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The unprecedented amount of data resulting from next-generation sequencing

has opened a new era in phylogenetic estimation. Although large datasets

should, in theory, increase phylogenetic resolution, massive, multilocus data-

sets have uncovered a great deal of phylogenetic incongruence among

different genomic regions, due both to stochastic error and to the action of

different evolutionary process such as incomplete lineage sorting, gene dupli-

cation and loss and horizontal gene transfer. This incongruence violates one of

the fundamental assumptions of the DNA barcoding approach, which assumes

that gene history and species history are identical. In this review, we explain

some of the most important challenges we will have to face to reconstruct the

history of species, and the advantages and disadvantages of different strategies

for the phylogenetic analysis of multilocus data. In particular, we describe the

evolutionary events that can generate species tree—gene tree discordance, com-

pare the most popular methods for species tree reconstruction, highlight the

challenges we need to face when using them and discuss their potential utility

in barcoding. Current barcoding methods sacrifice a great amount of statistical

power by only considering one locus, and a transition to multilocus barcodes

would not only improve current barcoding methods, but also facilitate an

eventual transition to species-tree-based barcoding strategies, which could

better accommodate scenarios where the barcode gap is too small or inexistent.

This article is part of the themed issue ‘From DNA barcodes to biomes’.
1. Introduction
Gene trees based on single markers have been used as proxies for species

phylogenies since the late 1970s. While the distinction between species and

gene trees has been known for decades [1–3], the difficulty in obtaining multiple

molecular markers delayed its explicit acknowledgement until very recently.

The discordance between gene trees and species trees can be explained by both

systematic—due to model misspecification—and stochastic—inherent to the

finite amount of data and sampling process—error, but more importantly, this

incongruence can also be the result of different evolutionary processes, mainly

incomplete lineage sorting (ILS, table 1 collects all acronyms), gene duplication

and loss (GDL) and horizontal gene transfer (HGT), but also hybrid speciation

and gene flow [1–5]. Nowadays, advances in sequencing technologies have facili-

tated the acquisition of large multilocus datasets, unveiling extensive

phylogenomic incongruence [6,7], and bringing back the species tree—gene

tree dichotomy to the spotlight. In consequence, a plethora of species tree recon-

struction methods have been developed in the last decade. While all of these

methods aim for the same target, the species tree, they conform to a broad variety

in terms of input data, model assumptions, estimation strategy and compu-

tational complexity. It is therefore important to take into account the

characteristics of the data at hand in order to choose the most appropriate species

tree methodology; or even better, to design the research project and the sequen-

cing strategy taking into account the expected evolutionary processes involved

and the most appropriate methods to analyse the data.
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Table 1. Acronym table.

acronym meaning

AFLP amplified fragment length polymorphism

GDL gene duplication and loss

GTP gene tree parsimony

HGT horizontal gene transfer

ILS incomplete lineage sorting

MSC multispecies coalescent

SNP single nucleotide polymorphism
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DNA barcoding consists of identifying the species at which a

given sample pertains (either catalogued or new) and is usually

carried out using a DNA sequence obtained from a single locus.

These marker sequences or barcodes are not necessarily unique

for a given species—because of intraspecific variability—and,

therefore, most barcoding methods rely on the identifiability

of two different ranges of variability, intraspecific and inter-

specific. This characteristic identifies the ‘barcode gap’,

defined by the separation between the maximum within-

species genetic distance and the minimum between-species

genetic distance. Its existence is subject not only to genetic

divergence among species, but also to the absence of deep coa-

lescences (scenario where the most recent common ancestor for

a given gene of all individuals from the same species precedes

the speciation time) and gene flow, and, therefore, it is sensitive

to the distinction between species and gene trees. Even in

absence of these events, different clades can have different

ranges of intraspecific and interspecific variability, cancelling

the barcode gap when considering the reference tree as a

whole. There are at least four different methodological strat-

egies for species assignment using barcodes: tree-based,

sequence-similarity-based, statistical and diagnostic methods

[8]. Tree-based strategies use any classic phylogenetic method

[9] to estimate the phylogeny (gene tree) of the reference

barcodes together with the query sequence. The query is

assigned to the species it clusters within. Therefore, these strat-

egies rely on the barcode gap and assume that gene tree and

species tree are topologically equivalent. Sequence-similarity
methods look for the closest sequence among the references

using similarity scores (e.g. BLAST [10]), assigning the species

label of the closest reference to the query. Therefore, they also

relyon the barcode gap because theyassume that the intraspecific

similarity is bigger than the interspecific. Statistical methodstry to

better exploit all the signals present in the data, accommodating

uncertainty and yielding confidence measures of the assignment,

at the expense of requiring extensive intraspecific sampling,

population-size estimates and big computational efforts [11,12].

Finally, diagnostic methods analyse the reference looking for

specific nucleotides that are able to assign potential queries to

given species, neglecting the rest of the information [13,14].

Thus, they are less prone to be confounded by the absence of

the barcode gap, whereas they strongly depend on the existence

of a diagnostic combination of nucleotides.

Related to both species trees and DNA barcoding, species
delimitation methods aim to determine the number of species

present in a set of individual samples and their boundaries,

and therefore generalizes the species assignment problem.

Most single-locus species-delimitation methods rely on the
distinction of the intra- and interspecific ranges of variability,

and therefore are affected by the absence of the barcode

gap in a similar manner to DNA barcoding. There are at

least four different methodological strategies for species

delimitation: genetic-distance-based, phylogenetic-based,

divergence-based and allelic-exclusivity-based (reviewed in

[15]). Genetic-distance-based methods directly rely on the bar-

code gap to delimitate species, using a user-specified fixed

threshold of genetic distance (e.g. jMOTU [16]) or estimating

it (e.g. ABGD [17]). Phylogenetic-based methods are based

on the phylogenetic species concept (reviewed in [18]) and

therefore rely on modelling two evolutionary branching

patterns—intra- and interspecific—and detecting the transi-

tion between them. GMYC [19] and related methods model

speciations under a Yule model and intraspecific variation

with a coalescent process, whereas PTP [20] models two

different Poisson branching processes (avoiding the need

of ultrametric trees). The divergence-based method K/u [21]

looks for clades that diverged significatively more than

expected by genetic drift, identifying them as different

species. It uses both a sequence-distance matrix and a phylo-

genetic tree to compare the mean sequence diversity among

clades (K) and the population mutation rate (u), and it is

intended for asexual organisms. Allelic-exclusivity-based

methods (e.g. Haplowebs [22]) look for clusters of individuals

that share alleles that are mutually exclusive with other indi-

viduals, gathering the information from the co-occurrence of

haplotypes in heterozygous individuals.

In this paper, we review the evolutionary events that gen-

erate species tree—gene tree discordance, methods for species

tree reconstruction, the challenges we face when using them

and their potential role in barcoding.
2. Species trees, population trees and gene trees
Species trees, the focus of this review, depict the evolutionary

history of the sampled organisms. The nodes of a species tree

represent speciation events, whereas the branches reflect the

population history between speciations. The width of a

branch in a species tree represents the effective population

size (Ne), whereas its lengths represent time, usually in

years or number of generations. Population trees are similar

to species trees, but consider the history of conspecific popu-

lations. Finally, gene trees represent the evolutionary history

of the sampled gene copies. The nodes of a gene tree indicate

coalescent events, which correspond, looking forward in

time, to the process of DNA replication and divergence.

Coalescent events can occur right before the speciation

time, well before (deep coalescence) or right afterwards

(gene flow). The length of the branches in a gene tree usually

represents the amount of substitutions per site. Importantly,

tree-based barcoding refers to the use of gene trees.
3. Evolutionary processes that generate species
tree/gene tree discordance

In spite of being conceptually different, species and gene trees

are expected to be topologically equivalent under many

evolutionary scenarios. Nevertheless, certain evolutionary

processes disrupt this equivalence, decoupling their histories

(figure 1).
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Figure 1. Evolutionary processes that generate species tree/gene tree incongruence. The figure shows the species tree (grey tree in the background) and a gene tree
(black tree) tracking the evolutionary history of six species (A, B, C, D, E and F) and nine gene copies (A0a, A0b, B0, C0, C1, D0, E0, E1 and F0) in eight individuals
(A0, B0, C0, C1, D0, E0, E1, F0). Each evolutionary process is indicated by a label and a specific figure in the node where it is mapped (duplication, square; loss, cross;
transfer, arrow; deep coalescence, circle; hybridization, pentagon; gene flow, ellipse). Dashed lines indicate superfluous lineages that do not reach the present due to
gene loss.
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Figure 2. Multispecies coalescent model. The figure shows the species tree (grey tree in the background) and a gene tree (black tree) tracking the evolutionary
history of five species (A, B, C, D and E) and several individuals per species. Each species tree branch corresponds to an independent coalescent process. Gene tree
nodes are depicted with circles, where open circles indicate deep coalescences. The confounding effect of ILS on standard barcoding techniques is reflected here, for
example between species A and B. The individual B0 from species B clusters with individuals A2 and A3 from species A therefore shows the absence of a barcode
gap.
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(a) Incomplete lineage sorting
ILS, also known as deep coalescence or ancestral polymorph-

ism, is the result of the retention of a genetic polymorphism

along several speciation events. The posterior sorting of

polymorphic lineages can make gene and species trees incon-

gruent. Therefore, ILS is a special case of the consideration of

how alleles evolve and sort within populations. ILS is usually

modelled using the multispecies coalescent (MSC) model [23]

(figure 2), which expands coalescent theory [24] to be applied

on species trees. The discordance due to ILS increases with

effective population size and decreases with species tree

branch length. In consequence, ILS is mostly associated with

closely related species, although it is not exclusive of them, as

short branches can also occur deeper in time. Because of this,
ILS is probably the most relevant source, together with

hybrid speciation and gene flow, of gene tree—species tree

incongruence for DNA barcoding.
(b) Gene duplication and loss
GDL describes the copy of a locus into a different genomic

location and its loss, the primary source of new genetic material

driving the evolution of gene families [25]. GDL is the result

of several known molecular mechanisms such as unequal

crossing-over and retroposition [26]. Traditionally, before

phylogenetic estimation, duplicated gene copies—and, there-

fore, the signature of GDL—are removed from the data in

order to only consider orthologous gene copies (orthology
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prediction methods are reviewed in [27,28]). Most species tree

reconstruction methods considering GDL follow a gene tree

parsimony (GTP) approach [29] in which the parsimony

score for a species tree is the minimum number of duplications

that this implies given a collection of gene trees.

(c) Horizontal gene transfer
HGT or lateral gene transfer corresponds to the integration in

the genome of a portion of genetic material coming from a

different species in a non-sexual fashion, thus disrupting

species boundaries and vertical inheritance. This evolution-

ary process is widespread in non-eukaryotic organisms [30],

although it is not restricted to them [31,32]. HGT can be mod-

elled as a Poisson-distributed series of events, but most

species tree methods considering it are based on GTP. As in

the case of GDL, the signature of HGT is often detected

and removed from the data based on phylogenetic incongru-

ence, patchy distribution (presence or absence patterns) or

compositional anomalies [30].

(d) Hybrid speciation
Hybrid speciation corresponds to a speciation through inter-

breeding between members of two different species. The new

species is therefore originated from two ancestral species,

generating a reticulated history or species network. The new

species may have the same number of chromosomes as its

parent species (homoploid hybridization) or their sum (poly-

ploid hybridization) [33]. This evolutionary process is fairly

common in plants, but not restricted to them [34]. Although

this process can mislead DNA barcoding [35], we are not

aware of specific DNA barcoding strategies to tackle it.

(e) Gene flow
Gene flow is the acquisition of genetic material through inter-

breeding across species boundaries. Unlike HGT, during gene

flow, full genomes are transferred from one species to another

via sex. Afterwards, introgressed genomes can be broken up

by recombination, and different loci can follow alternative

histories, eventually getting fixed in the new species or drift-

ing away. Population trees are strongly affected by gene flow,

whereas in species trees (as long as the biological species

concept holds), gene flow can only occur during speciation

or immediately after, a process represented by the isolation

with migration model (IM) [36]. Gene flow is currently

neglected by species tree reconstruction methods.
4. Species tree reconstruction methods
There is a broad variety of species tree reconstruction methods

(table 2) that follow different methodological approaches in

terms of evolutionary model, input data and computational

requirements, making it difficult to choose a single criterion

to arrange them into categories. Here, we classify them consid-

ering their input data, because the data determine most of their

main assumptions and basic characteristics.

(a) Supermatrix (concatenation)
The supermatrix or concatenation approach relies on joining

all single-locus alignments into a multilocus alignment,

which is used as input data for a standard phylogenetic
estimation methodology (e.g. maximum-parsimony, maxi-

mum-likelihood, Bayesian inference and distance methods).

The underlying assumption is that either all gene trees

share the species history or the discordant phylogenetic sig-

nals cancel out when all the histories are considered

together. If any of these assumptions holds, then the concate-

nated tree should be a reasonable proxy of the species tree

phylogeny.

(b) Supertree
The supertree approach consists of two steps. First, gene trees

are estimated independently with any standard phylogenetic

reconstruction method. Second, the resulting gene trees are

combined into a single species tree or supertree. Most species

tree reconstruction methods are supertree methods, although

they can follow completely different strategies.

(i) Disagreement reduction
These methods do not model any evolutionary process.

Instead, they try to find the supertree(s) that minimize(s) the

disagreement among gene trees. This category includes con-

sensus [64] and concordance methods such as BUCKy

[39,40], ASTRAL [37] and ASTRAL-II [38]. Consensus methods

build a tree with compatible gene tree bipartitions weighted by

their frequencies while BUCKy does so using concordance

factors. ASTRAL and ASTRAL-II maximize the number of

quartets induced by the input gene trees. Matrix representation

using parsimony [65,66] or likelihood [67] summarize gene tree

topologies into a matrix representing the absence/presence of

given nodes across the gene trees, which is then used to recon-

struct the species tree under the corresponding optimality

criterion. Finally, other methods try to minimize topological

distances among gene trees, such as the RF [41,42] and

MulRF [42] supertree approaches.

(ii) Single evolutionary process
Many species tree reconstruction methods explicitly consider a

single evolutionary process. Some rely on the optimization of a

gene tree–species tree reconciliation cost (GTP; [29]). These

methods compute the number of deep coalescences, GDLs

or HGTs necessary to explain the gene tree–species tree discor-

dance, returning the species tree that minimizes them. The

iGTP program [43] implements the reconciliation models for

either ILS or GDL, whereas SPRSupertrees [44] does the

same for HGT. Other types of methods that are focused on

ILS calculate distance trees using coalescent times as speciation

upper bounds, as orthologous gene copies in different species

that obligatorily had to diverge before the speciation event.

Here, we can include programs such as GLASS [45], STEAC

[46], SD [47], MAC [48], STAR [46], NJst [49] or ASTRID [50]

(most of them reviewed in [68]). STEM [51] algorithmically

estimates the GLASS species tree under a likelihood frame-

work. Finally, other methods also based on the MSC model

use fast heuristic optimization procedures on a likelihood-

like function in order to find the most likely species tree,

such as MP-EST [52] and STELLS [53].

(iii) Multiple evolutionary processes
A few species tree reconstruction methods can consider mul-

tiple evolutionary processes at once. Models considering ILS

and hybridization have been implemented in the program
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Phylonet, which can reconstruct species networks under parsi-

mony [60], maximum-likelihood [61] and pseudo-likelihood

[62] criteria. De Oliveira Martins et al. [54] proposed a Bayesian

supertree method—implemented in the program Guenomu—

that considers ILS, GDL, HGT and gene tree—species tree

discordance. This method is based on a hierarchical Bayesian

model, and calculates the posterior probability of the species

tree given the gene trees upon several reconciliation costs and

distances. This program takes as input posterior gene tree

distributions estimated by any Bayesian gene tree estimation

software (e.g. MrBayes; [69]).

(c) Full data
A small family of species tree methods directly analyse the

sequence data, thus using all the available information

contained in the individual alignments.

(i) Modelling incomplete lineage sorting
SVDquartets [58,59] estimates the best topology for quartets of

taxa based on the singular value decomposition of a matrix of

site-pattern frequencies. Subsequently, the reconstructed quar-

tets are assembled into a species tree using, for example, a tool

such as Quartet MaxCut [70]. The SVDquartets method has

been intended for single nucleotide polymorphism (SNP)

data, but simulation studies suggest that it can perform

well with multilocus datasets. Other ILS-aware methods use

full probabilistic approaches in a Bayesian framework. Thus,

SNAPP [63]—implemented in BEAST2 [71]—estimates species

trees, divergence times and population sizes on SNP or ampli-

fied fragment-length polymorphism (AFLP) data, integrating

over all possible gene (SNP/AFLP) trees (thus not estimating

them). BEST [56] and *BEAST [57] implement an MSC model

in order to co-estimate gene and species trees from sequence

data, providing estimates of not only distributions of gene

trees and species trees, but also of other important parameters

such as population sizes under complex population dynamics

[72,73] and divergence times using relaxed-clock models [74,75].

(ii) Modelling gene duplication and loss
PHYLDOG [55] relies on a birth–death probabilistic

approach to jointly reconstruct species and gene trees from

multiple gene family alignments.
5. Species tree accuracy
Most species tree reconstruction methods rely either directly

or indirectly on estimated gene trees. Therefore, every con-

dition able to mislead gene tree reconstruction will, to a

greater or lesser extent, also affect final species tree

accuracy. Bayzid & Warnow [76] conducted a simulation

study showing a great correlation between gene tree and

species tree accuracies, claiming that the advantage of the

most accurate species tree reconstruction method in their

experiments, *BEAST, was due to estimating much better

gene trees. Therefore, different factors that affect the accuracy

of gene tree estimation can also influence the accuracy of the

resulting species trees.

Gene tree reconstruction methods are considered robust to

missing data as long as the amount of phylogenetic signal is

enough to obtain a reliable tree [77,78]. In fact, including taxa

with a lot of missing data can improve the overall phylogenetic
accuracy [79]. Nevertheless, new discussions on this topic have

arisen recently [80–82]. When considering the species tree

reconstruction step, we add one layer of complexity, because

different genes can cover different taxa (incomplete taxon

coverage). This situation can generate indecisive scenarios [83]

characterized by extensive tree terraces that complicate

phylogenetic analysis [84]. Very recently, Xi et al. [85] showed

that at least concatenation and supertree methods

(disagreement-based and ILS-based) are robust to random

missing data provided a sufficiently large dataset, whereas

non-randomly distributed missing data become more proble-

matic [86]. Thus, concatenation is misled by non-randomly

distributed missing data in combination with substitution-

rate heterogeneity, and even worse with additional high

levels of ILS. Supertree methods respond in different ways. Dis-

agreement-based methods (ASTRAL and MRP at least) and

MP-EST are quite robust to missing data, whereas STAR (and

potentially other distance-based ILS supertree methods) is

strongly misled by it.

Intralocus recombination splits genes into regions with

different evolutionary histories, misleading gene tree esti-

mation at different levels [87,88]. Nevertheless, according

to Lanier & Knowles [89], species tree reconstruction

methods—at least STEM—are robust to the effect of intralocus

recombination. Moreover, in their simulations, the confound-

ing effect of recombination was reduced by adding loci and/

or individuals per species.

Conversely, gene flow can be an important misleading force

for species tree estimation, depending on the migration model.

Eckert & Carstens [90] showed that supertree ILS-based methods

are robust to historical gene flow models (parapatric and allopa-

tric), whereas the concatenation approach is not. Nevertheless,

their results suggest that stepping-stone and, more importantly,

n-island models of gene flow can strongly mislead supertree and

concatenation approaches. Leaché et al. [91] further studied the

effect of gene flow on both ILS-based supertree and full probabil-

istic Bayesian methods, showing that gene flow between sister

species increases species tree topological accuracy, whereas

gene flow between non-sister species strongly bias species tree

estimation. Moreover, gene flow induces over-compression

(species tree-branch length underestimation) and dilatation

(population-size overestimation) to a different extent depending

on the exact gene-flow model assumed.

The amount of HGT, GDL and ILS affects species tree accu-

racy even when these processes are explicitly considered by the

model. While the accuracy of ILS-based methods decays with

the amount of ILS [47,76,92], both high and low GDL or

HGT rates mislead the inference of species trees [93]. In spite

of not being explicitly considered, moderate levels of ILS do

not worsen by much the accuracy of PHYLDOG’s species

trees, although they induce an overestimation of the number

of duplications and losses [55]. Randomly distributed HGT

does not dramatically decrease the accuracy of ILS-based

fully probabilistic methods, although its accuracy drops

when HGT is focused on a specific species tree branch [94].

The relative robustness under low and moderate levels of

random HGT is also shared with quartet-based disagree-

ment-reduction supertree methods—ASTRAL-II and wQMC

[95]—concatenation and ILS-based supertree methods (NJst),

whereas under high levels of HGT, quartet-based methods

stand out in terms of accuracy (especially ASTRAL-II) [96].

The supermatrix approach is the most accurate species

tree reconstruction method when the effect of ILS or HGT
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is low and/or the amount of phylogenetic signals per loci is

small (e.g. short sequences) [97,98]. This advantage is due to

the reduction of the noise/signal ratio by considering together

all the phylogenetic information. The accuracy of non-

supermatrix approaches is strongly depleted by loci with low

phylogenetic signal (usually short genes) due to increased

gene tree error. Several related strategies based on combining

groups of loci to generate so-called supergenes have been pro-

posed in order to diminish this issue. These solutions constitute

a compromise between concatenation and supertree methods

that try to improve the noise/signal ratio for each supergene

without assuming that gene and species trees are topologically

equivalent. The latest of these methods—weighted statistical

binning [97]—has shown interesting improvements on the

accuracy of different species tree reconstruction methods.

Full probabilistic species tree reconstruction methods stand

out as the most accurate in most benchmarks that take them

into consideration [49,55,76,99]. Nevertheless, these types of

methods are only suitable for small datasets because of compu-

tational constraints. Among faster alternatives considering ILS,

ASTRAL II and NJst/ASTRID are usually the most accurate

[38,50,100]. MP-EST shows also very good performance in

computer simulations, and in spite of being slower, is probably

the most popular species tree method nowadays [101–104].

The program Guenomu is so far the only one capable of

taking into account ILS, GDL and HGT simultaneously—

using a non-parametric model—avoiding the need for an

orthology-assignment step.
6. Multilocus species-delimitation methods
Multilocus species-delimitation methods share most models

and strategies with species-tree reconstruction methods, but

extend them in order to estimate the number of species, species

assignment and species boundaries in the sample. These

methods also take into consideration the species tree–gene

tree dichotomy, usually relying on the MSC model to deal

with ILS. Some species delimitation methods co-estimate

both the species tree and the species delimitation, whereas

others need pre-estimated species trees as input. Species deli-

mitation methods are very relevant to DNA barcoding,

because they could be used as a basal framework to develop

new DNA barcoding strategies or could be directly applied

to that purpose.

Several multilocus species-delimitation approaches have

been proposed in recent years [15,105,106]. According to

their input data, they conform to either the supertree or the

full-data approach. At least three recently published methods

pertain to the former. O’Meara [107] developed a GTP-based

species-delimitation strategy that minimizes both gene tree

conflict in interspecific regions (calculating a gene duplication

cost) and excess of structure in within-species regions (using

a cost of excess of triplet-overlapping, calculated using

coalescent simulations). Ence & Carstens developed a

multilocus species-delimitation method (SpedeSTEM [108])

that uses STEM to calculate the likelihood of alternative-

delimitation hypothesis (species trees)—generated by

hierarchical permutation of putative intraspecific groups—

which are afterwards evaluated using information theory

statistics such as the Akaike information criterion [109]. KC

delimitation [107] is another ILS-based species-delimitation

method, which estimates the species tree and delimitation
that maximize gene tree probability under the simulations

using MSC.

The remaining methods use sequence alignments as input,

taking advantage of the full data in Bayesian full-probabilistic

approaches. Grummer et al. [110] and Leaché et al. [111] pro-

posed the use of a model-selection strategy (Bayes factors

[112]) to select the best-fit species assignment based on the

comparison of marginal likelihoods. The species assignments

are proposed by the user, and the marginal likelihoods esti-

mated using *BEAST or SNAPP, respectively. BPP [113–115]

expands the strategy used by *BEAST to carry out species deli-

mitation, and is capable of co-estimating both the species tree

and the species delimitation or any of them given the other.

This method explicitly explores the delimitation space by con-

sidering different combinations of pre-specified populations as

the candidate species using a reversible jump Markov chain

Monte Carlo (rjMCMC). BPP has been expanded recently

(iBPP [116]) in order to consider not only molecular data,

but also phenotypic traits. Finally, DISSECT [117] avoids

the usage of the rjMCMC—which is computationally

expensive—by considering each individual as a single species

and modifying the node height prior to estimate branch/node

collapsibility in *BEAST.
7. Species trees and barcoding
Barcoding methods try to identify the species at which a given

DNA sample pertains, and therefore are related to species trees

by the very nature of its purpose. Nevertheless, for practical

reasons, the species tree–gene tree dilemma has been so far

neglected, and most barcoding methods are based on a

single locus. Nevertheless, the species tree–gene tree incon-

gruence directly disturbs barcoding by modifying the extent

of the barcode gap across the tree of life, getting even to vanish-

ing it in certain clades. In the light of this problem and the latest

advances on species tree reconstruction and multilocus species

delimitation methods, Dowton et al. [118] encouraged to

extend the current barcoding framework. Thus, they proposed

a multilocus alternative based on the MSC model, which relies

on *BEAST for the species tree estimation and on BPP for the

subsequent species-delimitation step. Nonetheless, Collins &

Cruickshank [119] demonstrated that for the data used by

Dowton et al., appropriately adjusting a classical method for

the existing barcode gap is enough to equate the accuracies

of the two frameworks. In light of these results, the authors dis-

couraged the adoption of MSC-based multilocus methods

until the current framework is comprehensively shown not

to work, arguing that the new alternative is too costly in

terms of computation and sequencing. Collins & Cruickshank

argued that focusing on comprehensive sampling, complete

reference libraries and developing further single locus

methods would improve DNA barcode identification success

in a more extensive way, avoiding the need for re-sequencing

and curating new reference genes. Nevertheless, Yang &

Rannala [120] very recently conducted a simulation study in

which single-threshold barcode methods performed poorly,

being largely outcompeted by BPP. They also show that the

increase in sequencing costs of the proposed framework shift

would not be so dramatic, because BPP obtains reasonable

results even with a single locus; and 10 loci are enough to

get high accuracy and precision. While BPP is computationally

intensive, Yang & Rannala propose to alleviate the
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computational burden by reducing the size of the problem,

analysing divergent groups of species as separate datasets.

New alternative single-locus barcoding methods have also

arisen recently, based on different strategies such as coalescent

theory [11,12], machine learning [121], neural networks [122],

fuzzy-set theory [123] and character-based logic [124]. Among

them excel character-based barcoding methods, which are

more accurate than the classical tree and similarity barcoding

methods in scenarios with recent speciations (including situ-

ations in which a barcoding gap does not exist) [8] and

therefore could constitute an appropriate compromise

between classical and MSC-based barcoding. Nevertheless,

in spite of being more robust to a barcoding overlap, charac-

ter-based methods still require groups of nucleotides with

diagnostic power, which may simply not exist for certain

species for a given locus due to a relatively small sequence

length or to a low substitution rate.

Current barcoding methods sacrifice a great amount of

statistical power by considering only one locus, and the tran-

sition to multilocus barcodes might not be that expensive,

because sample collection, DNA isolation and (partially)

PCR would not require a large additional investment [125].

Most current single-locus barcoding strategies would benefit

from the addition of extra loci: multilocus character-based

methods could increase their accuracy by adding more diag-

nostic characters; statistical barcoding methods would gain

additional power from the use of multiple, independent evi-

dence [125]; and tree-based methods could use concatenated
loci to improve phylogenetic accuracy for clades with poor

phylogenetic signal. Moreover, the use of multiple loci

would facilitate the transition to species tree-based strategies,

which accommodate better possible barcoding overlaps.

While full-probabilistic MSC-based barcoding approaches

such as the one proposed by Dowton et al. [118] might

be too computationally intensive—although they could

become feasible by using a small number of loci and analys-

ing well-diverged groups separately, future strategies could

extend the current tree-based barcoding framework by

using any of the fastest (but still accurate) species tree recon-

struction methods reviewed in this paper (e.g. ASTRAL II,

MP-EST or ASTRID) on multilocus barcodes, extending the

current tree-based barcoding strategy to a species tree-based

barcoding framework.
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gene tree/species tree reconciliation with Bayesian
concordance analysis. Bioinformatics 26,
2910 – 2911. (doi:10.1093/bioinformatics/btq539)
41. Bansal MS, Burleigh JG, Eulenstein O, Fernández-
Baca D. 2010 Robinson – Foulds supertrees.
Algorithms Mol. Biol. 5, 18. (doi:10.1186/1748-
7188-5-18)

42. Chaudhary R, Burleigh JG, Fernández-Baca D. 2013
Inferring species trees from incongruent multi-copy
gene trees using the Robinson – Foulds distance.
Algorithms Mol. Biol. 8, 28. (doi:10.1186/1748-
7188-8-28)

43. Chaudhary R, Bansal MS, Wehe A, Fernández-Baca
D, Eulenstein O. 2010 iGTP: a software package for
large-scale gene tree parsimony analysis. BMC
Bioinformatics 11, 574. (doi:10.1186/1471-2105-
11-574)

44. Whidden C, Zeh N, Beiko RG. 2014 Supertrees based
on the subtree prune-and-regraft distance. Syst.
Biol. 63, 566 – 581. (doi:10.1093/sysbio/syu023)

45. Mossel E, Roch S. 2010 Incomplete lineage sorting:
consistent phylogeny estimation from multiple loci.
IEEE/ACM Trans. Comput. Biol. Bioinform. 0548249,
166 – 171.

46. Liu L, Yu L, Pearl DK, Edwards SV. 2009 Estimating
species phylogenies using coalescence times among
sequences. Syst. Biol. 58, 468 – 477. (doi:10.1093/
sysbio/syp031)

47. Maddison WP, Knowles LL. 2006 Inferring
phylogeny despite incomplete lineage sorting.
Syst. Biol. 55, 21 – 30. (doi:10.1080/1063515
0500354928)

48. Helmkamp LJ, Jewett EM, Rosenberg NA. 2012
Improvements to a class of distance matrix methods
for inferring species trees from gene trees.
J. Comput. Biol. 19, 632 – 649. (doi:10.1089/cmb.
2012.0042)

49. Liu L, Yu L. 2011 Estimating species trees from
unrooted gene trees. Syst. Biol. 60, 661 – 667.
(doi:10.1093/sysbio/syr027)

50. Vachaspati P, Warnow T. 2015 ASTRID: Accurate
Species Trees from Internode Distances. BMC
Genomics 16(Suppl. 10), S3. (doi:10.1186/1471-
2164-16-S10-S3)

51. Kubatko LS, Carstens BC, Knowles LL. 2009 STEM:
species tree estimation using maximum likelihood
for gene trees under coalescence. Bioinformatics 25,
971 – 973. (doi:10.1093/bioinformatics/btp079)

52. Liu L, Yu L, Edwards SV. 2010 A maximum pseudo-
likelihood approach for estimating species trees
under the coalescent model. BMC Evol. Biol. 10,
302. (doi:10.1186/1471-2148-10-302)

53. Wu Y. 2012 Coalescent-based species tree inference
from gene tree topologies under incomplete lineage
sorting by maximum likelihood. Evolution 66,
763 – 775. (doi:10.1111/j.1558-5646.2011.01476.x)

54. De Oliveira Martins L, Mallo D, Posada D. 2014 A
Bayesian supertree model for genome-wide species
tree reconstruction. Syst. Biol. 65, 397 – 416.
(doi:10.1093/sysbio/syu082)
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