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Aging is an intricate biological event that occurs in both vertebrates and

invertebrates. During the aging process, the brain, a vulnerable organ,

undergoes structural and functional alterations, resulting in behavioral

changes. The hippocampus has long been known to be critically associated

with cognitive impairment, dementia, and Alzheimer’s disease during

aging; however, the underlying mechanisms remain largely unknown. In

this study, we hypothesized that altered metabolic and gene expression

profiles promote the aging process in the hippocampus. Behavioral tests

showed that exploration, locomotion, learning, and memory activities were

reduced in aged mice. Metabolomics analysis identified 69 differentially

abundant metabolites and showed that the abundance of amino acids,

lipids, and microbiota-derived metabolites (MDMs) was significantly altered

in hippocampal tissue of aged animals. Furthermore, transcriptomic analysis

identified 376 differentially expressed genes in the aged hippocampus.

A total of 35 differentially abundant metabolites and 119 differentially

expressed genes, constituting the top 200 correlations, were employed

for the co-expression network. The multi-omics analysis showed that

pathways related to inflammation, microglial activation, synapse, cell death,

cellular/tissue homeostasis, and metabolism were dysregulated in the aging

hippocampus. Our data revealed that metabolic perturbations and gene
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expression alterations in the aged hippocampus were possibly linked to their

behavioral changes in aged mice; we also provide evidence that altered

MDMs might mediate the interaction between gut and brain during the

aging process.

KEYWORDS

brain ageing, neuroinflammation, microbiota-derived metabolite, learning and
memory, synaptic plasticity, transcriptomics, metabolomics, multi-omics analysis

Introduction

Aging is an intricate process involving progressive
functional degeneration at both the cellular and organ levels.
Multiple factors, including nutrition, metabolism, and gut
microbiota, can influence the aging process (O’Toole and
Jeffery, 2015; DeJong et al., 2020; Hamrick and Stranahan,
2020). In addition, these factors are highly associated with
genetic loci, altered gene expression, and gene regulatory
networks (Hawrylycz et al., 2012). Accordingly, aging is a
predominant risk factor for many common medical conditions,
including diabetes, Alzheimer’s disease (AD), stroke, and
chronic obstructive pulmonary disease (Childs et al., 2015).
However, how the aging process contributes to the onset and
progression of these diseases is still poorly understood.

A healthy aging brain is vital to life and longevity.
Studies have shown that aging contributes to unique
structural and anatomical changes in the brain, alterations
in network connectivity and synaptic plasticity, cognitive
decline, neuroinflammation, and dysregulation of metabolism,
which can lead to the development of neurological diseases
(Colantuoni et al., 2011; Cribbs et al., 2012; Liang et al., 2017;
Mattson and Arumugam, 2018; Hamrick and Stranahan, 2020).
The hippocampus is the primary brain region responsible for
cognition and its impairment during the aging process can
lead to AD and other neurological disorders (Small et al.,
2011; Hou et al., 2019). Single omics techniques have been
widely used to explore the alterations occurring in brain aging
from different levels (Hawrylycz et al., 2012; Hamezah et al.,
2018; Adav and Wang, 2021), including the transcriptome,
epigenome, proteome, metabolome, gut microbiome, and
so on. In the aging hippocampus, the alterations of genes,
metabolites, and gut microbiome have been explored by single
omics analysis. These findings showed that genes/proteins
related to neuroinflammation and synaptic signaling (Xu et al.,
2007; Youm et al., 2013; Stilling et al., 2014; Mangold et al.,
2017; Miller et al., 2017; Hamezah et al., 2018; Gonzalez-Velasco
et al., 2020; Peng et al., 2021), and metabolites categorized
in the metabolism of amino acids, lipids, glucose and energy
expenditure (Liu et al., 2009; Paban et al., 2010; Lin et al.,
2016; Durani et al., 2017; Ding et al., 2021; Ge et al., 2021;

Vallianatou et al., 2021) were altered in rodents and humans.
In addition, several defined microbiota-derived metabolites
(MDMs) changed in the aged hippocampus (Noack et al.,
2000; Wang et al., 2011; Bennett et al., 2013) and they were
shown to possibly affect hippocampus or brain functions, such
as learning, memory and synaptic plasticity (Li et al., 2018;
Madeo et al., 2018; Govindarajulu et al., 2020; Schroeder et al.,
2021). However, there is a lack of comprehensive integrative
information from multiple levels during hippocampus aging.
Therefore, more comprehensive integrative studies of the
aging hippocampus, particularly from a global and holistic
perspective, are needed to confirm these possibilities, which
might provide more possible strategies for anti-aging.

Multi-omics analyses exhibit the advantages of allowing
a more detailed understanding of disease pathogenesis from
multiple perspectives (Rivero-Segura et al., 2020), and it
was widely applied to brain aging and neurodegenerative
studies (Mahajan et al., 2020; Rivero-Segura et al., 2020).
However, no multi-omics analyses were documented in the
aged hippocampus. Here, based on multi-omics analysis, we
aim to examine the hippocampus-related behavioral changes
of aged mice and explore how their changes linked to their
metabolic and gene expression profiles change in the aged
hippocampus to better understand the molecular mechanisms
underlying hippocampal aging from multiple spheres in this
study. Hippocampus-related behavioral tests showed that aged
mice exhibited anxiety-like behavior, impaired associative
learning and memory, and decreased locomotor activity. Multi-
omics (metabolomics and transcriptomics) analysis revealed
the presence of neuroinflammation, activated glial signaling,
dysregulated synaptic signaling, and impaired metabolism in the
hippocampus of aged mice. The data further showed that MDMs
were differentially expressed in the hippocampi of aged animals.

Materials and methods

Materials

All chemicals and solvents were of analytical or HPLC
grade. Acetonitrile, methanol, ammonium hydroxide, and
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ammonium acetate were purchased from CNW Technologies
GmbH (Düsseldorf, Germany). L-2-chlorophenylalanine was
obtained from Shanghai Hengchuang Biotechnology Co., Ltd.
(Shanghai, China).

Mice

The young and middle-aged male C57/BL6J mice used in
this study were purchased from a specific-pathogen-free (SPF)
facility in the Shanghai Model Organism Center and were
maintained in a SPF animal hood with free access to food
and water. All procedures were carried out according to the
animal experimentation regulations and approved by the ethics
committee of Tongren Hospital, Shanghai Jiao Tong University
School of Medicine.

Open field test

The open field test (OFT) is widely employed to examine
rodent locomotor activity and exploratory behaviors. Based on
our previous study (Xu et al., 2022), all open field testing was
performed inside an arena (50 cm long × 50 cm wide × 40 cm
high) that was divided into a central and peripheral regions
using the VisuTrack system (Shanghai XinRuan Information
Technology Co., Ltd., Shanghai, China). Animals were removed
from their home cage by the tail and placed directly into the
center of the open field. Tracking/recording was initiated upon
the first break of the locomotion grid beam and lasted for 5 min
and the trajectory of the mice was analyzed using the VisuTrack
system. The total distance traveled was recorded to evaluate
the movement ability of the mice. The number of entries into
and the time spent in the central region by each animal were
measured to detect the levels of anxiety.

Shuttle box test

The shuttle box test is typically employed to examine
learning and memory abilities in rodents. The avoidance
response was assessed as previously described (Ortiz et al.,
2010), with a small modification. Briefly, mice were tested in
an automatic, four-channel, two-way shuttle box system (Ugo
Basile, Italy). Each animal received one training session per
day for 7 days and was then tested once on days 10 and
25, respectively. The training program consisted of a 3-min
adaptation period followed by 30 trials with an intertrial interval
of 20 ± 5 s. In each trial, a tone (2,400 Hz, 25% intensity)
and white light were simultaneously presented for 10 s as
the conditioned stimulus (CS). After 5 s, a 0.2-mA electric
shock (the unconditioned stimulus [US]) was delivered for a
maximum of 10 s. An avoidance response was defined as the

animal crossing to the opposite compartment of the box after
the start of the CS but before the US was delivered. An escape
response was defined as the crossing occurring when the floor
shock was being delivered. Response latencies were determined
as the time (s) from the onset of the CS until the animal crossed
into the opposite compartment. The number of crossings (n)
during the intertrial interval (ITI) served as a measure of general
activity. The apparatus was cleaned with water between animals.

Tissue preparation

Following anesthesia with 10% chloral hydrate, whole blood
was collected from each mouse via the eyeball and the animals
were euthanized by cervical dislocation. The hippocampus was
then freshly dissected and snap-frozen in liquid nitrogen for
RNA isolation and metabolite extraction.

Liquid chromatography–mass
spectrometry-based metabolomics
analysis

Metabolites were extracted from ∼15 mg of snap-frozen
hippocampal tissue using a mixture of acetonitrile: methanol:
water in a ratio of 2:2:1 (mixed with the internal standard)
as previously described (Want, 2018). The supernatant was
used for liquid chromatography-mass spectrometry (LC-
MS) analysis. Ultra-high performance liquid chromatography
(UHPLC) separation was performed using a 1290 UHPLC
System (Agilent Technologies, Santa Clara, CA, USA) equipped
with a UPLC BEH Amide column (2.1 × 100 m, 1.7 µm,
Waters, USA). A Q-Exactive Orbitrap mass spectrometer
(Thermo Fisher Scientific, San Jose, CA, USA) was employed to
acquire a full scan of MS/MS spectra in information-dependent
acquisition (IDA) mode under the control of Xcalibur
acquisition software (v. 4.0.27; Thermo Fisher Scientific). MS
was performed at AigenX Biosciences Co., Ltd. (Shanghai,
China).

The acquired MS/MS spectra were processed as previously
described (Smith et al., 2006). Briefly, the raw data were
converted to the mzXML format using ProteoWizard and
processed for peak detection, extraction, alignment, and
integration based on XCMS. Then, an in-house MS2 database
(BTDB) was applied to metabolite annotation with the cutoff
set at 0.3. The final dataset, which included information
relating to sample name, peak number, and normalized peak
area, was imported into SIMCA15.0.2 (Sartorius Stedim Data
Analytics AB, Umea, Sweden) for multivariate analysis. The
data were analyzed by principal component analysis (PCA)
to visualize the distribution and grouping of the samples.
A 95% confidence interval in the PCA score plot was used as
the threshold for identifying potential outliers in the dataset.
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To visualize group segmentation and identify significantly
altered metabolites, supervised orthogonal partial least-squares
discriminant analysis (OPLS-DA) was applied to separate the
aged group from the young group, followed by a 7-fold cross-
validation test and permutation tests (200 permutations) to
validate the OPLS-DA model. The variable importance in
the projection (VIP) value was also obtained by OPLS-DA
analysis. Metabolites with a VIP score > 1 (OPLS-DA test)
and a p-value < 0.05 (Student’s t-test) were considered to be
significantly differential metabolites (DMs). In addition, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)1 and
OEcloud2 were used for pathway enrichment analysis.

Library preparation and RNA-seq
analysis

Total RNA was extracted from the hippocampus and
purified for RNA-seq library preparation as previously described
(Lu et al., 2017, 2021). The sequencing libraries were prepared
using the TruSeq Stranded Total RNA Library Prep Kit
(Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. Briefly, the mRNA was purified and fragmented,
followed by first-and then second-strand cDNA synthesis before
digestion with polymerase I and RNase H. The remaining
overhangs were blunted via exonuclease/polymerase activities
and purified. After adenylation of the 3’ ends of the DNA
fragments, Illumina PE adapter oligonucleotides were ligated to
prepare for hybridization. The library fragments were purified
using the AMPure XP System (Beckman Coulter, Beverly, CA,
USA) and selectively enriched using an Illumina PCR Primer
Cocktail in a 15-cycle PCR. Products were purified (AMPure XP
system) and quantified using a high-sensitivity DNA assay on a
Bioanalyzer 2100 System (Agilent). The prepared libraries were
sequenced by AigenX Bioscience Co., Ltd. using a HiSeq 2500
platform (Illumina), yielding paired-end (2 × 125 bp) reads.
All the samples from each group were sequenced in biological
triplicates.

The original raw data in FASTQ format generated by the
HiSeq 2500 platform was further filtered using Cutadapt (v.1.15)
software to obtain clean data for subsequent analysis. The
clean data were then mapped to the mouse reference genome
(GRCm38.p2)3 using HISAT2 software.4 HTSeq (v.0.9.1)
statistics were used to compare the read count with the
original expression. Gene expression was normalized based
on FPKM values. DESeq (1.30.0) was employed to identify
differentially expressed genes using | log2FoldChange| > 1 and
a p-value < 0.05 as the threshold. Subsequently, gene ontology

1 http://www.genome.jp/kegg/

2 https://cloud.oebiotech.cn/task/

3 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.22/

4 http://ccb.jhu.edu/software/hisat2/index.shtml

(GO) or KEGG pathway enrichment analysis of the DEGs
was undertaken using the OECloud tool.5 The RNA-seq data
have been deposited in the NCBI BioProject database6 under
accession number PRJNA PRJNA842200.

Reverse transcription and qPCR

RNA isolation, reverse transcription, and qPCR were
performed as previously described (Lu et al., 2017, 2021). Briefly,
RNA was isolated with TRIzol reagent and reverse transcribed
(1 µg) using the ReverTra Ace Kit (TOYOBO, Nipro, Osaka,
Japan). The resulting cDNA was used as a template for qPCR
which was performed in a LightCycler 480 system (Roche)
using a 2 × Power SYBR Green Mix (Applied Biosystems,
Carlsbad, CA, USA). Gene expression levels were normalized to
that of GAPDH and calculated using the 2−11Ct method. The
sequences of the primer used for qPCR are available on request
from the corresponding authors.

Integrative transcriptomic and
metabolomic analysis

The R package was used to calculate Pearson’s correlation
coefficients between transcriptomic and metabolomic data
based on DEG and differentially abundant metabolite (DM)
data, as previously described (Luo and Brouwer, 2013). The
DEGs and DMs were mapped to the KEGG database and a
correlation-based (|r|≥ 0.9825 and p < 0.00046 [top 200]) gene–
metabolite co-expression network was built and visualized using
Cytoscape (v.3.5.1) (Gao et al., 2010).

Statistical analysis

Data were analyzed in GraphPad Prism 8 and are shown as
means ± SEM. The raw data for each group were analyzed by
ANOVA with a post-hoc test or Student’s t-test as indicated in
the figure legends. p-values < 0.05 were considered significant.

Results

Anxiety-like behavior and locomotor
activity were altered in middle-aged
mice

Middle-aged (12∼14 months old) and aged mice (older
than 18 months) are commonly used for studies on aging

5 https://cloud.oebiotech.cn

6 https://www.ncbi.nlm.nih.gov/bioproject/
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FIGURE 1

Open field test to study the behaviors of young and middle-aged mice. (A) Representative trajectory of young or middle-aged (Mid-aged) male
mice in the open-field test. (B–F) Statistic data of the open field test parameters. Data shown are means with SEM. The distance travel (B), speed
(C), freezing time (D), center entries (E), and center time (F) were quantified by the Open field test during 5-min monitoring. Student’s t-test and
the p-value were shown in each bar chart, ∗p < 0.05, ∗∗p < 0.01; the hollow dot and the solid circle show the sampling dataset collected from
the young group (n = 12) and the middle-aged group (n = 9, Mid-aged).

FIGURE 2

Aging impaired the active avoidance performance in male mice. Data shown are means with SEM. (A) Progression of active avoidance responses
during the training phase. Aged mice (Old) did not increase the number of avoidance responses during the training phase (**p < 0.001). (B) Time
course of crossing latencies for aged mice (Old) during the training phase. Old mice did not decrease escape latency during training (*p < 0.01,
**p < 0.001). (C) Number of intertrial crosses. From day 1, there was no significant difference between young and aged mice (Old) in the number
of intertrial crosses. Statistics were performed with repeated-measures two-way ANOVA, followed by post-Bonferroni’s test, n = 3–4 per group.

(Shoji et al., 2016; Boehme et al., 2020; Cizeron et al., 2020; Ding
et al., 2021; Schroeder et al., 2021; Mossad et al., 2022). Here,
we used 13∼14 month-old and 22–23-month-old animals as
middle-aged and aged mice, respectively. Additionally, young
(2–3 months old) mice were used to characterize some of
the typical mechanisms that fail during old age. Given that
alterations in anxiety levels impact cognitive performance, we

first examined exploratory behavior, anxiety-like behavior, and
locomotor activity in middle-aged mice using the OFT. The
results showed that the middle-aged mice (n = 9) traveled
shorter distances (p < 0.01), were slower (p < 0.01), and spent
substantially more time frozen (p < 0.05) than the young mice
(n = 12) (Figures 1A–D), indicating that locomotor activity was
decreased in the former. Additionally, compared to the young
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FIGURE 3

Metabolic profiling and altered metabolism-related pathways of hippocampus tissue in male aged mice. (A,B) Pie graph of the metabolites class
composition of identified and significantly altered metabolites in the hippocampus of male aged mice. (C) Hierarchical heatmap analysis of the
relative content of DEMs in hippocampus from male aged (O1–O3, n = 3) and young mice (Y1–Y3, n = 3). (D) Bubble illustration of top20 ranked
enriched KEGG pathway terms. The diameter of the solid circle denotes the number of DEMs enriched and the color showing the p-value in the
corresponding pathway.

group, middle-aged mice made fewer entries into (p < 0.01,
Figure 1E) and spent less time in the central region (p = 0.306,
Figure 1F), which suggested that middle-aged mice exhibit
anxiety-like behavior, consistent with the results of previous
studies (Shoji et al., 2016).

Associative learning and memory were
impaired in aged mice

In the shuttle box test, the young mice learned the avoidance
response within the first 4 days of training, whereas the aged
mice (22–23 months) were unable to learn it throughout

the training period (Figure 2). Differences between the two
groups were significant on the fourth training day and
persisted throughout the experiment (Figure 2A, p < 0.001),
demonstrating that avoidance learning was impaired in aged
mice. In addition, the latency to crossing of young mice was
continuously reduced compared with that in the aged mice
(Figure 2B), which was again indicative of impaired learning in
the latter group. Meanwhile, the number of random intertrial
crosses showed no noticeable difference at the beginning of
training. However, both on the training (day 7) and testing days
(day 10), the number of random intertrial crosses decreased in
the group of aged mice compared with that seen in the group of
young animals (p = 0.40 and p = 0.61, respectively, Figure 2C).
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Interestingly, after 2 weeks (testing day 25), the tendency to
decrease locomotion disappeared in the aged mice (Figure 2C,
p > 0.99), but the young mice continued to keep their good
testing records (Figures 2A,B), indicating that a good memory
was retained in the young mice but not in the aged animals.
These results showed a tendency to decrease the locomotor
activity in the aged mice during the persistent training days,
which further examined the reduced locomotor activity by
OFT experiments. Collectively, these results demonstrated
that the aged mice exhibited degeneration-associated learning
and memory impairment and decreased locomotor activity,
consistent with previous studies that employed different
methods for evaluating learning and memory ability (Schroeder
et al., 2021).

Metabolomic profiling of the aging
hippocampus

Numerous studies have reported the changes occurring
in the metabolome of tissues or organs during the aging
process (Mattson and Arumugam, 2018; Dall and Færgeman,
2019; Hamrick and Stranahan, 2020; Petr et al., 2021). Here,
we investigated the changes occurring in the hippocampal
metabolome of aged mice during the aging process and
compared them with those of young mice. We undertook LC–
MS-based metabolomic profiling of hippocampal tissues from
aged (22–23 months old) and young mice (n = 3 per group) and
identified a total of 424 metabolites, 262 in positive ion mode
and 162 in negative ion mode (Figure 3A and Supplementary
Table 1). Furthermore, the OPLS-DA score plot for metabolites
detected in both modes clearly discriminated between the young
and aged groups (Supplementary Figure 1).

Furthermore, among the 424 metabolites identified,
69 were found to be differentially abundant (VIP > 1,
p < 0.05) in the aged hippocampus compared with the
young hippocampus, 13 of which were upregulated and
56 downregulated (Table 1). The DMs were classified into
several subclasses, including amino acids and peptides, lipids,
carbohydrates, and nucleotides. Among them, amino acids
and peptides (n = 35) accounted for the greatest proportion of
the significantly altered metabolites in the aged hippocampus
(Figure 3B). The identified DMs are shown in Table 1 and
Figure 3C. Notably, almost all the altered amino acid and lipid
metabolites in the aged hippocampus were downregulated.
Upregulated DMs included trimethylamine N-oxide (TMAO),
allantoin, spermidine, carnosine, homocarnosine, and
homoanserine. KEGG pathway enrichment analysis of
the DMs showed that amino acid metabolism- and lipid
metabolism-related pathways were significantly altered in
the aged hippocampus (Figure 3D). Combined, these results
suggested that amino acid and lipid homeostasis were disrupted
in the aging mouse hippocampus, which further documented

the previous reports or reviews (Liu et al., 2009; Paban et al.,
2010; Lin et al., 2016; Durani et al., 2017; Adav and Wang,
2021; Ding et al., 2021; Ge et al., 2021; Vallianatou et al.,
2021).

The expression of gut
microbiota-derived metabolites was
altered in the aging hippocampus

Our metabolomic analysis identified many known MDMs,
including short-chain fatty acids, indoles, phenols, nucleotides,
and amino acids. Intriguingly, the abundance of several MDMs,
such as TMAO and spermidine (Noack et al., 2000; Wang
et al., 2011; Bennett et al., 2013), was significantly changed in
the hippocampus of aging mice (Figure 4 and Supplementary
Table 2), which possibly taking up ∼33.3% (23/69) of identified
DMs. TMAO, derived from trimethylamine, has been reported
to accelerate the brain aging process by impairing cognition
and decreasing synaptic plasticity (Li et al., 2018; Govindarajulu
et al., 2020). Here, we found that the TMAO content was
significantly enriched in the aged hippocampus (Figure 4B).
Meanwhile, spermidine that was slightly upregulated in aging
mice, is thought to exert protective effects on brain aging, and
its dietary intake improves brain behaviors (Madeo et al., 2018;
Schroeder et al., 2021). Additionally, hypoxanthine exhibits
neurotoxic effects (Biasibetti et al., 2017; Biasibetti-Brendler
et al., 2018) was decreased in aged group.

Among other potential MDMs that play a protective role in
the brain or neurons, the levels of betaine, creatine, thiamine,
Neu5Ac, and taurine levels were significantly decreased, whereas
that of allantoin was increased, in the hippocampus of
aged mice (Figures 4B,C). Meanwhile, amino acids such
as dimethylglycine, glycine, L-alanine, L-asparagine, L-serine,
L-tyrosine, ( ± )-Tryptophan, L-threonine, pyroglutamic acid,
and L-histidine (Figure 3C), also possibly derived from the
gut microbiota (Zheng et al., 2011; Zhao et al., 2017), were all
upregulated in aged animals. These results suggested that the
abundance of many potential MDMs was likely to be altered,
which likely negatively affected the hippocampus during the
aging process.

Transcriptomic analysis of the aged
hippocampus

Next, we performed a transcriptomic analysis to elucidate
how changes in behavior and metabolomics are related to
gene expression during hippocampal aging. In total, 39, 457,
406 ∼49, 075, 794 raw reads were sequenced and uniquely
mapped to the mouse genome. We compared the hippocampal
transcriptome signatures of aged and young mice, with the PCA
analysis showing clear segregation between the aged and young
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TABLE 1 The altered differential metabolites in the aged hippocampus.

No Metabolites HMDB KEGG VIP P-value FC Class

1 (± )-erythro-Isoleucine HMDB0033923 1.81 0.0174 0.58 Amino acids and peptides

2 (± )-Tryptophan HMDB30396 1.69 0.0349 0.80 Amino acids and peptides

3 (S1)-Methoxy-3-heptanethiol HMDB0032380 1.69 0.0339 0.83 Amino acids and peptides

4 1,1-Dimethylbiguanide HMDB0001921 C07151 1.60 0.0478 0.59 Amino acids and peptides

5 1-deoxy-1-(N6-lysino)-D-fructose HMDB0062186 1.98 0.0016 0.67 Amino acids and peptides

6 2-Pyridylacetic acid HMDB0060722 2.02 0.0074 2.57 Amino acids and peptides

7 Betaine HMDB0000043 C00719 1.77 0.0162 0.69 Amino acids and peptides

8 Carnosine HMDB0000033 C00386 2.02 0.0001 1.67 Amino acids and peptides

9 Creatine HMDB0000064 C00300 1.65 0.0451 0.86 Amino acids and peptides

10 D-Glutamine HMDB0003423 C00819 1.72 0.0285 1.08 Amino acids and peptides

11 Dimethylglycine HMDB0000092 C01026 1.90 0.0059 0.78 Amino acids and peptides

12 D-Proline HMDB0003411 C00763 1.92 0.0029 0.77 Amino acids and peptides

13 Formiminoglutamic acid HMDB0000854 C00439 1.81 0.0260 0.58 Amino acids and peptides

14 Gamma-Glutamyl glutamic acid HMDB0011737 C05282 1.83 0.0030 0.46 Amino acids and peptides

15 Gamma-Glutamyl leucine HMDB0011171 1.76 0.0258 0.79 Amino acids and peptides

16 Glycine HMDB0000123 C00037 1.91 0.0071 0.70 Amino acids and peptides

17 Homoanserine HMDB0005767 1.96 0.0008 1.94 Amino acids and peptides

18 Homocarnosine HMDB0000745 C00884 1.99 0.0019 1.63 Amino acids and peptides

19 Hydroxyphenyl lactic acid HMDB0000755 C03672 1.82 0.0215 0.75 Amino acids and peptides

20 Isoleucyl-Alanine HMDB0028900 1.73 0.0298 1.30 Amino acids and peptides

21 L-Alanine HMDB0000161 C00041 1.96 0.0022 0.79 Amino acids and peptides

22 L-Asparagine HMDB0000168 C00152 1.79 0.0328 0.76 Amino acids and peptides

23 Leucyl-Valine HMDB0028942 1.89 0.0056 0.72 Amino acids and peptides

24 L-Histidine HMDB0000177 C00135 1.70 0.0323 1.25 Amino acids and peptides

25 L-Serine HMDB0000187 C00065 2.01 0.0001 0.60 Amino acids and peptides

26 L-Threonine HMDB0000167 C00188 1.94 0.0054 0.67 Amino acids and peptides

27 L-Tyrosine HMDB0000158 C00082 1.93 0.0044 0.65 Amino acids and peptides

28 N6-Acetyl-L-lysine HMDB0000206 C02727 1.96 0.0012 0.56 Amino acids and peptides

29 N-a-Acetyl-L-arginine HMDB0004620 1.99 0.0008 0.63 Amino acids and peptides

30 N-Acetylglutamine HMDB0006029 1.80 0.0209 0.77 Amino acids and peptides

31 N-Acetylneuraminic acid HMDB0000230 C19910 1.79 0.0185 0.91 Amino acids and peptides

32 N-Acetylserine HMDB0002931 1.98 0.0008 0.68 Amino acids and peptides

33 Oxidized glutathione HMDB0003337 C00127 1.72 0.0269 0.81 Amino acids and peptides

34 Pyroglutamic acid HMDB0000267 C01879 1.70 0.0397 0.82 Amino acids and peptides

35 Taurine HMDB0000251 C00245 1.82 0.0150 0.83 Amino acids and peptides

36 Ribitol HMDB0000508 C00474 1.97 0.0022 1.15 Carbohydrates

37 3-Dehydroxycarnitine HMDB0006831 C05543 1.79 0.0176 0.79 Lipid and lipid-like molecules

38 4-Deoxyerythronic acid HMDB0000498 1.74 0.0203 0.76 Lipid and lipid-like molecules

39 Citicoline HMDB0001413 C00307 1.85 0.0122 0.82 Lipid and lipid-like molecules

40 Ethenyl acetate HMDB0031209 C19309 1.68 0.0436 0.82 Lipid and lipid-like molecules

41 N-Oleoylethanolamine HMDB0002088 1.88 0.0136 0.56 Lipid and lipid-like molecules

42 O-Phosphoethanolamine HMDB0000224 C00346 1.75 0.0348 0.86 Lipid and lipid-like molecules

43 Palmitoylethanolamide HMDB0002100 C16512 1.96 0.0023 0.66 Lipid and lipid-like molecules

44 PC (22:5/20:5) HMDB0008675 C00157 1.73 0.0317 0.45 Lipid and lipid-like molecules

45 PC (22:6/22:6) HMDB0008748 C00157 1.62 0.0482 0.82 Lipid and lipid-like molecules

46 Phosphorylcholine HMDB0001565 C00588 1.93 0.0024 0.69 Lipid and lipid-like molecules

47 7-Methylxanthine HMDB0001991 C16353 1.72 0.0302 0.83 Nucleotides and analogs

48 8-Hydroxyguanine HMDB0002032 C20155 1.68 0.0404 0.83 Nucleotides and analogs

49 Dihydrothymine HMDB0000079 C00906 1.68 0.0355 0.86 Nucleotides and analogs

50 Hypoxanthine HMDB0000157 C00262 1.58 0.0455 0.44 Nucleotides and analogs

(Continued)
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TABLE 1 (Continued)

No Metabolites HMDB KEGG VIP P-value FC Class

51 Uridine 5′-monophosphate HMDB0000288 C00105 1.68 0.0459 0.77 Nucleotides and analogs

52 Uridine diphosphategalactose HMDB0000302 C00052 1.72 0.0315 0.86 Nucleotides and analogs

53 1-Methylhistamine HMDB0000898 C05127 1.86 0.0126 0.74 Others

54 1-Methylnicotinamide HMDB0000699 C02918 1.91 0.0084 0.49 Others

55 2-(3,4-Dihydroxybenzoyloxy)-4,6-dihydroxybenzoate HMDB0059651 C04524 1.59 0.0445 0.63 Others

56 2-Acetylthiazole HMDB0032964 1.70 0.0358 0.85 Others

57 2-Pyrrolidinone HMDB0002039 C11118 1.71 0.0267 0.77 Others

58 3-Acetamidobutanal HMDB0059649 1.95 0.0064 0.41 Others

59 3beta,6beta-Dihydroxynortropane HMDB0038949 1.76 0.0248 1.11 Others

60 4’,5,6,7,8-Pentahydroxy-3’-methoxyflavone HMDB0033648 1.82 0.0168 0.88 Others

61 5-(2-Furanyl)-3,4-dihydro-2H-pyrrole HMDB0040013 1.10 0.0283 0.33 Others

62 Allantoin HMDB0000462 C01551 1.86 0.0148 1.55 Others

63 Creatinine HMDB0000562 C00791 1.99 0.0061 0.75 Others

64 Pyrrolidonecarboxylic acid HMDB0000805 C02237 1.80 0.0186 0.91 Others

65 Spermidine HMDB0001257 C00315 1.68 0.0438 1.17 Others

66 Thiamine HMDB0000235 C00378 1.76 0.0202 0.75 Others

67 Trimethylamine N-oxide HMDB0000925 C01104 1.91 0.0051 2.15 Others

68 Tromethamine HMDB0240288 C07182 1.86 0.0098 0.83 Others

69 Zymonic acid HMDB0031210 1.77 0.0238 0.70 Others

VIP, variable importance in the projection; FC, foldchange, indicating the relative metabolite abundance of aged to young. PC (22:5/20:5), PC
[22:5(4Z,7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)]; PC (22:6/22:6), PC [22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)].

FIGURE 4

The contents of bioactive lipids and microbiota-derived metabolites were changed in the aged hippocampus of male mice. The relative
contents of bioactive lipids, OEA, and PEA (A); microbiota-derived metabolites, TMAO, spermidine, creatine, and hypoxanthine (B), allantoin,
betaine, HPLA, taurine, thiamine, and Neu5Ac (C) were altered in the aged (O) and young (Y) hippocampus. Data are calculated as the relative
contents of the young group and represent the means ± SEM. Student’s t-test, n = 3 per group, ∗p < 0.05, ∗∗p < 0.01). OEA,
N-oleoylethanolamine; PEA, palmitoylethanolamide; TMAO, trimethylamine N-oxide; HPLA, hydroxyphenyl lactic acid; Neu5Ac,
N-acetylneuraminic acid.

animals (Supplementary Figure 2A). Moreover, we undertook
a DESeq analysis to screen the differentially expressed genes
(DEGs) using | Log2FC| > 0.58 and p < 0.01 as cutoffs

and identified 295 genes that were upregulated and 81 that
were downregulated in the aged hippocampus (Figures 5A,B,
Supplementary Figure 2B and Supplementary Table 3).
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The gene regulatory network was
altered in the aged hippocampus

GO enrichment analysis of 376 DEGs using the online tool
MetaScape showed that they clustered into 30 significant top-
ranked GO terms (p < 7.1E-07, Figure 5C). Notably, the DEGs
were primarily associated with inflammation-related pathways,
including regulation of cytokine production, leukocyte-
mediated immunity, interleukin-1β (IL-1β) production,
immune response-regulating signaling pathway, cytokine-
mediated signaling pathway, and Toll-like receptor 2 signaling
pathway (Figure 5C and Supplementary Figure 3). Moreover,
brain function-related terms such as glial function (microglial
activation and gliosis; Figure 5D), neuron death, synapse
pruning (Figure 5E), tissue homeostasis (cytosolic calcium
ion, hydrolase activity, endopeptidase activity, phagocytosis,
cell death, and superoxide ion generation; Figures 5F–H
and Supplementary Figure 3), and MAPK cascade were
overrepresented in the aged group (Supplementary Figure 3).
To validate these signaling pathways, we selected several
genes related to microglial activation and neuroinflammation
and submitted them to qPCR analysis. The results were
consistent with those of the RNA-seq analysis (Figure 5I and
Supplementary Table 3).

Based on GO terms, protein-protein interaction (PPI)
network analysis through MCODE identified 13 clusters
(Figure 5J). The top 3 clusters included the GO: 0006954
(inflammatory response, p = E-32.1), GO: 0001817 (regulation
of cytokine production, p = E-27.6), and GO: 0002443 (leukocyte
mediated immunity, p = E-21.6) categories, thus identifying
a combinatorial regulatory network active in inflammation-
related events in the nervous system during the aging process. In
addition, apart from the critical nodes, analysis using MCODE
identified other hub gene clusters, as shown in Figure 5J.
These enriched GO terms and PPI network pinpointed the
inflammation-related pathways in the aging hippocampus,
which corroborated previous studies (Cribbs et al., 2012; Youm
et al., 2013; Stilling et al., 2014; Di Benedetto et al., 2017;
Mangold et al., 2017).

Integrated pathway and network
analysis

An integrative analysis of the 69 DMs and 376 DEGs was
undertaken using Pearson’s correlation. Then, a correlation-
based (| r| ≥ 0.9825 and p < 0.00046) gene–metabolite
co-expression network involving 35 DMs and 117 DEGs was
constructed and visualized with Cytoscape (Supplementary
Table 4 and Figure 6). We noted that amino acid metabolism-
related pathways (glycine, serine, and threonine metabolism;
aminoacyl-tRNA biosynthesis; and taurine and hypotaurine
metabolism) and lipid metabolism-related signaling pathways

(choline metabolism in cancer and sphingolipid signaling
pathway) were highly represented in the network, as were
several inflammation-related pathways (Toll-like receptor
signaling pathway, NOD-like receptor signaling pathway,
and chemokine signaling pathway) and neuron functions
(neuroactive ligand-receptor interaction and ABC transporter).
These results demonstrated that a well-defined regulatory
network involving metabolite abundance, gene expression, and
related pathways was altered in the hippocampus during the
aging process.

Discussion

Brain aging manifests as cognitive impairment and
neurodegeneration, resulting in altered behaviors and neuronal
function. In the present study, we adopted a multi-omics
approach to examine the alterations in gene expression and
metabolite abundance in the hippocampus of aged mice aiming
to decipher the mechanisms underlying the aging process. The
results showed that aged mice exhibited anxiety-like behaviors,
decreased locomotor activity, and impaired associative learning
and memory (Figures 1, 2). These findings are consistent with
those of previous studies on aging-related behaviors (Shoji
et al., 2016; Scott et al., 2017; Schroeder et al., 2021) and could
be explained by changes in synaptic signaling resulting from
alterations in gene and metabolite expression profiles (Table 1
and Figures 3–6).

Metabolomics or gene profiling is widely used to identify
critical factors and pathways involved in the aging process.
However, individually, these strategies do not provide
the integrative information required for a more in-depth
understanding of the changes that occur in the brain during
aging. Multi-omics analysis represents an integrative strategy
that combines transcriptomic, metabolomic, and phenotypic
data and generates more comprehensive information relating to
the molecular regulatory network underlying specific biological
events. Previous multi-omics-related studies have identified
several critical signaling pathways and mechanisms involved
in the regulation of the aging process in several organisms,
including increased mitochondrial stress; dysregulated redox,
energy, and metabolic homeostasis; and epigenetic alterations
(Wang et al., 2016; Hastings et al., 2019; Rivero-Segura et al.,
2020; Adav and Wang, 2021; Gao et al., 2022). However, to
date, no study has undertaken a multi-omics analysis of the
aging hippocampus. Here, we first employed such a strategy
(transcriptomics and non-targeting metabolomics) to decipher
the molecular changes occurring in the aging hippocampus,
and found that dysregulated amino acid and lipid metabolism
and changes in MDM abundance collaboratively perturbed
the hippocampus during the aging process (Table 1 and
Figures 3, 5, 6), which corroborate previous studies using single
omics analysis.
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FIGURE 5

RNA-seq analysis of the differential expressional genes enriched in aging. (A,B) Hierarchical heatmap analysis [(A), n = 3 per group] and pie
graph of the up-and down-regulated genes composition (B) of the differentially expressed genes (DEGs) as determined by the selection criteria:
| FC| > 1.5 and p < 0.01. (C) Top 30 GO terms enriched by the MetaScape tool. The diameter of the solid circle denotes the number of DEGs
enriched and the color showing the p-value in the corresponding pathway. (D–H) Gene cluster enriched in gliogenesis, glia cell proliferation,
and microglia activation (D); positive regulation of cell death, hippocampus neuron death, and synapse pruning (E); phagocytosis (F); positive
regulation of cytosolic calcium ion concentration (G); and regulation of endopeptidase activity and positive regulation of hydrolase activity (H).
(I) qRT-PCR analysis of selected genes related to microglial activation and neuroinflammation. Data are calculated as the mRNA foldchange of
the young group and represent the means ± SEM. Unpaired Student’s t-test, n = 3–6 per group ∗p < 0.05. (J) The Hub genes clustering by the
protein-protein interaction network as determined by the MCODE tool of MetaScape.

Altered amino acid contents and
dysregulated synapse functions

In this study, the greatest changes in the aged hippocampus
were related to amino acid metabolic homeostasis, which

provides supportive evidence for the recent aging review (Adav
and Wang, 2021). Amino acids and peptides ccounted for∼50%
of the identified DMs in the aged hippocampus (Figure 3B),
with most being downregulated (Figure 3C and Table 1). These
DMs were enriched in the top-ranked KEGG pathways such
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FIGURE 6

Integrative analysis of transcriptomics and metabolomics identifies neuroinflammation, amino acids metabolism, sphingolipid signaling
pathways, and neuroactive ligand and receptor interaction over presented in the hippocampus of aged mice. Pearson correlation between
genes and metabolites was calculated, and the top-ranked correlations (| r| ≥ 0.9825 and p < 0.00046) were employed to construct the
genes-metabolites co-expression network. The genes and metabolites were incorporated into their corresponding KEGG pathways.

as aminoacyl-tRNA biosynthesis; glycine, serine and threonine
metabolism; and central carbon metabolism (Figures 3D,
6). Several of the DMs were either neurotransmitters or
were involved in their synthesis. For instance, glycine is an
inhibitory neurotransmitter that affects synaptic excitability
and transmission and is involved in long-term synaptic
plasticity-mediated learning and memory (Xu and Gong, 2010).
Interestingly, the abundance of L-asparagine, the precursor for
the neurotransmitter aspartate, and that of other amino acids
such as L-serine, L-alanine, taurine, and glycine, was decreased
in the aged hippocampus. The reduced levels of these amino
acids likely disrupted neurotransmission, finally leading to
dysregulated synaptic function, and this result was corroborated
by the top-ranked pathways identified through RNA-seq
analysis (Figure 5D). Of note, Trem2, was confirmed to
upregulate in our study, and its upregulation would dysregulate
synapse pruning, microglial activation, neuroinflammation, and
synaptic function (Ulland and Colonna, 2018). Therefore, we
speculated that the altered synaptic signaling contributes to

the impairment of hippocampal synaptic plasticity (Bannerman
et al., 2014) and might explain the learning and memory deficits
and anxiety-like behaviors seen in our study (Figures 1, 2) and
in other similar studies (Shoji et al., 2016; Scott et al., 2017;
Schroeder et al., 2021).

In addition, we showed that the levels of histidine
and several histidine-containing peptides (carnosine,
homocarnosine, and homoanserine) were increased in the
aged hippocampus, while histidine metabolism was found to
be among the top-ranked KEGG pathways (Figures 3C,D, 6),
which is consistent with previous similar studies (Ding et al.,
2021). These peptides have been suggested to exert neuro-
ameliorative effects; however, their defined functions and clinic
therapeutic values are still debated (Petroff et al., 1998; Caruso
et al., 2019; Schon et al., 2019). The abundances of betaine,
creatine, and taurine were all significantly decreased. Betaine
has been reported to have anti-inflammatory effects (Chen et al.,
2021), while creatine and taurine are thought to provide energy
to fuel the normal function of the brain (Chen et al., 2019;
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Roschel et al., 2021). Combined, these results suggested that
the perturbation of amino acid metabolism may contribute to
the aging of hippocampus through the modulation of synaptic
plasticity, energy metabolism, and neuroinflammation.

Decreased bioactive lipid metabolism
accelerates the aging process in the
hippocampus

As previous reports and reviews (Hamrick and Stranahan,
2020; Adav and Wang, 2021), lipids and lipid-like molecules
constituted the second largest class of altered metabolites
in the aged hippocampus in our data (Figures 3B,C, 4A
and Table 1). Intriguingly, many of them were bioactive
lipids known to exert protective functions in the brain. For
instance, OEA, an endogenously produced metabolite, exerts
neuroprotective effects by reducing neuroinflammation and
improving spatial cognition (Mattace Raso et al., 2014).
Meanwhile, PEA has anti-hyperalgesic and neuroprotective
properties through modulating microglial activation,
inflammation, and nociceptive pain (Mattace Raso et al.,
2014; D’Aloia et al., 2021; Lama et al., 2021). However, OEA
and PEA contents were significantly decreased in the aged
hippocampus (Figure 4A), suggesting that their protective role
was diminished with aging. In addition, OEA and PEA have also
been implicated in the maintenance of gut barrier integrity and
modulation of gut microbiota composition (Russo et al., 2018).
Thus, supplementing these metabolites or improving their
endogenous productions may improve cognitive and neuronal
function and delay the aging process in the hippocampus.

Gut microbiota-derived metabolites
accelerate the aging process in the
hippocampus

Gut microbiota-associated metabolism is essential for
modulating metabolic profiles and is closely related to health
in both humans and rodents (Agus et al., 2018; Wang et al.,
2019). A Singaporean large cohort study showed the host–
microbe–metabolite interplay during the aging process (Chen
et al., 2022). Fecal transplantation from aged mice into young
recipients has shown that the gut microbiota affects learning
and memory by modulating hippocampal synaptic plasticity-
and neurotransmission-associated proteins (D’Amato et al.,
2020). Meanwhile, the same procedure also promoted brain
neuroinflammation and an aging-like phenotype in young
recipients (Parker et al., 2022). These observations indicate that
a link exists between gut dysbiosis and brain age, which may
aggravate brain aging through alterations in MDM contents
(Rybnikova, 2018). Interestingly, we found that the abundance
of several metabolites that are, or might be derived from, the gut

microbiota was altered in the aged hippocampus. For example,
TMAO, a well-defined MDM, was significantly increased in
the aged hippocampus (Figures 3C, 4B), which is consistent
with that previously reported (Scott et al., 2017; Ding et al.,
2021). TMAO, initially reported as a critical risk factor for
cardiovascular progression, was recently also demonstrated to
affect cognition and promote the aging process (Bennett et al.,
2013; Li et al., 2018; Govindarajulu et al., 2020; Brunt et al.,
2021). Hypoxanthine, creatine, and hydroxyphenyllactic acid
levels were decreased in the aged hippocampus (Figures 3C,
4B), which might also exacerbate the aging process (Biasibetti
et al., 2017; Biasibetti-Brendler et al., 2018; Roschel et al.,
2021). However, the slight increase in spermidine abundance
in aged mice found in this study is not compatible with
an aging phenotype, which indicates a possible metabolic
feedback mechanism to antagonize aging. The functions of other
differentially abundant MDMs identified in this study in the
hippocampus and other brain regions remain unknown, which
requires further investigation.

Besides those mentioned above, other identified DMs
might also exert contrasting functions in the aging process
(Figures 3C, 4C). For instance, low levels of thiamine (vitamin
B1) can promote AD-like disorders, including neuritis plaques,
tau hyperphosphorylation, and memory impairment (Gibson
et al., 2016). Neu5Ac is known for its effects on brain
development, cognition, and immune enhancement (Ling et al.,
2022), while creatinine and hypoxanthine have been implicated
in periphery energy dyshomeostasis (Harkness, 1988; Brosnan
and Brosnan, 2007). These observations imply that changes in
metabolite abundance may have a complex modulatory effect
on the aging process in the hippocampus. It might find that the
metabolite difference exists compared to the previous studies
(Paban et al., 2010; Lin et al., 2016; Ding et al., 2021; Ge et al.,
2021), which is possibly caused by variations in metabolomics
approaches, sample preparations and the food and drink to the
mice.

Neuroinflammation activation in the
aged hippocampus

Neuroinflammation is a leading cause of neurodegenerat-
ion, neurological disorders (Liang et al., 2017; Stuckey et al.,
2021), and brain aging (Di Benedetto et al., 2017; Walker et al.,
2022). Consistent with those in aging studies (Cribbs et al.,
2012; Youm et al., 2013; Stilling et al., 2014; Di Benedetto
et al., 2017; Mangold et al., 2017), our data indicated that
the DEGs and DMs collectively affected the inflammation
status in the aged hippocampus. For example, many of the
downregulated DMs are known to exert anti-inflammatory
effects. The levels of betaine, PEA, and OEA were decreased
in the aged hippocampus (Figures 3C, 4A), indicative of
diminished immunoprotection in this brain region. Meanwhile,
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TMAO is a neuroinflammation modulator that promotes
inflammatory injury in the brain, affecting both neuronal
and vascular integrity (Brunt et al., 2021; Lanz et al., 2022).
These regulatory effects were further corroborated based on the
inflammation-related pathways identified as being enriched in
the RNA-seq analysis, such as microglial activation, interleukin-
1β production, regulation of cytokines, and MAPK cascade
(Figure 5C and Supplementary Figure 3). Several critical
genes (Trem2, Clec7a, Plau, Itgax, and Nlrp3) were examined
by reverse transcription and qPCR (RT-qPCR) (Figure 5I).
Notably, Trem2 was reported to be a risk gene in AD
pathogenesis (Frank et al., 2008; Guerreiro et al., 2013) and its
expression is upregulated in animal models of AD (Neumann
and Takahashi, 2007; Guerreiro et al., 2013). The primary
functions of TREM2 include the regulation of microglial
activation and the maintenance of immune homeostasis
(Neumann and Takahashi, 2007), and it is possible that it exerts
similar effects in the aging hippocampus. The expression of
the Clec7a and Itgax genes is upregulated in microglia and is
associated with neurodegenerative progression (Hunter et al.,
2021). NLRP3, a component of the NLRP3-inflammasome, is
also a mediator of neuroinflammation and its dysregulation
has been implicated in neurodegeneration (Ising et al., 2019;
Pellegrini et al., 2020). Plau is a gene related to aging and age-
related diseases (Cardoso et al., 2018) and has been suggested
to exert chronic inflammatory effects (Cardoso et al., 2018;
Dowsett et al., 2021). Our integrated pathway analysis showed
that neuroinflammation-related pathways (Walker et al., 2022)
such as Toll-like receptor signaling pathway, NOD-like receptor
signaling pathway, cytokine-cytokine receptor interaction, NF-
kB signaling pathways, JAK-STAT signaling pathway, PI3K-Akt
signaling pathway, and Sphingolipid signaling pathway were
the top-ranked KEGG pathways. These findings were consistent
with those of other aging-related studies (Liang et al., 2017;
Walker et al., 2022) and implied that neuroinflammation-
related pathways are activated in the aged hippocampus.
Furthermore, our metabolic profiling identified and highlighted
several critical regulators in neuroinflammation, reinforcing the
neuroinflammation concept in previous studies (Youm et al.,
2013; Pardo et al., 2017).

As shown in previous studies (Cardoso et al., 2018), cell
death-related pathways, hippocampal neuron apoptotic process,
and positive regulation of cell death were also among the top-
ranked pathways (Figure 5E). Moreover, a pool of genes was
clustered in these pathways, and several of these genes (S100a8,
Trem2, and Clec7a) were validated by RT-qPCR (Figure 5I),
indicating that cell injury was present in the aged hippocampus.
Our gene-pathway analysis showed the tissue homeostasis-
related pathways (phagocytosis, endopeptidase activity,
hydrolase activity, calcium ion homeostasis, and superoxide
anion generation) (Figures 5C,F–H and Supplementary
Figure 3I) were the top-ranked as previously described
(Hamezah et al., 2018). Therefore, we speculate that tissue

dyshomeostasis accounts for the cell injury of the aged
hippocampus.

In addition, we construct the co-expression work that
integrates several neuroinflammation pathways and metabolism
in the aging hippocampus, which is not well defined (Lanke
et al., 2018). Although an integrated multi-omics analysis
was applied in the present study, the identified metabolites
and DMs were, at some degree, different from previous
ones, as caused by the variations of sensitivity and precision
of the different metabolomics approaches. In addition, the
small sample seize and only male mice discussed here is
another weakness of this study. Therefore, much work based
on a more cohort and comprehensive omics level needs
further studies.

Conclusion and prospects

In conclusion, we firstly employed a multi-omics approach
to comprehensively analyze the metabolites, genes, and related
signaling pathways that are altered in the hippocampus during
the aging process. We identified 69 DMs and 376 DEGs in
the aged hippocampus. Among them, 35 metabolites and 119
potential target genes, constituting the top 200 correlations,
were employed in a co-expression network integrating pathways
enriched with DEGs and DMs. Furthermore, the identified DMs
and DEGs were found to be involved in several metabolism-
related pathways, including amino acid metabolism, lipid
metabolism, neuroinflammation-related pathways, synapse
function, cell death and the maintenance of cellular/tissue
homeostasis. Importantly, our data hinted that altered MDMs
might mediate the interaction between the gut and brain
during aging. Collectively, we have generated comprehensive
omics data that provides an in-depth understanding of the
molecular changes occurring in the hippocampus during
the aging process.

The gut-brain axis theory pioneer the brain’s function
regulation in a fantastic way, but the inter-crosstalk between
the gut and brain remains unknown. The present research
showed MDMs might be the mediator in bridging the gut
and brain. Several MDMs were identified in our work, which
provides evidence of their interaction between gut and brain,
i.e., gut-brain axis functions in the aging process. However,
the specific role of the mentioned MDMs in the aging process
needs further investigation, including their transportation,
metabolism, functions and gender difference in vivo.

Data availability statement

The raw reads of RNA-seq data have been deposited
in the NCBI sequence read archive (SRA) and assigned
a BioProject accession number (PRJNA842200) for access.

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964429
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-964429 November 2, 2022 Time: 10:47 # 15

Lu et al. 10.3389/fnagi.2022.964429

In addition, other raw data could be made available on
reasonable request to the corresponding authors (YL,
yinzhonglu@shsmu.edu.cn or JZ, Junjie.zhang@shsmu.edu.cn).

Ethics statement

This animal study was reviewed and approved by Ethics
committee of Tongren Hospital, Shanghai Jiao Tong University
School of Medicine.

Author contributions

YL and JZ designed the experiments. YL, KX, and XD
performed the experiments. YL, DL, SW, RF, XD, and JZ
analyzed the data. JZ supervised the study. YL, GC, and JZ wrote
the manuscript. All authors reviewed the results and approved
the final version of the manuscript.

Funding

This work was supported by the Shanghai Science and
Technology Committee (No. 16DZ1911105 to JZ), the National
Natural Science Foundation of China (Nos. 82072205 to
YL, 82172177 to SW, and 21777099 to XD), the Research
Fund of Medicine and Engineering of Shanghai Jiao Tong
University (Nos. YG2017QN60 to YL, YG2021QN144 to KX,
and YG2019QNB27 to DL).

Acknowledgments

We thank Mr. R. Wang for technical assistance in network
analysis, AigenX Biotech Co., Ltd., (Shanghai, China) for
assistance in RAN-seq and metabolomics analysis, and OE
Biotech Co., Ltd., (Shanghai, China) for their cloud tools
for data analysis.

Conflict of interest

Author GC was employed by Connect Biopharma Ltd.
(Taicang).

The remaining authors declare that the research was
conducted without any commercial or financial relationships
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnagi.2022.964429/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Non-targeted metabolomics analysis of hippocampus tissue from
young and aged mice.

SUPPLEMENTARY FIGURE 2

PCA and volcano analysis of RNA-seq analysis of the genes in the
ageing hippocampus.

SUPPLEMENTARY FIGURE 3

Hierarchical heatmap analysis of the differential gene expression.

SUPPLEMENTARY TABLE 1

List of metabolites identified in aged and young
hippocampal tissue of mice.

SUPPLEMENTARY TABLE 2

List of microbiota-derived metabolites identified in aged hippocampus.

SUPPLEMENTARY TABLE 3

List of differentially expressed genes.

SUPPLEMENTARY TABLE 4

Top200 correlations of differential mRNA-differential metabolite.

References

Adav, S. S., and Wang, Y. (2021). Metabolomics signatures of aging: recent
advances. Aging Dis. 12, 646–661. doi: 10.14336/AD.2020.0909

Agus, A., Planchais, J., and Sokol, H. (2018). Gut microbiota regulation of
tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724.

Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Rawlins, J. N.,
Monyer, H., et al. (2014). Hippocampal synaptic plasticity, spatial memory and
anxiety. Nat. Rev. Neurosci. 15, 181–192. doi: 10.1038/nrn3677

Bennett, B. J., de Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y.,
Gregory, J., et al. (2013). Trimethylamine-N-oxide, a metabolite associated with
atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17,
49–60. doi: 10.1016/j.cmet.2012.12.011

Biasibetti, H., Pierozan, P., Rodrigues, A. F., Manfredini, V., and Wyse, A. T. S.
(2017). Hypoxanthine intrastriatal administration alters neuroinflammatory
profile and redox status in striatum of infant and young adult rats. Mol. Neurobiol.
54, 2790–2800. doi: 10.1007/s12035-016-9866-6

Biasibetti-Brendler, H., Schmitz, F., Pierozan, P., Zanotto, B. S., Prezzi, C. A., de
Andrade, R. B., et al. (2018). Hypoxanthine induces neuroenergetic impairment
and cell death in striatum of young adult wistar rats. Mol. Neurobiol. 55, 4098–
4106. doi: 10.1007/s12035-017-0634-z

Boehme, M., van de Wouw, M., Bastiaanssen, T. F. S., Olavarria-Ramirez,
L., Lyons, K., Fouhy, F., et al. (2020). Mid-life microbiota crises: middle age is
associated with pervasive neuroimmune alterations that are reversed by targeting

Frontiers in Aging Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964429
mailto:yinzhonglu@shsmu.edu.cn
mailto:Junjie.zhang@shsmu.edu.cn
https://www.frontiersin.org/articles/10.3389/fnagi.2022.964429/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2022.964429/full#supplementary-material
https://doi.org/10.14336/AD.2020.0909
https://doi.org/10.1038/nrn3677
https://doi.org/10.1016/j.cmet.2012.12.011
https://doi.org/10.1007/s12035-016-9866-6
https://doi.org/10.1007/s12035-017-0634-z
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-964429 November 2, 2022 Time: 10:47 # 16

Lu et al. 10.3389/fnagi.2022.964429

the gut microbiome. Mol. Psychiatry 25, 2567–2583. doi: 10.1038/s41380-019-
0425-1

Brosnan, J. T., and Brosnan, M. E. (2007). Creatine: endogenous metabolite,
dietary, and therapeutic supplement. Annu. Rev. Nutr. 27, 241–261. doi: 10.1146/
annurev.nutr.27.061406.093621

Brunt, V. E., LaRocca, T. J., Bazzoni, A. E., Sapinsley, Z. J., Miyamoto-Ditmon,
J., Gioscia-Ryan, R. A., et al. (2021). The gut microbiome-derived metabolite
trimethylamine N-oxide modulates neuroinflammation and cognitive function
with aging. Geroscience 43, 377–394. doi: 10.1007/s11357-020-00257-2

Cardoso, A. L., Fernandes, A., Aguilar-Pimentel, J. A., de Angelis, M. H.,
Guedes, J. R., Brito, M. A., et al. (2018). Towards frailty biomarkers: candidates
from genes and pathways regulated in aging and age-related diseases. Ageing Res.
Rev. 47, 214–277. doi: 10.1016/j.arr.2018.07.004

Caruso, G., Caraci, F., and Jolivet, R. B. (2019). Pivotal role of carnosine in
the modulation of brain cells activity: multimodal mechanism of action and
therapeutic potential in neurodegenerative disorders. Prog. Neurobiol. 175, 35–53.
doi: 10.1016/j.pneurobio.2018.12.004

Chen, C., Xia, S., He, J., Lu, G., Xie, Z., and Han, H. (2019). Roles of taurine in
cognitive function of physiology, pathologies and toxication. Life Sci. 231:116584.
doi: 10.1016/j.lfs.2019.116584

Chen, L., Zheng, T., Yang, Y., Chaudhary, P. P., Teh, J. P. Y., Cheon, B. K., et al.
(2022). Integrative multiomics analysis reveals host-microbe-metabolite interplays
associated with the aging process in Singaporeans. Gut Microbes 14:2070392. doi:
10.1080/19490976.2022.2070392

Chen, S. T., Hsieh, C. P., Lee, M. Y., Chen, L. C., Huang, C. M., Chen,
H. H., et al. (2021). Betaine prevents and reverses the behavioral deficits and
synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed.
Pharmacother. 144:112369. doi: 10.1016/j.biopha.2021.112369

Childs, B. G., Durik, M., Baker, D. J., and van Deursen, J. M. (2015). Cellular
senescence in aging and age-related disease: from mechanisms to therapy. Nat.
Med. 21, 1424–1435. doi: 10.1038/nm.4000

Cizeron, M., Qiu, Z., Koniaris, B., Gokhale, R., Komiyama, N. H., Fransen, E.,
et al. (2020). A brainwide atlas of synapses across the mouse life span. Science 369,
270–275. doi: 10.1126/science.aba3163

Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011).
Temporal dynamics and genetic control of transcription in the human prefrontal
cortex. Nature 478, 519–523. doi: 10.1038/nature10524

Cribbs, D. H., Berchtold, N. C., Perreau, V., Coleman, P. D., Rogers, J., Tenner,
A. J., et al. (2012). Extensive innate immune gene activation accompanies brain
aging, increasing vulnerability to cognitive decline and neurodegeneration: a
microarray study. J. Neuroinflam. 9:179. doi: 10.1186/1742-2094-9-179

Dall, K. B., and Færgeman, N. J. (2019). Metabolic regulation of lifespan from a
C. elegans perspective. Genes Nutrition 14:25. doi: 10.1186/s12263-019-0650-x

D’Aloia, A., Molteni, L., Gullo, F., Bresciani, E., Artusa, V., Rizzi, L., et al. (2021).
Palmitoylethanolamide modulation of microglia activation: characterization of
mechanisms of action and implication for its neuroprotective effects. Int. J. Mol.
Sci. 22:3054. doi: 10.3390/ijms22063054

D’Amato, A., Di Cesare, Mannelli, L., Lucarini, E., Man, A. L., Le Gall,
G., et al. (2020). Faecal microbiota transplant from aged donor mice affects
spatial learning and memory via modulating hippocampal synaptic plasticity-
and neurotransmission-related proteins in young recipients. Microbiome 8:140.
doi: 10.1186/s40168-020-00914-w

DeJong, E. N., Surette, M. G., and Bowdish, D. M. E. (2020). The gut microbiota
and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28,
180–189. doi: 10.1016/j.chom.2020.07.013

Di Benedetto, S., Muller, L., Wenger, E., Duzel, S., and Pawelec, G. (2017).
Contribution of neuroinflammation and immunity to brain aging and the
mitigating effects of physical and cognitive interventions. Neurosci. Biobehav. Rev.
75, 114–128. doi: 10.1016/j.neubiorev.2017.01.044

Ding, J., Ji, J., Rabow, Z., Shen, T., Folz, J., Brydges, C. R., et al. (2021). A
metabolome atlas of the aging mouse brain. Nat. Commun. 12:6021. doi: 10.1038/
s41467-021-26310-y

Dowsett, J., Ferkingstad, E., Rasmussen, L. J. H., Thorner, L. W., Magnusson,
M. K., Sugden, K., et al. (2021). Eleven genomic loci affect plasma levels of chronic
inflammation marker soluble urokinase-type plasminogen activator receptor.
Commun. Biol. 4:655. doi: 10.1038/s42003-021-02144-8

Durani, L. W., Hamezah, H. S., Ibrahim, N. F., Yanagisawa, D., Makpol, S.,
Damanhuri, H. A., et al. (2017). Age-related changes in the metabolic profiles of
rat hippocampus, medial prefrontal cortex and striatum. Biochem. Biophys. Res.
Commun. 493, 1356–1363. doi: 10.1016/j.bbrc.2017.09.164

Frank, S., Burbach, G. J., Bonin, M., Walter, M., Streit, W., Bechmann, I.,
et al. (2008). TREM2 is upregulated in amyloid plaque-associated microglia

in aged APP23 transgenic mice. Glia 56, 1438–1447. doi: 10.1002/glia.2
0710

Gao, A. W., El Alam, G., Lalou, A., Li, T. Y., Molenaars, M., Zhu, Y., et al.
(2022). Multi-omics analysis identifies essential regulators of mitochondrial stress
response in two wild-type C. elegans strains. iScience 25:103734. doi: 10.1016/j.isci.
2022.103734

Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. E., Beecher,
C. W., et al. (2010). Metscape: a Cytoscape plug-in for visualizing and interpreting
metabolomic data in the context of human metabolic networks. Bioinformatics 26,
971–973. doi: 10.1093/bioinformatics/btq048

Ge, I., Kirschen, G. W., and Wang, X. (2021). Shifted dynamics of glucose
metabolism in the hippocampus during aging. Front. Aging Neurosci. 13:700306.
doi: 10.3389/fnagi.2021.700306

Gibson, G. E., Hirsch, J. A., Fonzetti, P., Jordan, B. D., Cirio, R. T., and Elder, J.
(2016). Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 1367, 21–30.
doi: 10.1111/nyas.13031

Gonzalez-Velasco, O., Papy-Garcia, D., Le Douaron, G., Sanchez-Santos, J. M.,
and De Las Rivas, J. (2020). Transcriptomic landscape, gene signatures and
regulatory profile of aging in the human brain. Biochim Biophys. Acta Gene Regul.
Mech. 1863:194491. doi: 10.1016/j.bbagrm.2020.194491

Govindarajulu, M., Pinky, P. D., Steinke, I., Bloemer, J., Ramesh, S., Kariharan,
T., et al. (2020). Gut metabolite TMAO induces synaptic plasticity deficits by
promoting endoplasmic reticulum stress. Front. Mol. Neurosci. 13:138. doi: 10.
3389/fnmol.2020.00138

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E.,
et al. (2013). TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.
doi: 10.1056/NEJMoa1211851

Hamezah, H. S., Durani, L. W., Yanagisawa, D., Ibrahim, N. F., Aizat, W. M.,
Bellier, J. P., et al. (2018). Proteome profiling in the hippocampus, medial
prefrontal cortex, and striatum of aging rat. Exp. Gerontol. 111, 53–64. doi: 10.
1016/j.exger.2018.07.002

Hamrick, M. W., and Stranahan, A. M. (2020). Metabolic regulation of aging and
age-related disease. Ageing Res. Rev. 64:101175. doi: 10.1016/j.arr.2020.101175

Harkness, R. A. (1988). Hypoxanthine, xanthine and uridine in body fluids,
indicators of ATP depletion. J. Chromatogr. 429, 255–278. doi: 10.1016/s0378-
434783873-6

Hastings, J., Mains, A., Virk, B., Rodriguez, N., Murdoch, S., Pearce, J., et al.
(2019). Multi-Omics and genome-scale modeling reveal a metabolic shift during
C. elegans aging. Front. Mol. Biosci. 6:2. doi: 10.3389/fmolb.2019.00002

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L.,
Miller, J. A., et al. (2012). An anatomically comprehensive atlas of the adult human
brain transcriptome. Nature 489, 391–399. doi: 10.1038/nature11405

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., et al.
(2019). Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15,
565–581. doi: 10.1038/s41582-019-0244-7

Hunter, M., Spiller, K. J., Dominique, M. A., Xu, H., Hunter, F. W., Fang,
T. C., et al. (2021). Microglial transcriptome analysis in the rNLS8 mouse model
of TDP-43 proteinopathy reveals discrete expression profiles associated with
neurodegenerative progression and recovery. Acta Neuropathol. Commun. 9:140.
doi: 10.1186/s40478-021-01239-x

Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S. V., Vieira-Saecker,
A., et al. (2019). NLRP3 inflammasome activation drives tau pathology. Nature
575, 669–673. doi: 10.1038/s41586-019-1769-z

Lama, A., Pirozzi, C., Annunziata, C., Morgese, M. G., Senzacqua, M., Severi, I.,
et al. (2021). Palmitoylethanolamide counteracts brain fog improving depressive-
like behaviour in obese mice: possible role of synaptic plasticity and neurogenesis.
Br. J. Pharmacol. 178, 845–859. doi: 10.1111/bph.15071

Lanke, V., Moolamalla, S. T. R., Roy, D., and Vinod, P. K. (2018). Integrative
analysis of hippocampus gene expression profiles identifies network alterations in
aging and Alzheimer’s disease. Front. Aging Neurosci. 10:153. doi: 10.3389/fnagi.
2018.00153

Lanz, M., Janeiro, M. H., Milagro, F. I., Puerta, E., Ludwig, I. A., Pineda-Lucena,
A., et al. (2022). Trimethylamine N-oxide (TMAO) drives insulin resistance and
cognitive deficiencies in a senescence accelerated mouse model. Mech. Ageing Dev.
204:111668. doi: 10.1016/j.mad.2022.111668

Li, D., Ke, Y., Zhan, R., Liu, C., Zhao, M., Zeng, A., et al. (2018).
Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice.
Aging Cell 17:e12768. doi: 10.1111/acel.12768

Liang, Z., Zhao, Y., Ruan, L., Zhu, L., Jin, K., Zhuge, Q., et al. (2017). Impact
of aging immune system on neurodegeneration and potential immunotherapies.
Prog. Neurobiol. 157, 2–28. doi: 10.1016/j.pneurobio.2017.07.006

Frontiers in Aging Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964429
https://doi.org/10.1038/s41380-019-0425-1
https://doi.org/10.1038/s41380-019-0425-1
https://doi.org/10.1146/annurev.nutr.27.061406.093621
https://doi.org/10.1146/annurev.nutr.27.061406.093621
https://doi.org/10.1007/s11357-020-00257-2
https://doi.org/10.1016/j.arr.2018.07.004
https://doi.org/10.1016/j.pneurobio.2018.12.004
https://doi.org/10.1016/j.lfs.2019.116584
https://doi.org/10.1080/19490976.2022.2070392
https://doi.org/10.1080/19490976.2022.2070392
https://doi.org/10.1016/j.biopha.2021.112369
https://doi.org/10.1038/nm.4000
https://doi.org/10.1126/science.aba3163
https://doi.org/10.1038/nature10524
https://doi.org/10.1186/1742-2094-9-179
https://doi.org/10.1186/s12263-019-0650-x
https://doi.org/10.3390/ijms22063054
https://doi.org/10.1186/s40168-020-00914-w
https://doi.org/10.1016/j.chom.2020.07.013
https://doi.org/10.1016/j.neubiorev.2017.01.044
https://doi.org/10.1038/s41467-021-26310-y
https://doi.org/10.1038/s41467-021-26310-y
https://doi.org/10.1038/s42003-021-02144-8
https://doi.org/10.1016/j.bbrc.2017.09.164
https://doi.org/10.1002/glia.20710
https://doi.org/10.1002/glia.20710
https://doi.org/10.1016/j.isci.2022.103734
https://doi.org/10.1016/j.isci.2022.103734
https://doi.org/10.1093/bioinformatics/btq048
https://doi.org/10.3389/fnagi.2021.700306
https://doi.org/10.1111/nyas.13031
https://doi.org/10.1016/j.bbagrm.2020.194491
https://doi.org/10.3389/fnmol.2020.00138
https://doi.org/10.3389/fnmol.2020.00138
https://doi.org/10.1056/NEJMoa1211851
https://doi.org/10.1016/j.exger.2018.07.002
https://doi.org/10.1016/j.exger.2018.07.002
https://doi.org/10.1016/j.arr.2020.101175
https://doi.org/10.1016/s0378-434783873-6
https://doi.org/10.1016/s0378-434783873-6
https://doi.org/10.3389/fmolb.2019.00002
https://doi.org/10.1038/nature11405
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.1186/s40478-021-01239-x
https://doi.org/10.1038/s41586-019-1769-z
https://doi.org/10.1111/bph.15071
https://doi.org/10.3389/fnagi.2018.00153
https://doi.org/10.3389/fnagi.2018.00153
https://doi.org/10.1016/j.mad.2022.111668
https://doi.org/10.1111/acel.12768
https://doi.org/10.1016/j.pneurobio.2017.07.006
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-964429 November 2, 2022 Time: 10:47 # 17

Lu et al. 10.3389/fnagi.2022.964429

Lin, L., Cao, B., Xu, Z., Sui, Y., Chen, J., Luan, Q., et al. (2016). In vivo
HMRS and lipidomic profiling reveals comprehensive changes of hippocampal
metabolism during aging in mice. Biochem. Biophys. Res. Commun. 470, 9–14.
doi: 10.1016/j.bbrc.2015.12.009

Ling, A. J. W., Chang, L. S., Babji, A. S., Latip, J., Koketsu, M., and Lim, S. J.
(2022). Review of sialic acid’s biochemistry, sources, extraction and functions with
special reference to edible bird’s nest. Food Chem. 367:130755. doi: 10.1016/j.
foodchem.2021.130755

Liu, P., Jing, Y., and Zhang, H. (2009). Age-related changes in arginine and its
metabolites in memory-associated brain structures. Neuroscience 164, 611–628.
doi: 10.1016/j.neuroscience.2009.08.029

Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., et al. (2017). Regulated
intramembrane proteolysis of the AXL receptor kinase generates an intracellular
domain that localizes in the nucleus of cancer cells. FASEB J. 31, 1382–1397.
doi: 10.1096/fj.201600702R

Lu, Y., Zhang, W., Zhang, B., Heinemann, S. H., Hoshi, T., Hou, S., et al.
(2021). Bilirubin Oxidation End Products (BOXes) induce neuronal oxidative
stress involving the Nrf2 pathway. Oxid. Med. Cell Longev. 2021:8869908. doi:
10.1155/2021/8869908

Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package for
pathway-based data integration and visualization. Bioinformatics 29, 1830–1831.
doi: 10.1093/bioinformatics/btt285

Madeo, F., Eisenberg, T., Pietrocola, F., and Kroemer, G. (2018). Spermidine in
health and disease. Science 359:eaan2788. doi: 10.1126/science.aan2788

Mahajan, U. V., Varma, V. R., Griswold, M. E., Blackshear, C. T., An, Y.,
Oommen, A. M., et al. (2020). Dysregulation of multiple metabolic networks
related to brain transmethylation and polyamine pathways in Alzheimer disease:
a targeted metabolomic and transcriptomic study. PLoS Med. 17:e1003012. doi:
10.1371/journal.pmed.1003012

Mangold, C. A., Wronowski, B., Du, M., Masser, D. R., Hadad, N., Bixler,
G. V., et al. (2017). Sexually divergent induction of microglial-associated
neuroinflammation with hippocampal aging. J. Neuroinflamm. 14:141. doi: 10.
1186/s12974-017-0920-8

Mattace Raso, G., Russo, R., Calignano, A., and Meli, R. (2014).
Palmitoylethanolamide in CNS health and disease. Pharmacol. Res. 86, 32–41.
doi: 10.1016/j.phrs.2014.05.006

Mattson, M. P., and Arumugam, T. V. (2018). Hallmarks of brain aging: adaptive
and pathological modification by metabolic states. Cell Metab. 27, 1176–1199.
doi: 10.1016/j.cmet.2018.05.011

Miller, J. A., Guillozet-Bongaarts, A., Gibbons, L. E., Postupna, N., Renz, A.,
Beller, A. E., et al. (2017). Neuropathological and transcriptomic characteristics of
the aged brain. eLife 6:e31126. doi: 10.7554/eLife.31126

Mossad, O., Batut, B., Yilmaz, B., Dokalis, N., Mezo, C., Nent, E., et al. (2022).
Gut microbiota drives age-related oxidative stress and mitochondrial damage in
microglia via the metabolite N-carboxymethyllysine. Nat. Neurosci. 25, 295–305.
doi: 10.1038/s41593-022-01027-3

Neumann, H., and Takahashi, K. (2007). Essential role of the microglial
triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous
tissue immune homeostasis. J. Neuroimmunol. 184, 92–99. doi: 10.1016/j.
jneuroim.2006.11.032

Noack, J., Dongowski, G., Hartmann, L., and Blaut, M. (2000). The human
gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce
putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J. Nutr. 130,
1225–1231. doi: 10.1093/jn/130.5.1225

Ortiz, O., Delgado-Garcia, J. M., Espadas, I., Bahi, A., Trullas, R., Dreyer,
J. L., et al. (2010). Associative learning and CA3-CA1 synaptic plasticity are
impaired in D1R null. Drd1a-/- mice and in hippocampal siRNA silenced
Drd1a mice. J. Neurosci. 30, 12288–12300. doi: 10.1523/JNEUROSCI.2655-10.
2010

O’Toole, P. W., and Jeffery, I. B. (2015). Gut microbiota and aging. Science 350,
1214–1215. doi: 10.1126/science.aac8469

Paban, V., Fauvelle, F., and Alescio-Lautier, B. (2010). Age-related changes
in metabolic profiles of rat hippocampus and cortices. Eur. J. Neurosci. 31,
1063–1073. doi: 10.1111/j.1460-9568.2010.07126.x

Pardo, J., Abba, M. C., Lacunza, E., Francelle, L., Morel, G. R., Outeiro,
T. F., et al. (2017). Identification of a conserved gene signature associated with
an exacerbated inflammatory environment in the hippocampus of aging rats.
Hippocampus 27, 435–449. doi: 10.1002/hipo.22703

Parker, A., Romano, S., Ansorge, R., Aboelnour, A., Le Gall, G., Savva, G. M.,
et al. (2022). Fecal microbiota transfer between young and aged mice reverses
hallmarks of the aging gut, eye, and brain. Microbiome 10:68. doi: 10.1186/s40168-
022-01243-w

Pellegrini, C., Antonioli, L., Calderone, V., Colucci, R., Fornai, M., and
Blandizzi, C. (2020). Microbiota-gut-brain axis in health and disease: is NLRP3
inflammasome at the crossroads of microbiota-gut-brain communications? Prog.
Neurobiol. 191:101806. doi: 10.1016/j.pneurobio.2020.101806

Peng, S., Zeng, L., Haure-Mirande, J. V., Wang, M., Huffman, D. M.,
Haroutunian, V., et al. (2021). Transcriptomic changes highly similar to
Alzheimer’s disease are observed in a subpopulation of individuals during normal
brain aging. Front. Aging Neurosci. 13:711524. doi: 10.3389/fnagi.2021.711524

Petr, M. A., Alfaras, I., Krawcyzk, M., Bair, W. N., Mitchell, S. J., Morrell, C. H.,
et al. (2021). A cross-sectional study of functional and metabolic changes during
aging through the lifespan in male mice. eLife 10:e62952. doi: 10.7554/eLife.62952

Petroff, O. A., Mattson, R. H., Behar, K. L., Hyder, F., and Rothman, D. L. (1998).
Vigabatrin increases human brain homocarnosine and improves seizure control.
Ann. Neurol. 44, 948–952. doi: 10.1002/ana.410440614

Rivero-Segura, N. A., Bello-Chavolla, O. Y., Barrera-Vazquez, O. S., Gutierrez-
Robledo, L. M., and Gomez-Verjan, J. C. (2020). Promising biomarkers of human
aging: in search of a multi-omics panel to understand the aging process from a
multidimensional perspective. Ageing Res. Rev. 64:101164. doi: 10.1016/j.arr.2020.
101164

Roschel, H., Gualano, B., Ostojic, S. M., and Rawson, E. S. (2021). Creatine
Supplementation and Brain Health. Nutrients 13:586. doi: 10.3390/nu13020586

Russo, R., Cristiano, C., Avagliano, C., De Caro, C., La Rana, G., Raso, G. M.,
et al. (2018). Gut-brain axis: role of lipids in the regulation of inflammation.
pain and CNS diseases. Curr. Med. Chem. 25, 3930–3952. doi: 10.2174/
0929867324666170216113756

Rybnikova, E. (2018). Brain, antibiotics, and microbiota - how do
they interplay?: an editorial for ’Antibiotics-induced modulation of large
intestinal microbiota altered aromatic amino acid profile and expression of
neurotransmitters in the hypothalamus of piglets’ on page 219. J. Neurochem. 146,
208–210. doi: 10.1111/jnc.14341

Schon, M., Mousa, A., Berk, M., Chia, W. L., Ukropec, J., Majid, A., et al. (2019).
The potential of carnosine in brain-related disorders: a comprehensive review of
current evidence. Nutrients 11:1196. doi: 10.3390/nu11061196

Schroeder, S., Hofer, S. J., Zimmermann, A., Pechlaner, R., Dammbrueck, C.,
Pendl, T., et al. (2021). Dietary spermidine improves cognitive function. Cell Rep.
35:108985. doi: 10.1016/j.celrep.2021.108985

Scott, K. A., Ida, M., Peterson, V. L., Prenderville, J. A., Moloney, G. M., Izumo,
T., et al. (2017). Revisiting Metchnikoff: age-related alterations in microbiota-gut-
brain axis in the mouse. Brain Behav. Immun. 65, 20–32. doi: 10.1016/j.bbi.2017.
02.004

Shoji, H., Takao, K., Hattori, S., and Miyakawa, T. (2016). Age-related changes
in behavior in C57BL/6J mice from young adulthood to middle age. Mol. Brain
9:11. doi: 10.1186/s13041-016-0191-9

Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., and Barnes, C. A.
(2011). A pathophysiological framework of hippocampal dysfunction in ageing
and disease. Nat. Rev. Neurosci. 12, 585–601. doi: 10.1038/nrn3085

Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., and Siuzdak, G.
(2006). XCMS: processing mass spectrometry data for metabolite profiling using
nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787.
doi: 10.1021/ac051437y

Stilling, R. M., Benito, E., Gertig, M., Barth, J., Capece, V., Burkhardt, S.,
et al. (2014). De-regulation of gene expression and alternative splicing affects
distinct cellular pathways in the aging hippocampus. Front. Cell Neurosci. 8:373.
doi: 10.3389/fncel.2014.00373

Stuckey, S. M., Ong, L. K., Collins-Praino, L. E., and Turner, R. J. (2021).
Neuroinflammation as a key driver of secondary neurodegeneration following
stroke? Int. J. Mol. Sci. 22:13101. doi: 10.3390/ijms222313101

Ulland, T. K., and Colonna, M. (2018). TREM2 - a key player in microglial
biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675. doi: 10.1038/
s41582-018-0072-1

Vallianatou, T., Shariatgorji, R., Nilsson, A., Karlgren, M., Hulme, H.,
Fridjonsdottir, E., et al. (2021). Integration of mass spectrometry imaging and
machine learning visualizes region-specific age-induced and drug-target metabolic
perturbations in the brain. ACS Chem. Neurosci. 12, 1811–1823. doi: 10.1021/
acschemneuro.1c00103

Walker, K. A., Basisty, N., Wilson, D. M. I. I. I., and Ferrucci, L. (2022).
Connecting aging biology and inflammation in the omics era. J. Clin. Invest.
132:e158448. doi: 10.1172/JCI158448

Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., et al. (2019).
Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut
bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease
progression. Cell Res. 29, 787–803. doi: 10.1038/s41422-019-0216-x

Frontiers in Aging Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964429
https://doi.org/10.1016/j.bbrc.2015.12.009
https://doi.org/10.1016/j.foodchem.2021.130755
https://doi.org/10.1016/j.foodchem.2021.130755
https://doi.org/10.1016/j.neuroscience.2009.08.029
https://doi.org/10.1096/fj.201600702R
https://doi.org/10.1155/2021/8869908
https://doi.org/10.1155/2021/8869908
https://doi.org/10.1093/bioinformatics/btt285
https://doi.org/10.1126/science.aan2788
https://doi.org/10.1371/journal.pmed.1003012
https://doi.org/10.1371/journal.pmed.1003012
https://doi.org/10.1186/s12974-017-0920-8
https://doi.org/10.1186/s12974-017-0920-8
https://doi.org/10.1016/j.phrs.2014.05.006
https://doi.org/10.1016/j.cmet.2018.05.011
https://doi.org/10.7554/eLife.31126
https://doi.org/10.1038/s41593-022-01027-3
https://doi.org/10.1016/j.jneuroim.2006.11.032
https://doi.org/10.1016/j.jneuroim.2006.11.032
https://doi.org/10.1093/jn/130.5.1225
https://doi.org/10.1523/JNEUROSCI.2655-10.2010
https://doi.org/10.1523/JNEUROSCI.2655-10.2010
https://doi.org/10.1126/science.aac8469
https://doi.org/10.1111/j.1460-9568.2010.07126.x
https://doi.org/10.1002/hipo.22703
https://doi.org/10.1186/s40168-022-01243-w
https://doi.org/10.1186/s40168-022-01243-w
https://doi.org/10.1016/j.pneurobio.2020.101806
https://doi.org/10.3389/fnagi.2021.711524
https://doi.org/10.7554/eLife.62952
https://doi.org/10.1002/ana.410440614
https://doi.org/10.1016/j.arr.2020.101164
https://doi.org/10.1016/j.arr.2020.101164
https://doi.org/10.3390/nu13020586
https://doi.org/10.2174/0929867324666170216113756
https://doi.org/10.2174/0929867324666170216113756
https://doi.org/10.1111/jnc.14341
https://doi.org/10.3390/nu11061196
https://doi.org/10.1016/j.celrep.2021.108985
https://doi.org/10.1016/j.bbi.2017.02.004
https://doi.org/10.1016/j.bbi.2017.02.004
https://doi.org/10.1186/s13041-016-0191-9
https://doi.org/10.1038/nrn3085
https://doi.org/10.1021/ac051437y
https://doi.org/10.3389/fncel.2014.00373
https://doi.org/10.3390/ijms222313101
https://doi.org/10.1038/s41582-018-0072-1
https://doi.org/10.1038/s41582-018-0072-1
https://doi.org/10.1021/acschemneuro.1c00103
https://doi.org/10.1021/acschemneuro.1c00103
https://doi.org/10.1172/JCI158448
https://doi.org/10.1038/s41422-019-0216-x
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-964429 November 2, 2022 Time: 10:47 # 18

Lu et al. 10.3389/fnagi.2022.964429

Wang, Y., Huang, T., Xie, L., and Liu, L. (2016). Integrative analysis of
methylation and transcriptional profiles to predict aging and construct aging
specific cross-tissue networks. BMC Syst. Biol. 10(Suppl. 4):132. doi: 10.1186/
s12918-016-0354-4

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al.
(2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular
disease. Nature 472, 57–63. doi: 10.1038/nature09922

Want, E. J. (2018). LC-MS untargeted analysis. Methods Mol. Biol. 1738, 99–116.

Xu, K., Li, H., Zhang, B., Le, M., Huang, Q., Fu, R., et al. (2022). Integrated
transcriptomics and metabolomics analysis of the hippocampus reveals altered
neuroinflammation, downregulated metabolism and synapse in sepsis-associated
encephalopathy. Front. Pharmacol. 13:1004745. doi: 10.3389/fphar.2022.1004745

Xu, T. L., and Gong, N. (2010). Glycine and glycine receptor signaling in
hippocampal neurons: diversity, function and regulation. Prog. Neurobiol. 91,
349–361. doi: 10.1016/j.pneurobio.2010.04.008

Xu, X., Zhan, M., Duan, W., Prabhu, V., Brenneman, R., Wood, W., et al.
(2007). Gene expression atlas of the mouse central nervous system: impact and
interactions of age, energy intake and gender. Genome Biol. 8:R234. doi: 10.1186/
gb-2007-8-11-r234

Youm, Y. H., Grant, R. W., McCabe, L. R., Albarado, D. C., Nguyen, K. Y.,
Ravussin, A., et al. (2013). Canonical Nlrp3 inflammasome links systemic low-
grade inflammation to functional decline in aging. Cell Metab. 18, 519–532. doi:
10.1016/j.cmet.2013.09.010

Zhao, L., Ni, Y., Su, M., Li, H., Dong, F., Chen, W., et al. (2017).
High throughput and quantitative measurement of microbial metabolome by
gas chromatography/mass spectrometry using automated Alkyl chloroformate
derivatization. Anal. Chem. 89, 5565–5577. doi: 10.1021/acs.analchem.7b00660

Zheng, X., Xie, G., Zhao, A., Zhao, L., Yao, C., Chiu, N. H., et al. (2011).
The footprints of gut microbial-mammalian co-metabolism. J. Proteome Res. 10,
5512–5522. doi: 10.1021/pr2007945

Frontiers in Aging Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964429
https://doi.org/10.1186/s12918-016-0354-4
https://doi.org/10.1186/s12918-016-0354-4
https://doi.org/10.1038/nature09922
https://doi.org/10.3389/fphar.2022.1004745
https://doi.org/10.1016/j.pneurobio.2010.04.008
https://doi.org/10.1186/gb-2007-8-11-r234
https://doi.org/10.1186/gb-2007-8-11-r234
https://doi.org/10.1016/j.cmet.2013.09.010
https://doi.org/10.1016/j.cmet.2013.09.010
https://doi.org/10.1021/acs.analchem.7b00660
https://doi.org/10.1021/pr2007945
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Multi-omics analysis reveals neuroinflammation, activated glial signaling, and dysregulated synaptic signaling and metabolism in the hippocampus of aged mice
	Introduction
	Materials and methods
	Materials
	Mice
	Open field test
	Shuttle box test
	Tissue preparation
	Liquid chromatography–mass spectrometry-based metabolomics analysis
	Library preparation and RNA-seq analysis
	Reverse transcription and qPCR
	Integrative transcriptomic and metabolomic analysis
	Statistical analysis

	Results
	Anxiety-like behavior and locomotor activity were altered in middle-aged mice
	Associative learning and memory were impaired in aged mice
	Metabolomic profiling of the aging hippocampus
	The expression of gut microbiota-derived metabolites was altered in the aging hippocampus
	Transcriptomic analysis of the aged hippocampus
	The gene regulatory network was altered in the aged hippocampus
	Integrated pathway and network analysis

	Discussion
	Altered amino acid contents and dysregulated synapse functions
	Decreased bioactive lipid metabolism accelerates the aging process in the hippocampus
	Gut microbiota-derived metabolites accelerate the aging process in the hippocampus
	Neuroinflammation activation in the aged hippocampus

	Conclusion and prospects
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


