice expressing 

human CD40 and human FCGR1A, FCGR2AR131, FCGR2BI232, FCGR3AF158, and FCGR3B under 

control of their endogenous human regulatory elements on an isogenic background deleted for 

the homologous mouse genes were generated and extensively characterized as previously 

described (27, 61). All mice were 8-12 weeks of age at the time of experimental use, and were 

bred and/or maintained in the Rockefeller University Comparative Bioscience Center under 

specific pathogen-free conditions. All experiments were performed in compliance with institutional 

guidelines and applicable federal regulations under protocols (17026-H, 20029-H) approved by 

the Rockfeller University Institutional Animal Care and Use Committee. 

 

Cell lines 

Syngeneic murine bladder tumor cell lines MB49-luciferase (M. Glickman, Memorial Sloan 

Kettering) and UPPL1541 (W. Kim, University of North Carolina) were cultured in vacuum-gas 

plasma-treated tissue culture flasks (Falcon) at 37°C and 5% CO2 and maintained in Dulbecco’s 

Modified Eagle Medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (Sigma), 100 

U/mL penicillin (Gibco), and 100 μg/mL streptomycin (Gibco). 

 

Antibodies 

Anti-human CD40 antibody 2141-V11 (derived from CP-870,893, clone 21.4.1 referenced in 

patent US7338660, ATCC accession number PTA-3605) containing a human IgG1 Fc domain 

carrying the G237D/P238D/H268D/P271G/A330R amino acid modifications was generated as 

previously described (27). Anti-mouse CD40 antibody 1C10 containing a mouse IgG1 Fc domain 

was generated as previously described (62). Plasmid sequences were validated by direct 

sequencing (Genewiz). Antibodies were produced by transient co-transfection of Expi293F cells 

(maintained in serum-free Expi293 Expression Medium) with heavy- and light-chain constructs 
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using the ExpiFectamine 293 Transfection Kit (Thermo Fisher Scientific), and subsequently 

purified using Protein G Sepharose 4 Fast Flow (GE Healthcare), eluted using IgG elution buffer 

(Thermo Fisher Scientific), dialyzed in PBS, and sterile-filtered, as previously described (63). Anti-

mouse IL-15 (clone AIO.3) and anti-mouse CD8α (clone 2.43) depleting antibodies, as well as all 

isotype control antibodies, were purchased from Bio X Cell. 

 

Intravesical tumor implantation and treatments 

Tumor cells were implanted orthotopically into the bladders of mice using a catheter-based 

intravesical protocol, as previously described (5). In brief, tumor cells were harvested using 

0.05% trypsin-EDTA (Gibco) for 5 min at 37°C, washed twice with DMEM, assessed for cell count 

and viability via trypan blue staining (Millipore) using a Countess II automated cell counter 

(Thermo Fisher Scientific), and resuspended in DMEM (4 × 106 cells/mL for MB49-luciferase; 2 × 

108 cells/mL for UPPL1541). Mice were anesthetized with inhalational isoflurane, bladders were 

voided with digital pressure, and a polyurethane 24G x 3/4" catheter (Terumo) was inserted 

transurethrally into the bladder for intravesical instillation. Prior to tumor cell instillation, protamine 

sulfate (10 mg/mL in H2O; Sigma) was instilled into the bladder (50 μL) and maintained for 30 

min, and subsequently voided by digital pressure. Tumor cell suspension was then instilled into 

the bladder (50 μL) and maintained for 60 min. Heating pads were used to maintain core body 

temperature throughout implantation and recovery. For intravesical treatment, mice were 

anesthetized with inhalational isoflurane, bladders were voided with digital pressure, and a 

polyurethane 24G x 3/4" catheter was inserted transurethrally into the bladder. Treatments were 

then instilled into the bladder (anti-human CD40 antibody 2141-V11 at 2.5 μg in 50 μL per dose; 

anti-mouse CD40 antibody 1C10 at 50 μg in 50 μL per dose; BCG TICE strain at 4 × 106 colony- 

forming units in 50 μL per dose) and maintained for 60 min (see figures/figure legends for 

individual experimental treatment schemas). When indicated, the following agents were 

administered via intraperitoneal injection: recombinant mouse IL-15 (2.5 μg/dose; PeproTech), 

anti-mouse IL-15 antibody (25 μg/dose; clone AIO.3), and anti-mouse CD8α antibody (250 

μg/dose; clone 2.43). 
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Subcutaneous tumor rechallenge 

Mice surviving greater than 90 days after primary treatment of orthotopically-implanted MB49-

luciferase bladder tumors were confirmed to be free of detectable tumor by bioluminescence 

imaging. Cultured MB49-luciferase tumor cells were harvested using 0.05% trypsin-EDTA for 5 

min at 37°C, washed twice with DMEM, assessed for cell count and viability, and resuspended in 

DMEM (4 × 107 cells/mL). Mice were injected subcutaneously in their lower flank with 50 μL of the 

tumor cell suspension. Tumors were subsequently measured 2-3 times per week using an 

electronic caliper and tumor volume was calculated using the formula (L1
2 × L2)/2, with L1 and L2 

corresponding to the shortest and longest dimensions, respectively. 

 

Bioluminescence imaging 

Mice bearing orthotopic MB49-luciferase tumors were administered 3 mg of D-luciferin 

bioluminescent substrate (PerkinElmer) via intraperitoneal injection. Prior to imaging, mice were 

anesthetized with inhalational isoflurane and abdominal hair was removed via shaving. Images 

were subsequently acquired 20 min after luciferin injection using an IVIS Spectrum in vivo 

imaging system (PerkinElmer) with a 10 s exposure time. Total luminescence counts were 

quantified across a standardized region of interest centered on the bladder area using Living 

Image analysis software (PerkinElmer). 

 

Ultrasound imaging 

Prior to imaging, mice were anesthetized with inhalational isoflurane, abdominal hair was 

removed via shaving and application of chemical hair removal cream, and ultrasound gel was 

applied to the abdomen. Bladders were subsequently imaged using a Vevo 2100 ultrasound 

imaging system (FUJIFILM VisualSonics). Bladders were monitored by ultrasound twice per week 

beginning on day 8 after tumor implantation to assess for the appearance of bladder tumors. 
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Flow cytometry 

Tumor and bladder tissue were harvested and processed into single-cell suspensions using the 

Mouse Tumor Dissociation Kit and gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec) 

according to the manufacturer’s protocols. Peripheral blood was collected via retro-orbital sinus 

sampling from mice anesthetized with inhalational isoflurane and red blood cells were lysed with 

RBC Lysis Buffer (BioLegend) according to the manufacturer’s protocols. Cells were stained for 

viability using the LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific) 

according to the manufacturer’s protocols. Cells were subsequently resuspended in staining 

buffer (PBS with 0.5% bovine serum albumin and 2 mM EDTA) and Fc-blocked using TruStain 

FcX reagent (BioLegend). Cells were then stained with the following fluorophore-conjugated anti-

mouse antibodies for 30 min at 4°C: IL-15Rα-PE (clone DNT15Ra; Invitrogen), CD40-BV421 

(clone 3/23; BD Biosciences), CD45-AF700 (clone 30-F11; Invitrogen), MHC Class II-APC-eF780 

(clone M5/114.15.2; Invitrogen), CD11c-PE-eF610 (clone N418; Invitrogen), CD11b-

PE/BV711/PE-Cy7 (clone M1/70; BioLegend, Invitrogen), XCR1-BV421/PE (clone ZET; 

BioLegend), SIRPα-BV605 (clone P84; BD Biosciences), Ly-6G-BV650/BV785 (clone 1A8; 

BioLegend), F4/80-AF488 (clone BM8; BioLegend), CD3e-PE-Cy5 (clone 145-2C11; Invitrogen), 

CD3-PE-Cy7 (clone 17A2; BioLegend), CD8a-SB780 (clone 53-6.7; Invitrogen), CD4-AF488 

(clone GK1.5; Invitrogen), NK1.1-PE-Cy5/PE-eF610 (clone PK136; BioLegend, Invitrogen), 

CD19-PE-Cy5 (clone 1D3; Invitrogen), B220-PE-Cy5 (clone RA3-6B2; Invitrogen), CD44-BV650 

(clone IM7; BioLegend), CD122-PerCP-Cy5.5 (clone TM-β1; BioLegend), CD27-APC (clone 

LG.3A10; BioLegend), KLRG1-BV711 (clone 2F1/KLRG1; BioLegend), CD62L-BV421 (clone 

MEL-14; BioLegend), and CXCR6-APC-Cy7 (clone SA051D1; BioLegend). Surface IL-15 was 

stained with biotinylated anti-mouse IL-15 (polyclonal rabbit; PeproTech) followed by streptavidin-

APC (R&D). Data was acquired using an Attune NxT Flow Cytometer (Thermo Fisher Scientific) 

and analyzed using FCS Express flow cytometry analysis software (De Novo Software). 
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Single cell RNA sequencing 

ScRNA-seq was performed on freshly dissociated bulk tumor cells or on CD45+ and CD45 

FACS-sorted freshly dissociated tumor cells using a Chromium controller (10X Genomics), as 

previously described. Briefly, gel beads in emulsion were generated, cells were lysed and 

barcoded cDNA amplified for 12 cycles. Amplified cDNA was fragmented and subjected to end-

repair, poly A-tailing, adapter ligation, and 10x–specific sample indexing following the 

manufacturer’s protocol. Bioanalyzer (Agilent Technologies) and QuBit (ThermoFisher Scientific) 

were used to quantify the libraries, which were then sequenced in dedicated flowcells in paired-

end mode on a HiSeq 2500 (Illumina) targeting a depth of 5x104–1x105reads per cell.  

 

Single-cell RNA sequencing analysis  

Raw sequencing data were aligned and quantified using CellRanger against the provided 

GRCh38 human reference genome. Seurat was then used for all remaining steps. For each 

sample, cells were first selected as expressing less than 16–20% mitochondrial genes and 

displaying a minimum of 200–300 and a maximum of 2500–3500 features. Data were then log-

normalized using a scale factor of 10,000. The 2,000 most variable features were then identified, 

data were scaled based on all the features, and principal component analysis was performed. 

Dimensionality of the dataset was then assessed using the JackStraw and ElbowPlot functions. 

Clusters were calculated and data dimensions were reduced using the t-SNE and UMAP 

methods.  

 

Statistical analysis 

Data were analyzed using Prism software (GraphPad). Unpaired two-tailed t tests and ordinary 

one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons tests were used to 

compare two groups and three or more groups, respectively. Unless otherwise indicated, error 

bars depict standard deviation. Kaplan-Meier method with log-rank tests were used for survival 

analysis. For all statistical tests, P values ≤ 0.05 were considered to be statistically significant, 

indicated as * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001. 
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Figures and Tables 

 

Figure 1. Dendritic cells in the bladder microenvironment of mice responding to CD40 agonism have 

higher expression of IL-15Rα. (A) Schematic of the treatment of mice bearing orthotopic MB49 bladder 

tumors with anti-CD40 antibody. (B) Representative intravital luciferase imaging (left) and quantification of 

luminescence (center) and bladder weights (right) across mice at day 24 post-tumor implantation (n = 3-6 

mice per group; bars represent SD). Responders (gray circles) and non-responders (blue circles) to anti-

CD40 antibody therapy are indicated. (C) IL-15Rα mean fluorescence intensity across mice on type-1 

conventional DCs (cDC1; defined as F4/80-Ly-6G-CD11c+MHCII+XCR1+), type-2 conventional DCs 

(cDC2; defined as F4/80-Ly-6G-CD11c+MHCII+SIRPα+), macrophages (defined as CD11b+F4/80+Ly-6G-), 

and neutrophils (defined as CD11b+Ly-6G+) in the bladder microenvironment as assessed by flow 

cytometry at day 24 post-tumor implantation (n = 3-6 mice per group). *p < 0.05, **p < 0.01. 

  

A C

er
0

500

1000

1500

2000

IL
15

R
α 

M
FI

er
0

500

1000

1500

2000

IL
15

R
α 

M
FI

cDC1

Re
spo

nde
r

Non-r
es

po
nde

r
0

500

1000

1500

2000

IL
15

R
α 

M
F

I

Re
sp

ond
er

Non
-re

sp
on

de
r

0

500

1000

1500

2000

IL
15

R
α 

M
F

I

Macrophage Neutrophil

cDC2
**

*

MB49 2 x 105

Intravesical
WT B6
aCD40

1 3Day 6 9

aCD40 aCD40

12

aCD40aCD40

24

IVIS
Harvest bladder

Re
spo

nd
er

Non-
re

sp
ond

er
0.0

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

L
u

m
in

es
ce

n
t C

o
un

ts

Re
spo

nd
er

Non
-re

sp
on

de
r

0

100

200

300

400

500

B
la

d
d

er
 W

ei
g

h
t (

m
g

)

**

B

aCD40: 1C10-mIgG1 2 mg/kg

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.526266doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526266
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
Figure 2. Endogenous IL-15 participates in the therapeutic activity of CD40 agonism. (A) Schematic of 

the treatment of mice bearing orthotopic MB49 bladder tumors with anti-CD40 antibody and/or anti-IL-15 

blocking antibody or isotype-matched control antibody. (B) Representative intravital luciferase imaging 

(left) and quantification of luminescence (center) and bladder weights (right) across mice at day 12 post-

tumor implantation (n = 5 mice per group; bars represent SD). (C) Representative flow cytometry plots 

and quantification across mice (n = 5 mice per group) of CD44hiCD122+ CD8 T cells (top) and 

CXCR6+CD44hiCD122+ CD8 T cells (bottom) in the bladders of mice treated as outlined in A. *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001.  
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Figure 3. DCs in human non-muscle invasive bladder cancer express high levels of IL-15. Eight primary 

tumor samples from either untreated NMIBC patients (n=3) or from NMIBC patients that had progressed 

from NMIBC to MIBC following BCG therapy (n=5) were included in this single-cell RNA sequencing 

analysis. A) Phenograph clustering was performed and 29 clusters were identified. Canonical lineage 

markers for cell populations were utilized to assign cell identities to each cluster. B) tSNE plots were 

created for four representative markers: CD40, CD40L, IL15, and IL15RA. C) A matrix plot with column 

scaled expression of the same four markers of interest is shown to highlight the distribution and intensity 

of expression for each gene across each subset.   
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Figure 4. CD40 agonism induces IL-15/IL-15Rα upregulation on dendritic cells in the bladder tumor 

microenvironment. Mice bearing orthotopic MB49 bladder tumors were treated intravesically with anti-

CD40 antibody, BCG, or isotype-matched control antibody on days 6 and 9 post-tumor implantation. (A) 

Representative histogram and (B) quantification across mice of IL-15Rα mean fluorescence intensity on 

type-1 conventional DCs (cDC1; defined as F4/80-Ly-6G-CD11c+MHCII+XCR1+), type-2 conventional DCs 

(cDC2; defined as F4/80-Ly-6G-CD11c+MHCII+SIRPα+), macrophages (defined as CD11b+F4/80+Ly-6G-), 

and neutrophils (defined as CD11b+Ly-6G+) in the bladder microenvironment as assessed by flow 

cytometry at day 12 post-tumor implantation (n = 5 mice per group). (C) Representative flow cytometry 

plots and (D) quantification across mice of IL-15 and IL-15Rα surface expression on cDC1s in the bladder 

microenvironment as assessed by flow cytometry at day 12 post-tumor implantation (n = 5 mice per 

group). Left graph is gated on cDC1s and depicts proportions of cDC1s that are double-positive for 

surface IL-15 and IL-15Rα. Right graph is gated on IL-15Rα-expressing cDC1s and depicts proportions of 

cDC1s expressing IL-15Rα that is occupied by IL-15.  **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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Figure 5. Combination therapy with Fc-optimized anti-CD40 agonist antibody 2141-V11 and IL-15 

enhances primary anti-tumor activity. (A) Schematic of the treatment of humanized hCD40/hFcyR mice 

bearing orthotopic MB49 bladder tumors with anti-CD40 antibody 2141-V11 and/or IL-15 or control 

(isotype-matched control antibody and/or vehicle). (B) Representative intravital luciferase imaging (left) 

and luminescence quantification (right) across mice at day 14 post-tumor implantation (n = 5 mice per 

group; bars represent SD). (C) Survival (top) and representative intravital luciferase imaging (bottom) of 

surviving mice at day 85 post-tumor implantation treated as outlined in A. (D) Representative intravital 

luciferase imaging (left) and quantification of luminescence (right, top) and bladder weights (right, bottom) 

at day 14 post-tumor implantation across mice treated with anti-CD40 antibody 2141-V11 and IL-15 or 

control in the absence or presence of additional anti-CD8 T cell depleting antibody (n = 5 mice per group; 

bars represent SD). (E) Representative intravital luciferase imaging (left) and quantification of 
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luminescence (right, top) and bladder weights (right, bottom) at day 14 post-tumor implantation across 

WT or Batf3-/- mice treated with anti-CD40 antibody 1C10 and IL-15 or control (n = 5 mice per group; bars 

represent SD). *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 6. Combination therapy with Fc-optimized anti-CD40 agonist antibody 2141-V11 and IL-15 

enhances anti-tumor memory responses. (A) Schematic of subcutaneous rechallenge (ten-fold tumor cell 

dose) of humanized hCD40/hFcyR mice surviving long-term (>90 days after initial orthotopic MB49 

bladder tumor implantation) following initial therapy with anti-CD40 antibody 2141-V11 with or without IL-

15. (B) Tumor growth (in the absence of any additional therapy) of long-term survivors compared with 

naïve mice receiving an equivalent MB49 tumor cell implant (n = 2-5 mice per group; bars represent SD). 

(C) Representative flow cytometry plots and quantification across mice (n = 2-5 mice per group) of 

CD44hiCD122+ CD8 T cells (top), CD44hiCD122+CD62L+ CD8 T cells (middle), and CD11b+KLRG1+CD27- 

NK cells (bottom) in the peripheral blood of mice surviving long-term (day 110) after primary tumor 

implantation and tumor rechallenge. *p<0.05, **p<0.01, ****p<0.0001. 
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Fig. S1. CD40 agonism induces IL-15Rα upregulation on dendritic cells in the UPPL1541 bladder tumor 

microenvironment. Mice bearing orthotopic UPPL1541 bladder tumors were treated intravesically with 

anti-CD40 antibody or isotype-matched control antibody on days 6 and 9 post-tumor implantation. (A) 

Representative histogram and (B) quantification across mice of IL-15Rα mean fluorescence intensity on 

type-1 conventional DCs (cDC1; defined as F4/80-Ly-6G-CD11c+MHCII+XCR1+), type-2 conventional DCs 

(cDC2; defined as F4/80-Ly-6G-CD11c+MHCII+SIRPα+), macrophages (defined as CD11b+F4/80+Ly-6G-), 

and neutrophils (defined as CD11b+Ly-6G+) in the bladder microenvironment as assessed by flow 

cytometry at day 12 post-tumor implantation (n = 5 mice per group). **p < 0.01, ***p < 0.001. 
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Fig. S2. Combination of Fc-optimized anti-CD40 agonist antibody 2141-V11 and IL-15 enhances anti-

tumor activity against UPPL1541 tumors. (A) Schematic of the treatment of humanized hCD40/hFcyR 

mice bearing orthotopic UPPL1541 bladder tumors with anti-CD40 antibody 2141-V11 and/or IL-15 or 

control (isotype-matched control antibody and/or vehicle). (B) Representative bladder ultrasound imaging 

(left) at day 45 post-tumor implantation and disease-free survival (right) of mice treated as outlined in A. 

*p < 0.05, **p < 0.01. 
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Fig. S3. IL-15 therapy does not modulate myeloid CD40 expression. (A) Schematic of the treatment of 

mice bearing orthotopic MB49 bladder tumors with IL-15 or vehicle control. (B) Bladder weights across 

mice at day 12 post-tumor implantation (n = 4-5 mice per group; bars represent SD). (C) CD40 mean 

fluorescence intensity across mice on total dendritic cells (DC; defined as F4/80-Ly-6G-CD11c+MHCII+), 

type-1 conventional DCs (cDC1; defined as F4/80-Ly-6G-CD11c+MHCII+XCR1+), type-2 conventional DCs 

(cDC2; defined as F4/80-Ly-6G-CD11c+MHCII+SIRPα+), macrophages (defined as CD11b+F4/80+Ly-6G-), 

monocytes (defined as CD11bhiLy6G-), and neutrophils (defined as CD11b+Ly-6G+) in the bladder 

microenvironment as assessed by flow cytometry at day 12 post-tumor implantation (n = 4-5 mice per 

group). ns = not significant. 
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