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Introduction
Cancer is a complex and heterogeneous genetic disease. 
Decades of molecular genetic research have identified a num-
ber of susceptibility genes responsible for the underlying 
genesis in different types of cancers.1 It is anticipated that 
cancer can involve 5–10% of human genes.2 However, cur-
rently experimentally validated cancer genes only cover 1% 
of human genes, suggesting that there are still hundreds to 
thousands of cancer genes that remain to be identified. Simi-
larly, drugs that target known mutated cancer genes have 
brought dramatic therapeutic advances and substantially 
improve and prolong the lives of cancer patients.3 Owing to 
extreme heterogeneity and complexity in cancer, there is a 

pressing need to develop individualized treatment for cancer 
patients. However, drug development is a costly, complex, 
and time-consuming process.4 Nevertheless, large amounts 
of biomedical data and findings provide us with unprec-
edented opportunities to explore associations among differ-
ent types of cancers, drugs, and genes. Systematic analyses of 
these cancer-specific associations can help highlight the hid-
den associations between different cancer types and related 
genes and drugs.

During the last decade, network-based computational 
approaches gained popularity and have become a new para-
digm to investigate associations among drugs, diseases, 
and genes. Applications of these approaches include drug 
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repositioning,5,6 disease gene prioritization,7–9 and identifica-
tion of disease relationships.10,11 Majority of these approaches 
focuses on relationships between only two categories (eg, 
association between gene and disease). For instance, a human 
disease–drug network was created based on genomic expres-
sion profiles collected from public GEO database. In total, 
170,027 interactions between diseases and drugs were con-
sidered significant, including 645 disease–disease, 5,008 
disease–drug, and 164,374 drug–drug associations.12 These 
expression-based associations among diseases and drugs could 
serve as future research directions. Bauer-Mehren et al.13 
developed a comprehensive disease–gene association network 
by integrating associations from several sources that cover dif-
ferent biomedical aspects of diseases. The results indicate a 
highly shared genetic origin of human diseases. Functional 
modules were also detected in several Mendelian disorders as 
well as in common diseases. To systematically analyze drug–
disease–gene relationships, Daminelli et al.14 proposed a 
network-based approach to predict novel drug–gene and drug–
disease associations by completing incomplete bicliques in the 
network. This approach holds great potential for drug repo-
sitioning and discovery of novel associations. However, they 
are not comprehensive and are limited to only certain associa-
tions between drugs, genes, and diseases (ie, drug–disease and 
drug–gene associations). A network-based investigation con-
sidering all pair-wise associations among these entities is nec-
essary to understand the complexity of existing associations 
and to infer novel associations within the context of the whole  
knowledge base.

Network-based computational approaches enable us to 
analyze heterogeneous networks such as drug–disease–gene 
networks by decomposing them into small subnetworks, 
called network motifs (NMs).15 NMs are statistically signif-
icant recurring structural patterns found more often in real 
networks than would be expected in random networks with 
the same network topologies. They are the smallest basic 
functional and evolutionarily conserved units in biological 
networks. The hypothesis is that NMs of a network are the 
significant sub-patterns that represent the backbone of the 
network, which serves as the focused portion out of hun-
dreds of nodes (eg, drugs, diseases, and genes). These NMs 
could also form large aggregated modules that perform 
specific functions by forming associations among a large  
number of NMs.

In this paper, we constructed a heterogeneous cancer–
drug–gene network from public literature knowledge and 
investigated the underlying association relationships using 
network-based systems biology approaches. First, we devel-
oped a domain pattern-driven approach to construct an inte-
grated cancer–drug–gene network extracted from Semantic 
MEDLINE Database. Second, we proposed a network-based 
computational approach to mine this integrated heteroge-
neous network. Significant NMs were detected and evalu-
ated for their potential biological meanings. We demonstrate 

that these NMs have potential to help prioritize disease genes 
and propose novel drug targets. The analysis of such cancer-
focused network involving cancer–drug and cancer–gene 
associations permits researchers a more detailed evaluation 
of the specific relationships between individual cancers. We 
believe that such approaches will facilitate formulization of 
novel research hypotheses, which is critical for translational 
medicine research.

Methods
To comprehensively investigate the integrated cancer–
drug–gene network formed by associations available in 
Semantic MEDLINE, we proposed the following two-step 
computational framework: (1) extraction and optimization 
of cancer–drug–gene network in Semantic MEDLINE 
and (2) network topology analysis of this heterogeneous 
network at two levels: statistics and degree distribution of 
high-confidence association networks, and distinct pat-
tern detection at the NM level. In this section, we first 
describe the steps to extract association network data from  
MEDLINE database, followed by a description of the pro-
posed network-based approach to investigate this hetero-
geneous drug–disease–gene association network. Figure 1 
illustrates the steps of the proposed approach.

data sources and Preprocessing
semantic MedLINe in rdF. For this research, we 

used biomedical research findings extracted from MEDLINE 
literature as our knowledge base. MEDLINE16 contains 
more than 19 million references to published articles in the 
biomedical fields. We first downloaded the Semantic MED-
LINE Database,17 which is an National Library of Medicine 
(NLM)-supported database that contains different biomedi-
cal entities and their relationships extracted from MED-
LINE abstracts using natural language processing methods. 
Semantic MEDLINE provides comprehensive resources 
with structured annotations with Unified Medical Language 
System (UMLS) terms and properties. It currently contains 
more than 56 million relations extracted from MEDLINE 
articles. In our previous research, we reorganized these rela-
tions into six different Resource Description Framework 
(RDF) graphs based on the semantic types of the associated 
concepts.18 Based on the source and target concepts and their 
semantic groups, we extracted 843k disease–disease, 111k 
disease–gene, 1,277k disease–drug, 248k drug–gene, 1,900k 
drug–drug, and 49k gene–gene associations. Table 1 shows 
some basic statistics of these six groups of associations.

cancer relevant relation extraction. From the six graphs 
above, we further extracted those associations that are related 
to cancer terms. We used “Neoplastic Process” (NEOP) as 
the semantic type to extract the cancer disease relevant terms. 
NEOP is defined as a sub-type of disease or syndrome in 
UMLS semantic type. The associations involving NEOP were 
extracted and used for downstream network-based analyses.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Network analysis of drug-disease-gene network

47CanCer InformatICs 2014:13(s3)

Network Motif Analysis
The six different types of associations among cancers, drugs, 
and genes were integrated into a heterogeneous cancer–disease–
gene network. In this network, nodes represent biomedical 
entities (ie, cancer terms, disease, or gene), and edges between 
nodes represent associations between two nodes (eg, association 
between drugs and genes). In this paper, we focused on three-
node NM identification for this drug–disease–gene network 
since larger size NMs (number of nodes .3) are composed of 
three-node NMs in most cases.19 All connected subnetworks 
containing three nodes in the interaction network were col-
lated into isomorphic patterns, and the number of times 
each pattern occurred was counted. By the default setting of 
the algorithm, if the number of occurrences was at least five, 
which is significantly higher than randomized networks, the 
pattern was considered to be an NM. Statistical significance 
test was performed by generating 1,000 randomized networks 
and computing the fraction of randomized networks in which 
the pattern appeared at least as often as in the interaction net-
work.19 The z score is calculated using the following equation:

 
Z

N N
=

− < >real rand

randσ
 (1)

where Nreal is the number of times one three-node 
subnetwork was detected in the real network, Nrand is the 
mean number of times this subnetwork was detected in 1,000 
randomized networks, and σrand is the standard deviation of 
the number of times this subnetwork was detected in random-
ized networks. The P value of a motif is the number of random 
networks in which this motif occurred more often than in the 
original networks, divided by the total number of random 
networks. A pattern with P # 0.05 was considered statisti-
cally significant. This NM discovery procedure was performed 
using the FANMOD tool.20

construction of the core cancer Association 
Network
It has been shown that in gene regulatory networks, for each 
NM, the majority of matches overlap and aggregate into 
homologous motif clusters.21 Many of these motif clusters 
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figure 1. overview of the network-based computational framework for an integrated cancer–drug–disease network.

Table 1. statistics of the six extracted association groups.

ASSoCIATIoN RECoRD UNIqUE ASSoCIATIoN UMLS UNIqUE ASSoCIATIoN

Disease to Disease 2,516,049 843,221 2,457,748 

Disease to Gene 206,155 111,117 43,368 

Disease to Drug 3,021,256 1,277,879 96,290 

Drug to Gene 398,572 248,491 99,275 

Drug to Drug 4,780,394 1,900,576 2,113,243 

Gene to Gene 108,035 49,593 218,843 
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largely overlap with modules of known biological processes 
within the gene regulatory network.22 The clusters of overlap-
ping matches of these motifs aggregate into a superstructure 
that presents the backbone of the network and is assumed to 
play a central role in defining the global topological organiza-
tion. Similarly, we aggregated matches of significant NMs as 
described above into a core cancer–disease–gene network. In 
this core network, we investigated degree distributions of dif-
ferent types of nodes. Nodes with significantly larger number 
of links in the network are called hub nodes, which are criti-
cal in the information flow exchange throughout the entire 
network.

results
An integrated cancer–drug–gene network recon-

structed from semantic MedLINe. We constructed a 
cancer–drug–gene network with the following two steps:

1. Extraction of unique association data: Using a use-case- 
driven database optimization approach developed in 
our previous work,23 we extracted six different types 
of associations from Semantic MEDLINE Database. 
Table 1 shows basic statistics of these six groups of asso-
ciations. As illustrated in Table 1, the number of unique 
associations (the Unique Association column) for each 
type of associations is significantly lower than the num-
ber of total associations (the Record column).

2. Construction of association data involving cancer terms: 
We applied the filtering strategy described in the Meth-
ods section to extract association data involving only 
“NEOP” semantic type from the unique association data 
set. As shown in Table 2, the association number of each 
table was further reduced. We used this focused associa-
tion data to construct an integrated cancer–drug–gene 
network for downstream network-based analyses.

Network topology Analysis of the core  
drug–disease–Gene Network
The NM analysis was performed on the integrated cancer–
drug–gene network obtained above. As the network con-
tains thousands of associations among 1,711 cancer terms, 
1,704 drugs, and 2,551 genes (Table 2), it is too complex for a 
direct visualization. We overcame this problem by identifying 
enriched NMs and interpreting them through an enhanced 
visualization. Out of this heterogeneous network consisting of 

16,028 associations among 5,966 entities (including cancers, 
drugs, and genes), 8 significant NMs were identified. Table 3 
presents detailed statistics on these NMs.

Based on the NMs identified in the analysis, we con-
structed a core cancer–drug–gene network aggregated from 
significant NM instances. We then investigated the degree 
distribution of different types of entities in the integrated net-
work. Figure 2 represents the degree distribution of cancer, 
drug, and gene nodes in the core cancer–disease–gene net-
work. All three distributions follow the power-law distribu-
tion, indicating that networks related to different types of 
nodes are scale free. The majority of the nodes in the network 
have only a few (less than 10) links, but a few other nodes have 
a large number of links. Such distributions have been observed 
in many studies of biological networks.24 Our analysis dem-
onstrates that in an integrated network consisting of heteroge-
neous associations, the scale-free network structure still holds. 
The hub nodes (ie, the nodes having a large number of links) 
can provide scientists future research directions.

Local Network structure: From Network to NM
The eight significant NM patterns in Table 3 have strong bio-
logical meanings and could suggest scientists future directions 
in their research field. One example is NM 7 (Table 3), in 
which two cancer terms that are associated with each other 
are also associated with one common gene. This indicates that 
diseases identified to be associated in literature are more likely 
to share the same associated disease genes. To further inves-
tigate the relationships highlighted by NM 7, we extracted 
all associations among 75 cancer terms and 848 genes in NM 
7. In total, there are 907 disease–disease and 2,713 disease–
gene associations (Fig. 3A) in this subnetwork, suggesting 
that diseases that are associated with each other are more 
likely to be associated with a group of common disease genes. 
For instance, in Figure 3B, “malignant neoplasm of prostate” 
shares its 253 associated genes with a list of cancer-related 
terms, such as “neuroendocrine tumors” and “leukemia.” Spe-
cifically, five leukemia-related terms were directly associated 
with “malignant neoplasm of prostate.” Similar findings have 
also been discovered in other studies demonstrating the same 
functional modules/pathways being affected in both diseases.25  
There are only 25 genes associated to “leukemia” in litera-
ture. Such information will help scientists generate testable 
hypotheses of possible roles of these genes in future leukemia 
research. The detailed associations in Figure 3 are presented 
in Supplemental File 1.

Similarly, NM 8 suggests another association pattern 
between diseases and drugs, in which two diseases that are 
associated with each other are targets for the same drug. It has 
been shown by Suthram et al.11 that diseases with significant 
correlations based on mRNA gene expression data also share 
common drugs. This NM supports the hypothesis that similar 
diseases can be treated by the same drugs, allowing us to make 
hypotheses of new uses of existing drugs. Three-disease motif 

Table 2. statistics of the six extracted association groups with at 
least one cancer term involved.

ASSoCIATIoN RECoRD NUMBER

Disease to Disease 6,662

Disease to Gene 5,886

Disease to Drug 8,333
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figure 2. Degree distribution of three biomedical entities: cancer term, drug, and gene.

Table 3. Statistics of significant NMs.

ID NETwoRk MoTIf fREqUENCY  
[oRIgINAL] 

MEAN-fREq  
[RANDoM] 

STANDARD-DEv 
[RANDoM] 

Z-SCoRE p-vALUE 

1 0.10796% 0.020394% 8.3749e-005 10.455 0.001

2 28.502% 28.444% 6.5741e-005 8.7946 0.001

3 28.269% 28.212% 6.5204e-005 8.7946 0.001

4 10.351% 10.33% 2.3875e-005 8.7946 0.001

5 18.279% 18.264% 2.0985e-005 7.3299 0

6 8.976% 8.9643% 1.6581e-005 7.0814 0

7 0.0644% 0.053421% 2.6783e-005 4.0995 0.011

8 0.022872% 0.019592% 1.1281e-005 2.9072 0.013

Notes: node color: green – cancer terms, black – drug, and red – gene. edge color denotes the associations between different biomedical entities.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Zhang and Tao

50 CanCer InformatICs 2014:13(s3)

biomedical entities. Topology analysis of heterogeneous 
network in graphic theory can also be applied in future stud-
ies. Pathway level information could also be integrated.
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