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Abstract: Aim: To provide a review considering microRNAs regulating oncogenes and tumor sup-
pressor genes during the different stages of cell cycle, controlling carcinogenesis. 

Methods: The role of microRNAs involved as oncogenes’ and tumor suppressor genes’ regulators in 
cancer was searched in the relevant available literature in MEDLINE, including terms such as “mi-
croRNA”, “oncogenes”, “tumor suppressor genes”, “metastasis”, “cancer” and others.  

Results: MicroRNAs determine the expression levels of multiple cell cycle regulators, such as cy-
clins, cyclin dependent kinases and other major cell cycle activators including retinoblastoma 1 (RB-
1) and p53, resulting in alteration and promotion/inhibition of the cell cycle. 

Conclusion: MicroRNAs are proven to have a key role in cancer pathophysiology by altering the ex-
pression profile of different regulator proteins during cell division cycle and DNA replication. Thus, 
by acting as oncogenes and tumor suppressor genes, they can either promote or inhibit cancer devel-
opment and formation, revealing their innovative role as biomarkers and therapeutic tools. 
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1. INTRODUCTION 

Cancer constitutes one of the three main causes of death 
in the United States and represents heterogeneous masses of 
cells with aggressive migratory characteristics and multiple 
patterns and routes of dissemination. The appearance, 
growth, and spread of tumor are mainly related to genetic 
and environmental factors with metastasis being the main 
causative parameter in cancer-related morbidities and mor-
tality [1].  

The human genome consists of approximately 25000 
genes, each one being responsible for the regulation and 
function of the different - even neoplastic - cells [2]. Many 
cellular elements are involved in the process of gene expres-
sion. DNA, pre and posttranscriptional RNA and translation-
al proteins, which are also the final products of genomic ex-
pression, are the most important factors in the whole process. 
Recent data have proven that the different mRNAs produced 
during gene expression have different stability levels while  
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the newly discovered microRNAs (miRNAs) are capable of 
controlling and altering the expression of the mRNAs. 
Moreover, microRNAs have proven to be able to regulate 
different molecular pathways and checkpoints of the cell 
division cycle. Thus, microRNAs may play an important role 
in cell proliferation and apoptosis and possibly a key partici-
patory role in cancer development [3]. 

The aim of this review is to summarize the latest data 
considering the role of microRNAs in relation to oncogenes, 
tumor suppressor genes and cancer development, through 
direct or indirect regulation of the cell cycle. 

2. CELL CYCLE REGULATORS 

Proto-oncogenes encode for proteins responsible for the 
cell cycle phases, including DNA replication, chromosome 
segregation, transcription and translation. The cell division 
cycle has three states-quiescent, interphase (G1, S, G2) and 
mitosis (p, m, a, t) - and four distinct phases named G0, G1, 
S, G2 and mitosis (Fig. 1). Mitosis consists of prophase, 
metaphase, anaphase, and telophase [4, 5]. The Transcription 
Factors (TF) scan the DNA and the binding of the TF on the 
altered nucleotide sequence allows Tumor Suppressor Genes 
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(TSG) expression and prevents the cell from a state of relent-
less duplication. The inability to recognize the altered nucle-
otide sequence by the TF, leaves the TSG inactive and the 
neoplastic cells continue on being in an endless proliferation 
state, disregarding normal apoptotic mechanisms. The main 
groups of cancer regulating genes are the oncogenes and the
tumor suppressor genes. A mutation can be defined as the 
“interceptor” in normal cell division [6]. 

The cell division cycle is regulated by multiple and com-
plex pathways. A path consisting of coordinated protein 
phosphorylation reactions has a key role in controlling cell’s 
fate, since they participate and possibly affect it in many 
different phases [7].  

Cyclins (G1 cyclins, G1/S cyclins, S cyclins, and M cy-
clins) are considered among the most important cell cycle 
regulators representing a group of related proteins, with four 
basic types found in humans and most eukaryotes organisms 
[8]. In addition to cyclins, specific enzymes called CDK are 
activated by binding of a cyclin. When binding to a CDK 
(CDK 1-4), phosphorylation takes place and the CDK is ac-
tivated as a kinase. This procedure directs the CDK to a spe-
cific cell cycle target protein, appropriate to the cell cycle 
period controlled by the cyclin. The initial processes of DNA 
replication and actions which are essential for the completion 
of the cell cycle division are controlled and regulated by the 
CDK - cyclin complex. Many different cyclins have been
reported that are active during the different stages of the cell 
cycle. Cyclin A partners with CDK2 during the S and G2 
phase, cyclin B acts on CDK1 at M phase, cyclin C and D 
bind to CDK3 and CDK4 respectively at G1 phase while 

Cyclin E partners and activates CDK2 during the G1/S tran-
sition [9, 10].  

Other important molecules responsible for the regulation 
of cell cycle are Cell Division Cycles (CDCs). CDC25 and
CDC27 are dual-specificity phosphatases. Their first role is 
to activate cyclin dependent kinases by abstracting phosphate 
from residues in the CDK active site, while the second role is 
to interact with major mitotic protein elements, including 
Mad2, p55CDC and BUBR1, which are involved in the regu-
lation of mitosis [11-13]. 

Retinoblastoma 1 (RB-1) and p53 genes belong to the 
tumor suppressor family (APC, WT1 & 2, NF1 & 2, BRCA1 
& 2) whilst MYC and RAS are part of the oncogenic group 
(KRAS, HRAS, NRAS). These genes participate in the
pathways that are responsible for cell cycle progression and 
cell death. P53 is located in almost all the normal tissues. 
The expression of this gene represents a cell regulator, par-
ticipating in DNA repair and promoting apoptosis. Despite 
the fact that its gene expression product is unstable and is 
characterized by fast degradation inside the cell, p53 is able 
to detect DNA sequence alterations. After attaching to the 
strand, it is capable of being activated and thus, it produces 
proteins that may terminate cell completion. Retinoblastoma 
can occur in hereditary and sporadic forms. The RB1 gene 
found on chromosome 13 is responsible for the production of 
the Retinoblastoma (pRb) protein that prevents uncontrolled
cell multiplication by controlling cell progression. If pRb is 
phosphorylated by the transcription factor E2F, it becomes 
inactive and results in the formation of retinoblastoma cancer 
[14, 15]. The E2F transcription factor family is an important 

 

Fig. (1). Main microRNAs implicated in the different stages of the cell cycle. The cell cycle consists of the interphase and the mitotic phase. 
Checkpoints during the cell cycle are regulated by cyclins, CDKs and tumor suppressors, with defects on these checkpoints leading to uncon-
trolled cell duplication. 
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regulator of the cell cycle progression and proliferation while 
polo-like kinases (Plk) control many cell cycle features in-
cluding centrosome maturation, checkpoint recovery, spindle 
assembly, cytokinesis, and apoptosis. Anaphase-Promoting 
Complex (APC/C) marks target cell cycle proteins for deg-
radation by the 26S proteasome and the Aurora B kinase 
functions in the attachment of the mitotic spindle to the cen-
tromere [16]. 

The presence and activity of these regulator proteins dur-
ing the cell cycle determine the progression of the cell cy-
cle’s fate. The overexpression of specific regulators, such as 
the cyclins, or the elimination of CDK inhibitors or pRB has 
been proven to be present in human cancer proving:. firstly, 
the levels of these proteins are of major importance during 
the different stages of cell cycle division and secondly, alter-
ing their levels could be a key factor for cancer development 
[17, 18]. 

3. MICRORNAs ALTERING THE STAGES OF CELL 
CYCLE 

MicroRNAs are small endogenous non-coding RNAs of 
short length (21-23 nucleotides) that act as negative regula-
tors of gene expression in eukaryotic organisms. Their role is 
to control stability, transcription and translation of protein-
coding DNA and mRNAs. It is estimated that more than 30-
60% of the human DNA is regulated by microRNAs [19].  

MicroRNAs are transcribed by RNA polymerases II. The 
initial forms of microRNAs-precursor mollecules are pro-
duced and after cleavage, the mature microRNA product is 
formed. More specifically, the formation pathway of mi-
croRNA is initiated through long primary transcripts (pri-
microRNAs) which are transcribed by the nuclear RNase III 
Drosha. This leads to the formation of an intermediate mi-
croRNA (pre-miRNA) of 70 nucleotides. Exportin-5 is then 
responsible for exporting pre-miRNAs in the cytoplasm that 
is then cleaved forming the double-stranded microRNA. One 
strand is degraded and the other one is then incorporated into 
the RNA-Induced Silencing Complex (RISC), forming the 
final microRNA product. The strand is integrated into Argo-
naute (Ago) protein and interacts with target microRNA 
transcripts. The inhibition of gene expression occurs only 
when microRNAs bind in 3’UTR or 5’ UTR of target 
mRNAs. MicroRNAs have been identified as regulators in 
different eukaryotic organisms with each individual mi-
croRNA being able to affect many genes. Therefore, mi-
croRNAs control gene expression and possibly its inhibition, 
indirectly by inactivating the transcripted mRNAs that are 
responsible for converting the genetic information into pro-
teins (gene expression) [20]. 

MicroRNAs are detected among many body fluids and 
tissues and it has been reported that they may be implicated 
in the initiation and progression of many cancers such as 
breast cancer [21]. Many studies have revealed miR-124-
3p’s main role as a tumor suppressor molecule, while miR-
203 is up-regulated in breast cancer samples. Moreover, low 
levels of miR-125a have been associated with poor breast 
cancer prognosis. The tumor-suppressive role of miR-199a-
sp in triple-negative breast cancer has been demonstrated, 

however, the final step in neoplasia development results 
from the joint action of tumor inhibitors and cancer inducers 
[22]. 

Studies have proven that microRNAs displaying antipro-
liferative properties, can function as tumor suppressors. 
Conversely, when carcinogenesis takes place, these mi-
croRNAs are inactivated or their levels are deregulated. 
Moreover, they are able to alter the levels of multiple cell 
cycle regulators and control cell proliferation, differentiation 
and apoptosis (including the formation of cancer) by control-
ling the expression profile of different proteins of specific 
target oncogenes and tumor suppressor genes [23]. Current 
data suggest that miR-137, miR-449, miR-15a, miR-16, 
miR-24, miR-129, miR-34a, miR-124, miR-125b, miR-195, 
and let-7 family members regulate the expression of major 
kinase complexes inducing cell cycle arrest, including 
CDK1, CDK2, CDK6, cyclin D1, D3 and E1, during the G1 
phase [24-33] (Table 1).  

The first report of microRNAs’ role in the cell cycle reg-
ulation resulted in an analysis of the miR-15a-16-1 cluster. 
MiR-15a-16-1, expresses miR-15a and miR-16, both belong-
ing to the same microRNA family (miR-15 family) since 
they share common sequences. In the first study, which de-
scribed a connection between microRNAs levels and tumor 
development, mir-15a-16-1 was reported to be involved and 
dysregulated when specific chromosome aberrations were 
present in patients with Chronic Lymphocytic Leukemia 
(CLL), [34]. MiR-15a-16-1 is down-regulated or even elimi-
nated in about 70% of all patients with CLL and other cancer 
types, proving it’s key role in tumor development [24, 34-
36]. The miR-15a-16-1 targets cell cycle regulators CDK1, 
CDK2, CDK6, CDC27, Cyclin D1, D3, E1, E2F3 and 
WEE1. Except for miR-15a-16-1, many other microRNAs 
can target the same cyclin such as miR-16 and miR-34a 
which are responsible for cyclin E regulation, while CDK6 is 
targeted by let-7, miR-24, miR-34a, miR-124, miR-125b, 
miR-129, miR-137, miR-195, and miR-449, cyclin D1, D2 
and D3 and downregulated by let-7, miR-15, miR-17, miR-
19a, miR-20a, and miR-34, miR-26a [26, 36-41]. 

MiR-124 and miR-137 silencing have been described in 
cancer cells, as a result of hypermethylation, leading to 
CDK6 overexpression [42]. Such an overexpression of a 
CDK/cyclin complex might cause increased phosphorylation 
of pRB activating E2F factors leading to G1 progression and 
S-phase entry. The E2F family is generally split according to 
function into two groups: one with transcription activators 
and another one with repressors, while both play a major role 
during the G1/S transition. O’Donell et al., reported that E2F 
is targeted by microRNAs proving that E2F1 is negatively 
regulated by miR-17-92, miR-17-5p and miR-20a clusters 
[43, 44]. The expression of those microRNAs was correlated 
with E2F1 levels in cancer samples, proving that the mi-
croRNAs studied promoted carcinogenesis in many tissues 
by rendering cells resistant to the apoptosis promoted by 
E2F1 [45]. Many other microRNAs have proven to play a 
key role in cancer development and progression by altering 
E2F factors’ expression during cell cycle. E2F1 is proven to 
be restrained by miR-149, miR-330 and miR-331-3p causing 
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a cell cycle restrain in prostate and gastric tumors [46-48]. 
E2F3 is targeted by miR-125b, miR-210 and miR-195 [46-
48]. E2F3 is targeted by miR-125b, miR-210 and miR-195 
[32, 49, 50].  

MicroRNAs are capable of altering cell cycle and espe-
cially G1 progression aiming at the inhibitors of the CDK4/ 
pRB pathway. pRB is targeted by miR-106a. The overex-
pression of this miR-106a promotes pRB downregulation in 
tumor cells [51]. Moreover, p130/RBL2 and p107/RBL1 are 
altered by mir-290 and mir-17-92 clusters [52-54]. The ex-
pression of miR-17-5p, promotes proliferation, while the 
downregulation of the mir-290 cluster promotes RBL2 ex-
pression whose activation results in hypomethylation of the 
genome proving the important role of microRNAs in tu-
morogenesis [52, 54].  

MiR-24 and miR-31 control the expression of p16INK4a, 
an inhibitor of CKD4 and 6 thus, being involved in the regu-
lation of cell cycle indirectly by altering the levels of the 
inhibitor [28, 55]. On the contrary, mir-17-92 and miR-106b 
reveal a direct regulation of a p53 target -p21Cip1-, while 
p27Kip1 and p57Kip2 are also regulated by the expression 
levels of miR-181 and miR-221/222 [56-59]. Mir-221-222 
cluster negatively regulates both p27Kip1 and p57Kip2, thus 
altering the expression of CDK2 and enhancing tumor 
growth [60]. Most cell-cycle-implicated microRNAs modify 
cell-cycle outset and transition from G1 to S phase. Let-7, 
miR-24 and miR-125b can downregulate the outflow of Cy-
clin A or Cyclin B. MiR195, miR-516-3p and miR-128a can 
likewise downregulate WEE1, a negative controller of the 
CDK1-Cyclin B complex during the G2/M progress [61, 62]. 
The control of Cip/Kip CDK inhibitors by microRNAs may 
likewise influence mitotic passage by balancing CDK1 
movement. Relatively few and different instances of mi-
croRNAs exist, which direct mitosis. Polo-Like Kinase 1 
(PLK1) is a basic controller of mitosis at a few dimensions. 

PLK1 phosphorylates CDC25C, which initiates CDK1-
Cyclin B1 structures, bringing about its translocation into the 
core and mitotic passage [63]. MiR-100 is proven to target 
PLK1, and the downregulation of this microRNA promotes 
PLK1 overexpression in naso-pharyngeal tumor samples 
[64]. Lastly, Aurora B kinase, a protein with the capacity of 
mitotic axle to the centromeres has been lately portrayed to 
be a target of miR-24, which perceives seedless yet very 
corresponding successions in the Aurora B-encoding tran-
script [61-64].  

One of the most investigated microRNAs is miR-34 fam-
ily, due to its ability to regulate tumor suppression. The three 
molecules belong to the miR-34 family; miR-34a, which is 
generated from a transcriptional unit on chromosome 1p36, 
miR-34b and miR-34c, both of which are expressed by pro-
cessing of a bicistronic transcript from chromosome 11q23. 
Both genomic loci are considered to be associated with frag-
ile sites of the genome that are frequently modified in cancer. 
MiR-34a constitutes the prevailing family member type, 
while miR-34b and mir-34c can mostly be traced in lung, 
ovary, testes, and trachea [65, 66]. The downregulation of 
miR-34a has been associated with a wide range of malignan-
cies in human cell lines and mouse tissues, with the most 
commonly reported cancers of the lung, pancreas and liver. It 
has been reported that miR-34 levels are directly increased 
by P53, and that miR-34a can lead to G1/G2 arrest in a paral-
lel fashion to mRNAs that are directly activated by p53 [67, 
68]. 

The important aspects of miR-34a include its function of 
controlling cell cycle, regulating apoptosis and its ability of 
inhibiting cancer stem cells. Ji et al., reported that miR-34 
may be involved in pancreatic cancer stem cell self-renewal, 
possibly via direct downregulation of specific pathways, 
such as the Notch pathway proteins and Bcl-2 family. 
Tryndyak et al., via a rat model of liver carcinogenesis in-

Table 1. MicroRNAs that alter cell cycle progression.�

Cell Cycle Phase Kinase Regulator MicroRNA Refs. 

G1 phase CDK 2,4,6 

Cyclin D Let-7, miR-15, miR-17/20, miR-19a, miR-26a, miR-34a 

[24-33] 

Cyclin E miR-15, miR- 26a, miR-34a 

CDC25A Let-7, miR-125b, miR-322/424, miR-449a/b 

Direct Regulation 
Let-7, miR-15, miR-24, miR-124, miR-125b, miR-129, 

miR-137, miR-449a/b 

S/G2 phase CDK 1,2 

Cyclin A Let-7, miR-125a [40] 

Cyclin B miR-24 [54-56] 

CDC25A Let-7, miR-125b, miR-322/424, miR-449a/b [64, 67] 

G2/M phase 

CDC27 
miR-15 

[27, 36] 

APC/C [13, 16] 

PLK1 miR-100 [62-64] 

Aurora B miR-24 [62] 
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duced by a methyl-deficient diet, showed similar dysregula-
tion of miR-34a expression through the same pathways, indi-
cating a connection of hepatocellular development and pro-
gression in humans and micro RNA level alteration [68, 69]. 
In rat liver cancer cells, miR-34a-mimic downregulates pro-
tein expression of the Notch pathway-related Notch-1 (by 
bounding to the 3’ UTR-binding sites of Notch 1 mRNA), 
Notch-4, and Hes-1, and also influences negatively the apop-
tosis related Bcl-2 and Bcl-xL. Conversely, it upregulates the 
expression of cell cycle-related P21 and apoptosis-related 
Bax. Therefore, it can be concluded that miR-34a may have 
a key role in liver tumor suppression, as its low expression 
could result in the inhibition of cell apoptosis [70]. 

Another known target of miR-34a, which also correlates 
with the metastatic potential of tumors, is Wnt signaling 
pathway, specifically c-Met. Decreased c-Met-induced phos-
phorylation of Extracellular signal-Regulated Kinases 1 and 
2 (ERK1/2) has been observed in hepatocellular carcinoma 
tissue, when enforced miR-34a expression takes place in 
HepG2 cells. This may be indicative of the suppression role 
of miR-34a in tumor migration and invasion. Wei et al., sim-
ilarly suggested that cell invasion and metastasis are inhibit-
ed when miR-34a is overexpressed in liver cancer cells that 
were previously depleted [67, 71]. 

Nonetheless, increased levels of miR-34 have been corre-
lated with Hepatocellular Carcinomas (HCCs). Pok et al., 
found miR-34 a,c to be significantly upregulated in associa-
tion with cyclin E and p53 in human cirrhotic liver and HCC 
specimens, compared to dysplastic and normal human liver. 
Promoted from miR-34 family, this upregulation of the func-
tionally active kinase allows cyclin E-mediated cell-cycle 
G1/S checkpoint failure, conceivably leading to carcinogene-
sis [72-74]. 

Furthermore, latest data have demonstrated that miR-34a 
is closely related to E2F1, E2F2 and CASP3 expression in 
primary Hepatocellular Carcinoma (HCC). In HCC, the 
overexpression of E2F1 and E2F3 has been observed, the 
enforced expression of miR-34a leads to an increased activi-
ty of CASP3, and a downregulation of E2F1 and E2F2. In an 
analysis by Han et al., it was shown that the survival rates of 
HCC patients were increased when high miR-34a, or low 
E2F1/ E2F3 expression were observed. Hence, it could be 
suggested that the aggressiveness of HCC may be suppressed 
by expediting apoptosis in cancerous cells through miR-
34a’s higher expression [72-74]. However, the practical im-
portance of the main control of these proteins by microRNAs 
remains for the most part unexplored. 

4. IN VIVO ALTERATION OF AN EXPRESSED  
MICRORNA TARGET 

The expression profile status of microRNAs in cancer 
tissues has been proven feasible to identify. Because of this, 
recent data have revealed a novel therapeutic approach con-
sisting of direct or indirect alteration of the expressed mi-
croRNAs regulating tumor carcinogenesis. As the activation 
of oncogenes is connected to a possible cancer formation, 
their silencing can be proven essential in preventing tumor 

development. Nowadays, artificial antisense microRNAs can 
be synthesized and administered to patients in order to regu-
late, control and finally block their targets; in this case, the 
oncogenes are responsible for cancer formation. 

There are two main strategies to alter the profile of the 
targeted microRNAs, which are dependent on whether their 
expression should be inhibited or to retrieve the lost function 
of the targeted microRNA. The Antisense Oligonucleotide 
(AMO), also called antagomir, represents the most common-
ly used microRNA inhibitor since it has demonstrated the 
most promising results [75-77]. It consists of oligonucleo-
tides that contain complementary sequences of endogenous 
microRNAs, with stronger affinity to altering microRNAs 
targets,, less sensitivity to nucleases, and with lower toxicity 
[78]. The Peptide Nucleic Acid (PNA) are uncharged Oligo-
nucleotide (ON) analogues in which the deoxyribose phos-
phate backbone of DNA/RNA has been replaced by a pseu-
do-peptide and it is similar to DNA and RNA. PNA ONs 
show high affinity and sequence specificity for complemen-
tary RNA and DNA, bind the targeted nucleotide more effec-
tively than the nucleotide - nucleotide binding, possess anti-
sense biological activities in vivo with low toxicity levels, 
and can be administered systematically [79, 80]. MicroRNA 
sponge and microRNA masking represent another novel 
therapeutic approach for altering the microRNA expression. 
These RNAs are produced from transgenes within cells and 
contain multiple binding sites specific to a microRNA seed 
region that allows them to block a whole family of related 
miRNAs. The microRNA sponge downregulates the targeted 
microRNA and possesses multiple complementary sites on 
the targeted microRNA, while microRNA masking has com-
plimentary binding site in the 3′ UTR of the target mRNA to 
completely inhibit the miRNA target [81]. 

In order to achieve an overexpression of a targeted mi-
croRNA, the transfection of double-stranded microRNAs 
(microRNA mimics) has also been used with remarkable 
results [82]. For example, the overexpression of downregu-
lated miR-26a in Hepatocellular Carcinoma (HCC) in mouse 
led to the inhibition of cancer proliferation and the initiation 
of apoptosis. In addition, the downregulated miR-34a level 
was increased by delivering artificial miR-34a with NOV340 
liposome in an orthotopic model of HCC. This resulted in 
significant tumor reduction, prolonged survival, and disease 
protection in animals [65]. To achieve these results, an artifi-
cial double-stranded microRNA is administered via intrave-
nous and subcutaneous injection or infusion. However, after 
the administration of the microRNA mimic, the in vivo con-
ditions create limitations that lead to loss of microRNA effi-
ciency. In order to enhance the in vivo stability and over-
come the loss of mRNA silencing ability, encapsulating the 
microRNA mimic into nanoparticles seems inevitable. Thus, 
viral vectors (adenoviral vectors that encode small RNA 
molecules), poly(lactide-co-glycolide) particles, neutral lipid 
emulsions, neutral liposome 1,2-dioleoyl-sn-glycero-3-phos- 
phatidylcholine, EnGeneIC Delivery vehicle nanocells, syn-
thetic polyethylenimine, dendrimers, cyclodextrin, poly(et- 
hylene glycol), chitosan and N-acetyl-D-galactosamine are 
all now used as microRNA mimics mediators. Thus, the de-
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livery system limiations are overcome, as a result of the 
similarity between microRNA mimics and small interfering 
RNA (siRNA) structures [83]. 

5. CLINICAL THERAPEUTIC USAGE OF MICRORNAS 
IN CANCER 

The expression profile of many microRNAs is now prov-
en to be implicated in the development of different cancer 
types including solid tumors of liver, lung, kidney, pancreas, 
colon, ovarian and cervical, head and neck, B cell lympho-
ma, lymphoid leukaemia and breast cancer. In the fields of 
clinical practice, many microRNAs are used to classify tu-
mors and predict prognosis [84]. The regulation of some of 
these microRNAs is correlated with hormone receptor status. 
And the overexpression of these microRNAs, such as let-7, 
blocks hormone activation of Wnt activity [85]. In anticancer 
research, some microRNAs are capable of killing tumour 
cells directly or at least significantly inhibiting cell biologi-
cal functions in lung cancer and breast cancer, with each 
injected exosome being capable of targeting specific signal-
ing pathways (EGFR, Notch, Wnt) [86-88]. To date, there 
are several studies testing specific microRNAs with tumour 
suppressive functions. 

MiR-200 has been tested in preclinical studies for lung 
cancer in mice. Cortez et al, reported that systemic treatment 
of tumours with miR-200c mimics in DOPC (1,2 dioleoylsn 
glycero-3 phosphatidylcholine) liposomal carriers increased 
radiosensitivity and survival. Moreover, the authors con-
firmed that miR-200 targets the genes that encode oxidative 
stress response proteins that lead to the generation of in-
creased levels of Reactive Oxygen Species (ROS), resulting 
in cancer cell apoptosis [89]. In another study, miR-200 tar-
geting interleukins, in orthotopic mouse models of ovarian 
(miR-200a/b), basal-like breast (miR-141) and lung 
(miR-200a/b) cancers resulted in decreased tumour nodules 
and distant metastasis [90]. 

In a study of 455 patients with hepatocellular cancer, lev-
els of miR-26a were significantly reduced compared with 
normal tissues, while low levels of miR-26a were correlated 
with overall poor survival. A murine model of adeno-
associated virus-mediated expression of mir-26a resulted in 
significant tumor regression, which was attributed to the 
direct targeting of mRNAs encoding the cell cycle control-
lers cyclin D2 and cyclin E2 [39, 91]. 

The therapeutic usage of miR-506 and miR-520 is also 
tested in ovarian cancer orthotopic mouse models. MiR-506 
mimics and miR-520 mimics administration resulted in sig-
nificant tumor regression and in decreased expression of the 
respective mRNA targets in vivo [92, 93]. The same results 
occurred in a study of miR-630. MiR-630 is an oncomir that 
is upregulated in response to hypoxia in the tumour envi-
ronment. Using an antimiR against miR-630 in an orthotopic 
model of ovarian cancer, a significant reduction in tumour 
growth and metastasis was observed [94]. 

MiR-15/16 cluster injected subcutaneously in mice with 
leukaemia resulted in a significant reduction in tumour vol-
ume and growth. Moreover, the delivery of miR-16 using a 

nanocell delivery system in malignant pleural mesothelioma 
resulted in tumor-targeted delivery and significant tumour 
reduction [95]. 

An early study of the therapeutic potential of Antisense 
Oligonucleotides (ASOs) in microRNA inhibition demon-
strated successful inhibition of miR-10b in a microRNA an-
tagonist (antimiR) in orthotopic model of breast cancer. This 
antimiR resulted in decreased metastasis, however, the au-
thors reported no reduction in primary tumor growth, sug-
gesting the need for adjuvant treatment with surgery or 
chemotherapy combinations. Additionally, in an orthotopic 
glioblastoma mouse model, the administration of miR-10b 
antagonist (BOX 1) resulted in a significant reduction of 
tumour growth. A recent study combined locked nucleic 
acids against miR-10b in mouse models of breast cancer that 
combined to doxorubicin, that resulted in significantly great-
er decrease in tumor burden and without any damage of 
normal tissue being observed [96-98].  

MiR-221 is one of the most significantly upregulated mi-
croRNAs in hepatocellular cancer, in which miR-221 down-
regulates key tumour suppressors such as p27KIP1, PTEN 
and TIMP3. An intravenous administration of a cholesterol-
modified form of antimiR-221, showed significant downreg-
ulaton of miR-221 and significant shrinkage of tumor with 
increased survival in hepatocellular mice with cancer [99, 
100].  

In a mouse model of miR-155-induced lymphoma, con-
trolled by doxycycline, it was demonstrated that doxycycline 
withdrawal resulted in the shutdown of mir-155 expression 
and subsequent tumor shrinkage indicating the therapeutic 
role of this anti microRNA. Because the tumor microenvi-
ronment was acidic, a conjugate of a pH Low Insertion Pep-
tide (pHLIP) and antimiR-155 facilitated the specific deliv-
ery of antimiR to cancer cells. Mice treated with combined 
pHLIP antimiR-155 showed a reduction in tumour burden, 
resulting in prolonged survival with no significant toxicity 
[101, 102].  

6. MICRORNAs AND EMBRYONIC STEM CELLS 
(ESCS) 

The unlimited ability of self-renewal and differentiation 
into multiple cell lines characterize stem cells. ESCs are plu-
ripotent and thus can differentiate into all possible cell types. 
It is also suggested that the initiation of cancer, is connected 
to a certain type of Cancer Stem Cells (CSCs). MiR-291a-3p, 
miR-291b-3p, miR-294, and miR-295 have proven to pro-
mote G1/S transition by direct target of Cyclin D, CDK4 and 
6, while indirect downregulation of the cyclin E-CDK2 com-
plex by miR-290-295 urges the cells to enter the S phase 
faster [103-105]. Also, miR-290-295 downregulates various 
cell cycle inhibitors (such as RB, RBL1, RBL2), altering the 
distribution of ESC in each cycle phase. In addition, by in-
creasing the expression of important transcription factors, the 
miR-290-295 cluster enhances somatic reprogramming and 
by targeting Caspase 2, miR-290-95 is shown to be involved 
in suppressing apoptosis. This results in a reduced ESCs in 
phase G1 and a higher fraction of cells in phases S or G2/M 
[106-108]. 
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Due to the enhanced proliferation, metabolism of ESCs 
relies mostly on glycolysis. Therefore, glycolysis-associated 
genes, have been associated with miR-290-295 that is capa-
ble of altering epigenetic pathways including histone acetyla-
tion, DNA methylation, and Polycomb protein activation, 
which inactivate differentiation genes [109-113]. 

MiR-17-92 is a MYC oncogene regulator, which acts by 
controlling the chromatin stage of cell cycle-related genes 
[109]. Through miR-17-92, MYC inhibits the expression of 
chromatin regulatory genes, which demonstrates its crucial 
role in early mammalian development [114, 115]. Moreover, 
via the same microRNA, MYC participates in the formation 
of euchromatin responsible for specific protein production, 
and in the duplication of the DNA, hence promoting a shift 
in the number of cells in the proliferating state [114]. Like-
wise, miR-106b, which shares genetic similarities with miR-
17 and miR-20a, has been shown to promote transition from 
G1 to S phase by targeting p21, resulting in a higher propor-
tion of cells in phase S compared to G1 [56]. 

The miR-302-367, which consists miR-302a/b/c/d, and 
miR-367, plays a major role in the proliferation of ESCs -
that are mostly expressed in the early stages of fetal devel-
opment. This microRNA target genes involved in epigenetics 
such as the MECP1-p66 and MECP2 that are downregulated 
through the act of the miR-302-367 cluster [116], promote 
transcription of pluripotent genes in mammalian ESCs [59]. 
Moreover, the miR-302-367 promoters are activated when 
bound by OCT4 and SOX2, which are the core transcription 
factors directly participating in the maintenance of ESCs 
[116, 117]. It has also been shown that by targeting the 
SMAD-dependent and the PI3K/PKB pathway, this mi-
croRNA promotes pluripotency in ESCs. MiR-302 inhibits 
the Transforming Growth Factor Beta-Receptor 2 (TGFBR2) 
and homologous RAS gene family member C (RHOC), re-
sulting in reduced epithelial-mesenchymal transition [116, 
118, 119]. In addition, the miR-302 cluster has demonstrated 
a negative regulation of p21 and LATS2 activity both in 
hESCs and mESCs. These molecular mechanisms reveal the 
miR-302-367 cluster's important role with regard to pluripo-
tency and alterations of the cell cycle [120, 121]. 

CONCLUSION 

Cancer is the end result of the accumulation of activating 
somatic mutations that eventually lead to the first stages of 
carcinogenesis and aberrant cell multiplication. Different 
types of cancer manifest unique mutations that can be simple 
alterations that take place on the genome, either leading to 
cell death and cancer formation. They can even be unnoticed 
without creating any changes. The cell-cycle-dependent tran-
scription factors, controlled by microRNAs reveal a new 
level of complexity. Many microRNAs prevent proliferation 
and this function can be mediated by controlling various 
mitotic pathways including the pathways leading to the acti-
vation of various CDKs. Recent data reveal the innovative 
therapeutic use of microRNAs via local or parenteral admin-
istration. In many cases, a few microRNAs induce prolifera-
tion by targeting CDK inhibitors or pRB family members. It 
is now proven that microRNAs are functionally integrated 

into many critical cell cycle- pathways, promoting alterations 
that lead to cancer development or even repression, ultimate-
ly promoting either oncogenes or tumor suppressor genes. 
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