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Background: Disruption of DNA methylation (DNAm) is one of the key signatures of cancer, however, detailed

mechanisms that alter the DNA methylome in cancer remain to be elucidated.

Methods: Here we present a novel integrative analysis framework, called MeLncTRN (Methylation mediated

LncRNA Transcriptional Regulatory Network), that integrates genome-wide transcriptome, DNA methylome

and copy number variation profiles, to systematically identify the epigenetically-driven IncRNA-gene regula-

tion circuits across 18 cancer types.

Finding: We show that a significant fraction of the aberrant DNAm and gene expression landscape in cancer is

associated with long noncoding RNAs (IncRNAs). We reveal distinct types of regulation between IncRNA

modulators and target genes that are operative in either only specific cancers or across cancers. Functional

studies identified a common theme of cancer hallmarks that IncRNA modulators may participate in. The cou-

pled IncRNA gene interactions via DNAm also serve as markers for classifications of cancer subtypes with dif-

ferent prognoses.

Interpretation: Our study reveals a vital layer of DNAm and associated expression regulation for many cancer-

related genes and we also provide a valuable database resource for interrogating epigenetically mediated

IncRNA-gene interactions in cancer.
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1. Introduction

the chromatin accessibility and blocking recruitment of transcription
factors (TFs) to cis-regulatory elements, methylation status within
promoter region could determine regulatory activity of the target
genes [6,7]. Alteration of the methylation status are well known to

Cancer is a complex disease which characterized by uncontrolled
cell growth reflecting multiple hallmarks [1]. Beneath the aberrant
cell proliferation is the complex interactions between a striking
diversity of genetic and epigenetic factors, which give rise to the acti-
vation of critical oncogenes and inactivation of tumor suppressor
genes in a cancer tissue-specific manner [2,3]. Among these, DNA
methylation (DNAm) marks at the cytosine-phosphate-guanine
(CpG) dinucleotide sites is extensively documented that regulate
gene expression, genome stability and cell fate [4,5]. By regulating
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influence transcript abundance of many cancer-related genes, thus
may define different types of ‘driver’ events, such as cell growth, pro-
liferation, differentiation, and apoptosis processes [8—10]. Although
DNAm related transcriptional dysregulation is closely associated
with cancer, the underlying molecular mechanisms on how the DNA
methylome patterns are determined in the transcriptional regulation
circuitry in cancer remains largely to be discovered.

Being a complex process, DNA methylation status at particular site
not only determined by the activities of DNA methyltransferases,
which have little sequence specificity [11], but also affected by the
highly coordinated functions of chromatin-remodeling complexes
and histone modification enzymes. For instance, the Polycomb

2352-3964/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2021.103399&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhenyang@fudan.edu.cn
mailto:heyungang@fudan.edu.cn
https://doi.org/10.1016/j.ebiom.2021.103399
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2021.103399
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom

2 Z. Yang et al. / EBioMedicine 68 (2021) 103399

Research in context

Evidence before this study

LncRNAs have long been recognized an integral component of
chromatin that involved in the process of epigenetic modifica-
tion. Recent evidence from in vitro studies indicates that
IncRNAs could regulate DNA methylation by interacting with
many epigenetic regulators, thus regulating gene expression in
the cell at different conditions. However, there is still lack of a
comprehensive investigation of this regulatory phenomenon at
system level. In addition, the general mechanisms underlying
this phenotype and its implications in tumorigenesis have not
been systematically explored.

Added value of this study

By integrative analysis of genome wide expression, DNA meth-
ylation and copy number variation profiles from 5,970 samples
across 18 major human cancers from The Cancer Genome Atlas
(TCGA), we for the first time showed that IncRNA-associated
DNA methylation regulation is prevalent and conserved across
multiple cancer types. We proposed and explored four poten-
tial regulatory relationships that can explain the DNA methyla-
tion of protein coding genes and associated IncRNAs.
Furthermore, we also investigated the biological and clinical
significance of IncRNA associated DNA methylation regulation
in terms of essential biological processes they participate and
cancer hallmarks they present.

Implications of all the available evidence

Our present study is the first comprehensive analysis of IncRNA
associated DNA methylation change in pan-cancer wide. Our
work sheds new light on the complex interaction between
IncRNAs and protein coding genes from the perspective of epi-
genetic regulation and its implications in tumorigenesis. It may
serve as the first step towards the identification of driver
IncRNA genes and may help in understanding the role of partic-
ular IncRNAs in cancer. After further functional validation,
some of the IncRNAs may be utilized as cancer biomarker.

Repressive Complex 2 (PRC2) protein EZH2 was shown to interact
with DNA methyltransferases and is crucial for recruitment of DNA
methyltransferases at EZH2-target promoters [12]. Mutation of IDH1
could establish a hypermethylator phenotype and reorganization of
the methylome and transcriptome in glioma [13]. We have also dem-
onstrated a universal expression deregulation of epigenetic enzymes
that associated with genome-wide DNA methylation patterns in can-
cers, several key genes including the UHRF1, WHSC1 and CBX7 were
identified to play key roles in this process [14]. In spite of these
advances, the key questions on how a precise methylation regulation
at particular loci is achieved and whether there are other layers of
regulator involved in remain still unanswered. Currently, accumulat-
ing evidence has indicated that long noncoding RNAs (IncRNAs) could
be a kind of important regulatory factor that defines the genome-
wide DNA methylation level.

LncRNAs are important regulators of gene expression at different
levels, including transcriptional and post-transcriptional control
[15,16]. One of the major advances for functional study of IncRNAs
over the past decade has been the participating in epigenetic control
by interacting with genes involved in chromatin organization or his-
tone modification [17,18]. Emerging evidence has also indicated the
underlying crosstalk between IncRNA and DNA methylation. For
instance, a IncRNA arising from the CEBPA gene locus (ecCEBPA) that

could compete with DNMT1, which inhibit CEBPA gene methylation
and facilitates CEBPA expression [19]. Besides DNMT1, IncRNAs may
also interact with other DNA methyltransferases to modulate their
activity and DNA methylation patterns. The well-known IncRNA
HOTAIR for example, was shown to recruit DNMT3B and to increase
HOXA5 promoter methylation [20]. In addition to those by physical
interaction with DNMTs, many other IncRNAs may participate in
DNAm regulation through other mechanisms indirectly. Another
well-known IncRNA H19, could bind to S-adenosylhomocysteine
hydrolase (SAHH) and inhibits its function of hydrolysing S-adenosyl-
homocysteine (SAH). As a feedback inhibitor, SAH blocks S-adenosyl-
methionine (SAM) dependent DNMT3B that methylate at numerous
genomic loci [21-23]. By regulation of the EZH2 and EED, the core
subunits of PRC2, IncRNA LINC00470 could enhance the expression
of ELFN2 through the hypomethylation at core promoters in glioblas-
toma [24]. These findings indicated that IncRNAs are emerging as
important regulators of DNA methylation and associated expression
dysregulation in cancer. In this case, a systematic identification of
methylation related IncRNA modulators in cancer are urgently
needed.

In this study, we propose a computational framework of DNA
Methylation mediated LncRNA Transcriptional Regulatory Network
(MeLncTRN) to integrate this substantial atlas of pan-cancer mRNA,
IncRNA, DNA methylome and copy number variation (CNV) data
from The Cancer Genome Atlas (TCGA) [25]. we discovered common
DNA methylation regulatory architecture across 18 cancer types.
Analysis of the DNA methylation associated gene expression pattern
in the context of IncRNA expression revealed the complex impact of
IncRNA on the methylation regulatory activity. Expression dynamics
of many cancer related genes can be largely attributed to these
IncRNA modulated methylation regulatory circuits. This comprehen-
sive investigation of the context-specific transcriptional regulatory
circuits will be a valuable resource for dissecting the underlying
mechanism of gene expression dysregulation in tumors and enhance
our understanding the interplay between cancer genome, epigenome
and transcriptome.

2. Methods
2.1. Datasets used in the study

LncRNA and gene transcription profiling data: The genome-wide
transcriptome data which includes both IncRNA and protein coding
genes and quantified as FPKM (Fragments Per Kilobase per Million)
were downloaded from TCGA. For propose of multiple omics data
integration, we used the data for cancer types that had profiled suffi-
cient numbers of samples for both RNA-Seq and DNAm data. This
include bladder urothelial carcinoma (BLCA), breast invasive carci-
noma (BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adeno-
carcinoma (COAD), esophageal carcinoma (ESCA), head and neck
squamous cell carcinoma (HNSC), kidney Clear Cell Carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocel-
lular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), thyroid
carcinoma (THCA), and uterine corpus endometrial carcinoma
(UCEC). Then we relied on the gene annotation of GENCODE (v22),
which combines the HAVANA and Ensembl annotation pipelines to
achieve an accurate classification of IncRNA and protein coding genes
[26]. For IncRNAs, we collected those types of ‘antisense’, ‘sense_in-
tronic’, ‘sense_overlapping’ and ‘lincRNA’ and ‘TEC’, which have suffi-
cient members in each category. A total of 19,061 genes and 14,325
IncRNAs were identified in each cancer type. As the expression of
IncRNAs are highly heterogeneous, we removed those IncRNAs
whose PPKM value is equal to 0 in more than 10 percent of the
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samples to obtain the valid ones. For both genes and IncRNAs, the
expression value was log2(FPKM + 1) transformed in order to regu-
larize the data. Then we obtained the top components of data varia-
tion by using singular value decomposition (SVD) and correlated
with normal/cancer status [27], in order to assess the inter-sample
variability and quality of the data.

DNA methylation data: For those cancer types mentioned above,
we downloaded the DNAm data generated with the Illumina Infinium
HumanMethylation450 BeadChip array. The methylation level of
each probe was measured as the beta-value, which ranges from 0
(unmethylated) to 1 (fully methylated). We removed the probes
whose beta-values were missing in more than 30% of the samples,
which result in 392,084 ~ 396,934 probes remain in these caner types
with median number of 395,803, the remaining probes with missing
values were imputed by using the k-nearest neighbors (KNN) method
[28]. Finally, the BMIQ method was used to correct for the type II
probe bias [29]. Similarly, we also performed the SVD quality control
procedure for the DNA methylation data for each cancer type, as
done for gene and IncRNA expression data. To obtain the DNAm value
for each gene, we assign the methylation value of the probes within
promoter region to that gene. Briefly, to assign the average beta value
of probes mapping to within 200 bp of the transcription start site
(TSS200) first, if no probe maps, then use the average beta value of
probes mapping to the first exon of the gene (1stExon), if such probes
are still absent, we use the average of probes mapping to upstream 1.5
kb from the TSS to the upstream 200 bp from the TSS (TSS1500). This
procedure has been justified in previous publication [30]. In this way,
we obtained methylation value for 16,131 genes in each cancer type.

Somatic copy number variation data: For the cancer types men-
tioned above, we obtained copy number segmentation data gener-
ated by Affymetrix SNP 6.0 platform from TCGA. The ‘nocnv.seg’ files
for each sample were collected to capture the somatic CNV. Then we
used the GISTIC2 with default parameters to obtain the focal copy
number estimates at gene level [31].

2.2. Identification of DNA methylation regulated genes in cancer

Based on the methylation value at gene-level, we computed the
moderated t-statistics using an empirical Bayes framework [32]. The
same procedure was also applied to gene expression data. Methyla-
tion differences with false discovery rate (FDR) < 0.05 and with abso-
lute difference of mean methylation levels between two groups of
normal and cancer larger than 0.1 were considered statistically sig-
nificant. Gene expression differences with FDR < 0.05 and with a
log2 fold change between two groups more than 1 were considered
statistically significant. To elucidate the individual DNAm-Exp relation-
ship for each gene, we employed a multivariate linear regression model,
which was fitted to the observed gene expression with DNAm and CNV
as covariates. In this way, we guarantee that the relation between gene
expression and DNAm is due to the same set of tumors, and rule out
potential confounding gene expression change be explained by con-
comitant alterations at the CNV level. The resulting linear coefficients
are indicative of the corresponding DNAm-Exp relationships in specific
cancer type: the more negative they are the more likely the interactions
are real. We filtered those genes with negative coefficients and FDR <
0.05 as confident genes with paired DNAm-Exp actions.

2.3. Define IncRNA modulators for methylation dysregulation

LncRNAs found to interact both with the DNA methylation and
expression of protein coding genes were defined as candidate IncRNA
modulators. To identify the IncRNA modulators with methylation
regulatory function in different cancer types, we calculated the
Spearman correlation coefficient (SCC) between the expression level
of a IncRNA and the promoter methylation level, and also SCC
between expression level of the IncRNA and the expression level of

its candidate target genes. A functional IncRNA-gene interaction was
defined if it meets all of the following criteria: SCC(IncRNA, DNAm) >
0.3 or SCC(IncRNA, DNAm) < -0.3, P < 0.05; and SCC(IncRNA, Exp) >
0.3 or SCC(IncRNA, Exp) < -0.3, P < 0.05, where SCC(IncRNA, DNAm)
and SCC(IncRNA, Exp) represent the SCC of IncRNA-DNAm and
IncRNA-Exp correlation, respectively. Using both coefficients for each
IncRNA-gene pair, we then selected those with opposite signs of the
coefficients, which indicates an anti-correlation between DNAm and
gene expression. After assembling all identified IncRNA-gene pairs,
we generated the DNA methylation mediated IncRNA transcriptional
regulatory network for each cancer type.

For each IncRNA-gene interaction identified above, we classified
the mode of action with respect to the effect of IncRNA regulators on
target. LncRNA can activate or inhibit the activity of target genes, and
IncRNAs can enhance or invert the activity of the target considering
their differential expression status in cancer and normal samples. In
total, there are four possible categories of actions were identified.

2.4. Topological measurements of the DNA methylation mediated
IncRNA regulatory network

The DNA methylation mediated IncRNA regulatory networks
were visualized by using Cytoscape [33]. Topological features
were analysis by the package of ‘igraph’ in R language. For each
node in the network, degree is defined as the number of edges
incident to it. It is widely accepted that the hub genes with
higher degrees in biological networks fundamentally determine
the network’s behavior and are more likely to be essential for
network function [34]. We selected the top 10% of nodes with
the highest degrees in the IncRNA regulatory network as the hub
genes. To estimate the similarity of two networks between differ-
ent cancers, we calculated the number of nodes and edges that
are present in both networks (common IncRNA-gene interactions)
and Jaccard index was calculated for similarity measure. In addi-
tion, a hypergeometric test was used to test if two networks sig-
nificantly shared the common IncRNA-gene interactions.

2.5. Tissue specificity and conservation analysis of IncRNA modulators

To evaluate the tissue specificity of an IncRNA modulator, we
employed the t index to measure the tissue specificity of a given
gene, which is represented as:

31 (1~ i)
T = n-1

where n is the number of tissues examined, and E(i,max) is the high-
est expression signal of gene i across all tissues [35]. Here, we assem-
bled a IncRNA transcriptome by averaging expression intensities
across all normal samples in each particular human tissue from
TCGA. Then we calculated the tissue specificity index of cancer spe-
cific IncRNA modulators, moderate IncRNA modulators and pan-can-
cer modulators and compared with Wilcox rank sum test. We also
downloaded the transcriptome data for 31 human tissues from Geno-
type-Tissue Expression (GTEx) Program and performed the same
analysis [36]. We also investigated the evolutionary conservation for
these different IncRNA modulators. To do this, we downloaded the
PhastCons scores for multiple alignments of 100 genomes to the
human genome from UCSC Table Browser [37,38]. Then we calcu-
lated average PhastCons score for 200 nt at transcription start site as
representative.

2.6. Collection of cancer related IncRNAs for functional validation

In order to explore the functional roles of these IncRNA modula-
tors in tumorigenesis, we examined whether IncRNAs involved in the
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networks are intrinsic cancer driver genes or that are closely relevant
with tumors. Thus, we collected the cancer related IncRNAs from
LncRNADisease [39], Lnc2Cancer [40]|, MNDR (Mammalian ncRNA-
Disease Repository) [41] and LncRNA Cancer Census [42] which are
all manually curated databases for IncRNA dysregulation in human
disease. Then, we used the hypergeometric test to evaluate whether
these IncRNAs in the network are significantly enriched in our col-
lected cancer related IncRNAs from public databases.

2.7. Collection of cancer hallmark genes for functional analysis

For functional annotation of the target genes of IncRNA modulators
involved in network, we collected the cancer hallmark related Gene
Ontology (GO) terms from a previous study [43]. Then, genes that anno-
tated in these hallmark related GO terms were obtained from MsigDB
database (v7.1), which hosts GO term sets for GSEA analysis [44]. The
Gene Ontology enrichment analysis was performed by using TopGO,
the enriched GO terms were obtained at the threshold of FDR < 0.05.

2.8. Identification of differentially expressed IncRNAs

It has been demonstrated that IncRNAs were expressed in a highly
tissue specific manner and at considerable lower levels than protein
coding genes [45,46]. To order to identify the differentially expressed
IncRNAs reliably in each cancer type, we used two methods for this
analysis: For the IncRNAs with expression level 0 in less than 30% of
all samples were subjected to t-test. LncRNAs with fold change
greater than two and FDR < 0.05 were identified as differentially
expressed: up-regulated or down-regulated. If the IncRNA expression
were 0 in more than 30% of all samples, for each IncRNA, we deter-
mined its expression status in binary mode: On (expression level >
0), Off (expression level = 0) in each sample. We next calculated the
frequency of expression mode in both normal and cancer samples
and also a fisher exact test was used to determine the differential
expression status. LncRNAs expressed twice more frequently in
cancer are determined as ‘switch-on’, whereas IncRNAs expressed
twice more frequently in normal are determined as ‘switch-off’, and
also the threshold of FDR adjusted fisher exact test p-value < 0.05
was used.

2.9. Identification of LncRNA regulatory modules

For the IncRNA regulatory network from each cancer, we identi-
fied biclique network modules which consist IncRNA modulators and
their target genes regulated. Biclique module is a maximum network
subgraph in which the vertices be partitioned into two disjoint sets,
here it represents interaction between each vertex of one IncRNA to
each vertex of target gene and no two vertices within the same set
are adjacent. We used the Maximal Biclique Enumeration Algorithm
(MBEA) implemented in R package Biclique to identify biclique
modules [47].

2.10. Survival analysis of IncRNA regulatory networks

To identify survival associated biclique modules for each cancer
type, we classified the samples into the discovery set and validation
set randomly without demographic characteristic differences. We
used the univariate Cox regression model to evaluate the association
between the patient survival and expression level of each IncRNA/
Gene within the network. Then we constructed a risk model to assess
the relation between survival and combination of IncRNAs and target
genes in network module. The risk score can be calculated as:

n
Risk Score = > B * Expy;)
i

whereas where f; is the Cox regression coefficient of nodes
(IncRNA/Gene) in the network module, Exp; is the normalized
expression value of node i in the corresponding module. N is the
number of nodes (IncRNAs/Genes) in the network module. Tumor
samples were classified as two different groups based on the predi-
cated risk score and the log-rank test was used to evaluate the sur-
vival difference between two groups.

2.11. Statistics

Unless stated otherwise, all statistical analyses were performed
with R-3.5.1. For the heatmaps of P-values of association between
each singular vector generated by SVD and biological and technical
factors, if the biological and technical factors are numerical, the p-val-
ues were generated by liner regression, otherwise the factors are cat-
egorical, the p-values were generated by the Kruskal-Wallis test. The
significance of differences between two groups was determined by
Wilcoxon rank sum test. Hypergeometric test was used to determine
the significance of overlap between two groups of IncRNAs or genes.
For patient survival analyses, Kaplan-Meier plots were created, we
used the Cox’s proportional hazard model and a log-rank to deter-
mine the difference of survival between two group of the patients for
specific cancer. Unless stated otherwise, a p-value < 0.05 was consid-
ered significant. If necessary, p-values were corrected for multiple
tests with the Benjamini- Hochberg procedure.

2.12. Ethics

Ethical approval doesn’t apply to this work due to this is a data
mining of previously published data. The use of the data was
approved by TCGA.

2.13. Role of the funding source

The funders had no role in the study design, data analysis, inter-
pretation, preparation of the manuscript, and any aspect of the study.

3. Results
3.1. Overview of multi-omics data in human cancers

We initially obtained the normalized RNA-Seq, DNA methylation
450k and copy number variation data for 17 cancer types from TCGA.
Expression profiles for IncRNAs and protein coding genes were gen-
erated by Gene ID annotation. Both expression profiles and DNA
methylation profiles were subject to a quality control procedure to
assess the relative data variation associated with biological and tech-
nical factors. The correlation p-value heatmaps indicated that for
breast cancer, the inferred top component of data variation corre-
lated strongly with hormone receptor status (estrogen receptor and
progesterone receptor) as a confounding factor (Supplementary Fig.
S1). Thus, we decided to divide the samples from breast cancer into
two different cohorts, the ER+ (estrogen receptor positive) and ER-
(estrogen receptor negative). In this case, a total of 18 cancer types
across 5,970 samples were used for this study (Supplementary Table
S1). We next sought to get an overview of the IncRNA profiles in each
cancer type in order to guarantee the overall technical validity. By
examine the expression level of IncRNAs in all cancer types, we
obtained 14,325 IncRNAs that further classified as 7,150 ‘lincRNA’,
5,142 ‘antisense’, 882 ‘sense_intronic’, 186 ‘sense_overlapping’ and
957 ‘TEC’ (Supplementary Fig. S2a). The number of IncRNAs that have
expression in each cancer ranges from 10,438 to 14,013 (Supplemen-
tary Fig. S2b). We also checked the average expression of both
IncRNAs and protein coding genes across all samples, and found that
IncRNAs were expressed at considerable lower levels than protein
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coding genes (Supplementary Fig. S2c), which is consistent with sev-
eral observations [45].

3.2. DNA methylation mediated IncRNA regulatory landscape across 18
cancer types

By integration of matched gene Exp-DNAm-CNV profiles and
genome-wide IncRNA-gene regulation across cancer types, we inves-
tigated the landscape of DNAm mediated IncRNA regulatory network
for different cancer types (Fig. 1a). We first obtained differentially
methylated genes and differentially expressed genes in each cancer
type, then we identified methylation level-dependent transcriptional
regulation circuits at gene level. Genes exhibit a hypermethylated
promoter and underexpression and genes exhibit a hypomethylated
promoter and overexpression in cancer were identified by using a
multi-regression model (Fig. 1b). Furthermore, we obtained the
IncRNA modulators whose expression correlated both with promoter
methylation and expression of protein coding genes (Fig. 1c). In this
way, we obtained the widespread IncRNA mediated methylation dys-
regulation in 18 cancer types (Fig. 1d, Supplementary Fig. S3). The
LncRNA modulators were analyzed with distinct features, including
tissue specificity and sequence conservation (Fig. 1e). As a result, we
found a substantial of the genes (5-50%) whose promoter methyla-
tion change is attribute to candidate IncRNA regulation (Supplemen-
tary Fig. S4a), and also 16-48% of the IncRNAs that expressed are
involved in this regulatory network within each cancer type (Supple-
mentary Fig. S4b). In summary, these methylation mediated IncRNA-
gene interactions constitute a large and uncharacterized IncRNA reg-
ulatory networks across cancers.

3.3. Properties of the methylation mediated IncRNA regulatory network

We first analyzed the topological features of the MeLncTRN across
cancers (Fig. 2a). By examination of the degree distribution reveals a
scale free properties of these IncRNA regulatory networks, which is
similar to most other types of biological network. A power law distri-
bution was presented, as most of the nodes (both for IncRNAs and
genes) present few interaction partners, whereas a small subset has
plenty of partners (Fig. 2b, Supplementary Fig. S5-S7). We also found
that high degree IncRNAs are more likely to correlated with the pro-
moter methylation and expression of their target genes (Fig. 2c,d,
Supplementary Figs. S8—S9), which indicated that IncRNAs have
more targets could have a stronger regulatory effect. This is also
apples to protein coding genes (Supplementary Fig. S10-S11), as it
could be more strongly regulated by other IncRNAs. In general, nodes
in highly connected networks will have more neighbors and will thus
have more strongly co-regulation effect.

LncRNAs have been found to regulate the protein coding gens
either in cis or in trans, and lead to gene silencing or activation mode
[48,49]. To further interpret the mechanisms of the IncRNA regula-
tion, here we explored the distances between IncRNAs and target
genes for the identified IncRNA-gene pairs across cancer types. We
found that IncRNAs regulate their target genes on the different chro-
mosomes accounted for about 94.3%. For those IncRNA-gene pairs
located on the same chromosome, 81.6% are located beyond 10 Mb
away, only 1.4% are less than 100 kb (Fig. 2e, Supplementary Fig.
$12). Thus, methylation mediated IncRNA transcriptional regulation
mainly act in trans. As IncRNAs could activate or inhibit the activity of
target genes, it could also enhance or invert gene expression depend-
ing on specific context [50]. To parse this complexity, we assigned
each IncRNA-gene pair to one of four patterns according to their dif-
ferential expression status in cancer and normal tissues (Fig. 2f, Sup-
plementary Fig. S13). Globally, the majority of IncRNAs inhibit the
gene activity without the direction of expression changed. These
identified IncRNA-gene regulatory landscape provides a novel per-
spective to investigate the role of IncRNAs across cancer types.

3.4. Conserved IncRNA modulators represent important functions across
cancer

The investigation of the pan-cancer IncRNA regulatory networks
presents several common features, whereas checking the network
across cancers highlights a dynamic rewiring in the regulatory pro-
gram between different cancers. We next analyzed the extent to
which IncRNA mediated methylation dysregulation contributed to
cancer specificity. We first calculated the number of cancer types in
which the IncRNA regulation exits and found that most of the IncRNA
related regulations occurs in cancer type-specific mode, and only a
small proportion of the regulations occurs in pan-cancer wide mode
(Fig. 3a). For IncRNA modulators, 17% occurs in only one type of can-
cer, whereas for IncRNA-gene interactions, 89.8% occurs in cancer
specific manner. We found these tissue specific IncRNA modulators
and associated targets mainly occurs in kidney cancers including the
KIRC and KIRP, and also ESCA and THCA (Fig. 3b, Supplementary Fig.
S14). This is probable due to the tissue specific expression of IncRNA
and gene which suggests the significance of the pan-cancer interac-
tion of the IncRNA modulators. At such a circumstance, we further
classified the IncRNA modulators as three different types according
to the number of the cancers it occurred: cancer specific (occurs in
one cancer type), moderate (occurs in 214 cancer types) and pan-can-
cer (occurs in >15 cancer types). We first check the percentage of dif-
ferent IncRNA modulators across their categories and found
‘sense_overlapping’ IncRNA presents higher proportion of pan-cancer
modulators (Supplementary Fig. S15). We also compared the degree
of different IncRNA modulators, which is the number of transcrip-
tional regulation they mediated. We found that pan-cancer modula-
tors present significantly higher degree than other modulators (The
Wilcoxon rank sum test P value < 0.05 in 17/18 cancer types) (Fig. 3c,
Supplementary Fig. S16). This indicated that these pan-cancer IncRNA
modulators play a key role in the regulation of gene expression dur-
ing cancer development.

As the tissue expression manner could give rise to the differences
in the roles of IncRNA modulators played in cancer development,
thus we calculated the tissue specificity index for IncRNA modulators
based on their expression in normal tissues (details see Methods).
We found that the pan-cancer modulator presents lower tissue speci-
ficity than other two types (Fig. 3d, P-value < 2.22e-16, Wilcoxon
rank sum test). To further confirm this observation, we also obtained
the transcriptome data from GTEx and performed the same analysis,
finally a same conclusion was obtained (Fig. 3e). This indicated that
pan-cancer modulators are more widely expressed across human tis-
sues. Furthermore, we also found that pan-cancer IncRNA modulators
present more sequence conservation in promoter regions than other
two types of modulators (Fig. 3f). In summary, these important fea-
tures of the IncRNA regulators highlights their important role in both
normal and tumor tissues.

3.5. Similar tissue derived cancers exhibit comparable IncRNA mediated
methylation dysregulation

Plenty of evidences have indicated that similar tissue derived can-
cers may exhibit similar molecular profiles, including gene expres-
sion, microRNA or IncRNA expression [51]. It is still unknown
whether similar tissue derived cancers may share similar methyla-
tion mediated IncRNA regulatory pattern. We thus calculated the
paired Jaccard index between each cancer type based on the occur-
rence of IncRNA, gene and IncRNA-gene pair in the network to mea-
sure their similarities (Fig. 4a—c). We found that cancers derived
from similar tissue are more likely to share common IncRNA modula-
tors, and also the target genes and IncRNA-gene interactions in this
network, such as COAD and READ, LUSC and LUAD, KIRC and KIRP,
also the LIHC and CHOL. This observation indicated that cancers
derived similar tissues may share related regulatory mechanisms. In
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addition, the similarities based on IncRNAs is generally higher than
that based on genes (P-value < 2.22e-16, paired Wilcoxon rank sum
test) and IncRNA-gene pairs (P-value < 2.22e-16, paired Wilcoxon
rank sum test) (Supplementary Fig. S17). This indicated that some
common IncRNA modulators may regulate different target genes
thus may play a different role in cancer type specific context. We fur-
ther investigated the functions of the IncRNA modulators derived
from similar tissue types, by doing this, we performed the Gene
Ontology enrichment analysis based on the common target genes of
the IncRNA modulators between cancer types from the same tissue.
The COAD and READ for example, a total of 208 genes were identified

as shared targets (Fig. 4d, upper panel). Enrichment analysis indi-
cated these genes are mainly involved in morphogenesis of the diges-
tive tract and cell motility (Fig. 4d, lower panel). A similar functional
enrichment result was observed for lung tissue derived cancers (Sup-
plementary Fig. S18a). Whereas for kidney tissue derived cancers, func-
tions are mainly about immune response pathways, for liver tissue
derived cancers are mainly metabolic related functions (Supplementary
Fig. S18b-c). These observations indicated that IncRNA mediated meth-
ylation dysregulation in cancers may fulfil diverse functions in tissue
context manner, furthermore, it could help find patients the most
appropriate treatment method, such as immune therapy.
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In order to further validate the functional roles of these IncRNAs
and associated target genes in tumorigenesis. We first collected can-
cer related IncRNAs from public databases (see Methods). We per-
formed a hypergeometric test to evaluate the enrichment
significance of these IncRNA modulators to validated cancer IncRNAs.
We found that IncRNA modulators from each cancer type are all
enriched in the cancer related IncRNAs we collected (P-value < 0.05,
hypergeometric test) (Fig. 4e). We then explored whether the IncRNA
targets were enriched in cancer hallmark processes for each cancer
[52]. This analysis revealed these IncRNA targets represent broad
range of cancer hallmarks across cancer types (Fig. 4f). In particular,
‘Self Sufficiency in Growth Signals’, ‘Insensitivity to Antigrowth Sig-
nals’, ‘Sustained Angiogenesis’ and ‘Tissue Invasion and Metastasis’
are the most prevalent enriched hallmarks across different cancers,
which suggests some common essential pathways these IncRNA
related networks may participate in.

3.6. LncRNA modulators with aberrant expression exhibit biomedical
significance

Expression aberration of IncRNAs are widespread observed during
cancer development [45]. Here we analyzed the dysregulation pat-
tern of IncRNA modulators based on the expression profiles in pan-
caner wide with the aim to explore their biological significances. We
found a substantial of the IncRNA modulators present a differential
or switched expression pattern for each cancer type. In these 18 can-
cer types, a total of 2.8%—77.3% (average: 31.2%) of IncRNA modula-
tors present significantly up-regulated or switch-on, and 8.9%~62.8%

(average: 34.9%) of IncRNA modulators present down-regulated or
switch-off, respectively (Fig. 5a). We also notice that the number of
up/down regulated IncRNAs are far more surpass that of the switch
on/off. We next investigated the distribution of the IncRNA modula-
tors across cancer types and found that both the differentially
expressed and switched IncRNAs are relatively tissue specific. A total
of 2,160 (23.7%) present differential expression in only one cancer
type, and 7,043 (77.3%) present differential expression in no more
than five cancer types, only 219 (2.4%) present differential expression
in more than 10 cancer types (Fig. 5b, upper panel). For the IncRNA
present switched on/off, about one half (2,865, 47.8%) present only in
one cancer type, and only 2 IncRNAs present in more than 10 cancer
types (Fig. 5b, lower panel). In this case, we combined those differen-
tially expressed IncRNAs and those have switched expression as a
whole unit and investigated their roles in cancer development.

We investigated those IncRNAs present differential or switched
expression in multiple cancer types and a total of 141 IncRNAs
showed recurrent differential expression in more than 12 cancer
types. We found these recurrent differentially expressed IncRNAs
were significantly enriched in pan-cancer modulators identified pre-
viously (Fig. 5d, p-value = 1.13e-110, hypergeometric test), and a
total of 85 differentially expressed IncRNAs were also identified as
pan-cancer regulators (Supplementary Table S2). Then we performed
a Gene Ontology enrichment analysis to explore their functions of
these key IncRNA modulators. This analysis revealed these IncRNA
modulators are mainly participated in functions including cell adhe-
sion, proliferation, differentiation, and also immune related func-
tions, such as inflammatory response and lymphocyte activation
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(Fig. 5d). Further, our analysis discovered many IncRNA modulators
that play a key role in particular cancer types. One of the example is
the ENSG00000227036 (LINCO0673/LINCO0511). Our analysis indi-
cated this IncRNA presents up-regulated expression in 14 cancer
types (77.8%, 14/18) (Fig. 5e, left panel). Survival analysis indicated
activated expression of this IncRNA is associated with poor prognosis
of KIRC (P-value < 0.0001, log-rank test, Fig. 5e, right upper panel).
This IncRNA was identified to interact with DNMT1 and also other
histone modification proteins, such as EZH2 and histone deacetylase
complexes of LSD1 to regulate cancer related pathways including cell
proliferation and invasion and induced cell apoptosis [53-55]. We
also found expression of this IncRNA is highly correlated with pro-
moter methylation of serval key cancer genes, such as KRT15, a high
negative correlation between expression of this IncRNA and the pro-
moter methylation of KRT15 was observed in KIRC from our study
(Fig. 5e, right lower panel, Supplementary Fig. 19). KRT15 is responsi-
ble for the structural integrity of epithelial cells, up-regulation
and associated poor prognosis of this gene was observed in many
cancer types [56,57]. Another example we identified is the
ENSG00000203499 (FAM83H-AS1), which could interact with EZH2
to regulate expression of many cancer related genes, such as CDKN1A,
thereby influencing the cell cycle and proliferation [58]. FAM83H-AS1
was presented here to have differential expression in all 18 cancer
types (Fig. 5f, left panel). Up-regulation of FAM83H-AS1 is associated
with poor prognosis of PAAD (P < 0.0086, log-rank test, Fig. 5f, right
upper panel). One of the targets of FAM83H-AS1 identified is SLC39A6,
which was also indicated to play a role in many cancer types [59,60].
Our analysis indicated FAM83H-AS1 expression is highly correlated
with promoter methylation of SLC39A6 in PAAD (Fig. 5f, right lower

panel, Supplementary Fig. S20). This interaction was also identified in
multiple cancer types (Supplementary Fig. S21), which indicated this
IncRNA related regulatory relationship may play a role in pan-cancer
wide. In summary, our analysis indicated that these differentially
expressed IncRNA modulators can have a role in cancer biology and
motivated us to better understand of the functions of IncRNAs in
tumorigenesis.

3.7. Diverse function of conserved network hubs across cancer types

Network hubs are highly connected nodes and are critical for
maintaining network robustness, thus are expected to play a vital
role in biological systems. We have shown that this methylation
mediated IncRNA regulatory network is featured by variable degree
distribution, which is the high degree for very few ‘hub’ genes and
low degree for most other genes. We thus identified hub in this net-
work to investigate if they can play important roles in cancer. We
selected the top 10% of the IncRNAs and genes in the network as
‘hubs’, as a result, a total of 2,823 IncRNAs and 920 protein coding
genes were selected (Fig. 6a,b). We found that many of the hub
IncRNAs including TUG1, TARID, APTR, PVT1, PCAT6, TINCR and HULC,
and protein coding genes as CEBPE, SMAD2 and HANDZ2 have been
widely identified in tumorigeneses. Interestingly, we found most of
these hub IncRNAs identified could interact with EZH2, which is the
subunit of PRC2 and interact with DNMTs and associates with DNMT
activity in vivo [12]. The TUG1 for example, was found to repress
Kruppel-like factor 2 (KLF2) expression by interacting with PRC2 and
recruiting it to KLF2 promoter region in HCC [61]. Another well-
known IncRNA PVT1, was shown to bind EZH2 and inhibit the



10 Z. Yang et al. / EBioMedicine 68 (2021) 103399

=—m——_—_— =& | B = d .
- = 3
= —— = = s, Ll o
= | = NS §
= = — — — = = g N
= — = p— =] 2
= — ] — = — 06 182
= = — == Bay
= = o = — Eng? e
= = 4 125
— - = = Gore: 1
————= — i R & 69
= ces@ PRap
a8 “
= E
o 2 P kK
s 3 & n %®
2 © g
5 = g e
T T
E
" o B
O Non Hub
.
T
LR Eaanme! T
< 024681012 0246810

RN [ b

i
o H
. l |
. i

Gancer Types

JLlbad el E

Type
=
3 hon o

P 200001
" P<001 Cancer
: B8 sca
B3 scAERs)
B srcAER-)
o cesc
B3 ooL
B cono
B3 esca
B9 e
3 ro
B3 re
3 e
B wo

ucee

Fig. 6. Hub analysis of methylation mediated IncRNA regulatory network across cancer types. a-b). The Distribution of hub IncRNAs and genes within network across different
cancers. Histogram indicated the number of cancer types that the hubs was identified. c). Boxplot of the expression distribution for hub and non-hub IncRNA modulators across 18
cancer types. d). Venn diagram indicated the number of cancer specific and shared target genes of the Hub IncRNA modulator ADAMTS9-AS2 in 10 cancer types. e-f). Chord plot indi-
cated the Gene Ontology terms that the ADAMTS9-AS2 targets enriched in BLCA and UCEC, respectively.

recruitment of EZH2 to the promoter region of MYC to promote its
expression [62]. This IncRNA could also regulate miR-146a gene
expression by inducing the CpG methylation level at its promoter
during tumorigenesis of prostate cancer [63]. Other mechanism for
the hub IncRNAs were also identified. The TARID for example, could
interacts with both the GADD45A (growth arrest and DNA-damage-
inducible, alpha), which a regulator of DNA demethylation, and
TCF21 promoter to activates its expression by inducing its promoter
demethylation [64]. For the hubs of protein coding gene, the HAND2
have been identified to present as the hub of the most highly ranked
differential methylation hotspot in endometrial cancer [65].

To further investigate the function of the hub IncRNAs across can-
cer types, we first examined the expression pattern of hub and non-
hub IncRNAs. The result indicated that hub IncRNA have higher
expression than these non-hubs in large proportion of cancer types
(12/18, 66.7%) (Fig. 6¢). This implies that hub IncRNAs may play more
important roles in tumorigeneses than non-hub ones. Global compar-
ison of the hub IncRNAs across cancer types indicated that many
IncRNA hubs may present in multiple cancer types. Some IncRNA
hubs could maintain this high degree in 12 cancer types. One of
which, the ADAMTS9-AS2 (ADAMTS9 antisense RNA 2), have been
identified to interact with DNMT1/DNMTS3 to regulate the methyla-
tion at its target promoter [66]. Our analysis indicated that this
IncRNA presents as hub in 10 cancer types. We found that ADAMTS9-
AS2 may regulate different target genes in various cancer types but
with only one gene of NKAPL (NFKB activating protein like) as com-
mon target (Fig. 6d). Functional annotation of the ADAMTS9-AS2 tar-
gets in respective cancer types indicated this IncRNA could have
different functions in cancer specific manner. For instance, it medi-
ated the cell morphogenesis, such as “epithelial tube morphogenesis”
and “morphogenesis of a branching structure” in BLCA (Fig. Ge),

whereas in UCEC, it mainly involves cell adhesion, including “regula-
tion of cell—substrate adhesion”, “extracellular matrix organization”,
“extracellular structure organization” and also function of “regulation
of blood circulation” (Fig. 6f). In summary, this analysis indicated the
hub IncRNAs may exert their functions in tissue dependent manner.
Further detailed study may reveal undiscovered pathways for these

IncRNAs regulated in different cancers.

3.8. Clinical relevance of IncRNA network modules as prognosis
biomarkers

Studies have indicated IncRNAs present strong potential for pre-
dicting cancer prognosis as their expression is highly variable among
different stages and tissues, thus could better represent disease fea-
tures [67]. Thus, we integrated the survival information to evaluate
the potential ability of the identified IncRNA modulators as candidate
prognosis markers. For each cancer type, we randomly classified the
tumor samples as discovery set and validation set with similar age
and sex distributions in each set. Then we performed a cox regression
analysis to identify the survival related IncRNA/genes in each net-
work. For all the 18 cancer types, we found that a total of 5.32% of the
IncRNA/genes are clinical-associated in both groups (Fig. 7a). Then we
tested if there are differences for clinical relevance of different category
of IncRNA regulators. We compared the Hazard Ratio distribution of
the clinically related IncRNAs among different groups of pan-cancer
regulator and others. We found that a substantial cancer types (9/18)
present a higher Hazard Ratio of pan-cancer regulators than others
(Fig. 7b), which indicated that methylation related IncRNA regulatory
network is of great important for cancer prognosis.

We and other studies have indicated that IncRNAs may collabo-
rate to regulate individual genes to control their expression. Network
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module analysis provides us an important tool to investigate the
cooperative interaction in pan-cancers. Thus we extensively identi-
fied the biclique modules across 18 cancer types. Then we calculated
a risk score for each network module to evaluate their potential abil-
ity for prediction of the prognosis of cancer. As a result, 2,061 mod-
ules were identified that can be used to classify cancer samples into
groups with significantly different overall survival rates in both dis-
covery set and validation set (Fig. 7c), and the majority of the survival
related modules were discovered in THCA (76.9%) and KIRP (11.9%).
One such module for instance, which mainly involve the IncRNA
CRNDE (Fig. 7d), was associated with patients’ survival both in discov-
ery (Fig. 7e, log-rank test P=0.0037) and validation set (Fig. 7e, log-
rank test P=0.012). CRNDE has been identified to interact with PRC2
component EZH2 and mediated their inhibition of tumor suppressor
genes [68]. Elevated expression and the associated poor prognosis
was found in many cancer types, including pancreatic cancer [69,70].
We also identified other prognostic related modules which was medi-
ated by ZEB2-AS1 in multiple cancers including BLCA, LUSC and PAAD.
(Supplementary Fig. 22a—c). ZEB2-AS1 was identified to regulate epithe-
lial-mesenchymal transition in cancer development and their clinical
roles in these cancer types have been validated [71-73]. However, we
didn’t observe that the expression of the individual IncRNA of ZEB2-AS1
alone have a discriminative effect for prognosis in these three cancer
types. Such results indicated the critical roles of the combinative effect
of IncRNAs in cancer methylome formation and provide potential clini-
cal usage of these module related biomarkers.

3.9. Auser-friendly database for exploring the methylation related
IncRNA regulatory perturbation

For facilitating the users investigate the methylation mediated
IncRNA regulatory pattern and associated transcriptional dysregula-
tion of target genes in these cancer types, we constructed an online
database MeLncTRN (http://compgenelab.info/MeLncTRN/) which

allows users to query information about the IncRNA-gene interac-
tions of interest. This platform provides a web interface for users to
search and download all data sets. Users can query the database for
exploring the interactions that involve the interested IncRNA or tar-
get gene in specific cancer type. The list of the matched entries will
return after the interesting IncRNA or genes been submitted. In the
entry detail page, the detailed information about the differential
expression of IncRNA and genes, differential methylation in promoter
of genes, and also the interaction information between IncRNA and
genes were listed. All data in the platform can be downloaded from
the ‘download’ page for further study. This database could serve as a
useful tool for dissecting the interaction network between IncRNA
and genes and identifying novel biomarkers for cancer.

4. Discussion

LncRNAs have long been recognized as an important kind of gene
expression regulator that act in different mode. For the widely
accepted “competitive endogenous RNA (ceRNA)” model, IncRNAs
mainly act as “sponge” to combine with miRNAs and sequester its
interaction with protein coding genes, which in turn to de-repressing
the expression of targets that share the same group of miRNA binding
sites (also referred to as miRNA response elements, MREs) [74,75].
However, this hypothesis is still in debate as discrepancies were
found by experimental validation [76]. Besides, some other regula-
tory mechanisms have also been proposed, such as interact with
transcription factors to regulate downstream gene expression [77].
LncRNAs have also been identified as the integral component of chro-
matin to play a role in biological processes with respect to epigenetic
control [78,79]. DNA methylation at the promoter region of protein
coding genes is one of the key components of epigenetic regulation.
However, only limited number of examples that IncRNA regulate pro-
moter methylation of target genes have been identified so far, this
motivated us to perform a more in-depth exploration of the potential
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role of IncRNAs. Here we introduce a computational framework to
perform an integrative pan-cancer-wide analysis of matched gene
expression, DNAm and CNV data, in an attempt to identify IncRNAs
which display regulatory effects of epigenomic and transcriptomic
deregulation of protein coding genes in cancer. Our strategy identifies
IncRNAs which exhibit universal patterns of correlation with
genome-wide DNAm and expression levels of protein coding targets.
It is likely that these IncRNAs constitute master regulators of the DNA
methylome in cancer.

The prerequisite to identify the DNA methylation mediated
IncRNA regulatory perturbation is to determine the genes whose
expressional dysregulation driven by DNA methylation beforehand.
Thus, the first two steps of our framework were focused on identify-
ing the cancer context specific DNAm-Exp regulatory relations. Then
we used the correlation changes to evaluate the IncRNA-gene regula-
tion in both methylation and expression level. This may lead to over-
look several genes that showed no correlation of DNAm-Exp. Our
survey of the correlation analysis revealed significant numbers of
genes that are not correlated between expression and methylation in
promoters (Supplementary Fig. S23). It is speculated that methylation
level at promoter of these gene would serve as a rate-limiting ele-
ment when there is sufficient abundance of transcription factors. In
this case, DNA methylation only determines the upper or lower limit
that the gene expression level by controlling the maximum accessi-
bility of TF [80]. On the other hand, distal CpG sites within enhancer
regions may contribute to their activity change by promoting both
active and passive DNA demethylation and by influencing chromatin
architecture [81]. Whereas it is generally not easy to precisely locate
this type of regulatory regions associated with particular genes. How-
ever, our analysis procedure can be easily extended to distal
enhancers if large scale datasets in which precise identification of the
regions are available.

Our analysis indicated that most IncRNAs may regulate multiple tar-
gets in a multimodal mode, acting as enhancers or invertors to activate
or inhibit targets depending on the specific genes and cancer types,
highlighting the complexity of DNA methylation mediated IncRNA reg-
ulatory pattern. Moreover, most of these regulatory interactions take
place in trans and in cancer specific mode, while a substantial number
of regulation by IncRNAs are common across cancer types. The pan-
cancer IncRNA modulators presents many critical functional features,
such as tissue-specific expression pattern and evolutionary conservation
in promoter region. These results provide valuable resource for both
computational and biological researchers, which will greatly widen our
views about our understanding of the roles of IncRNAs in cancer.

Although the DNA methylation mediated IncRNA regulatory
effects is prevalently identified in our study, the detailed mechanism
on how these IncRNA modulators involved in this epigenetic regula-
tion remains to be discovered. We notice that many IncRNA modula-
tors in our study were documented to interact with EZH2, which is
responsible for the methylation activity of PRC2, for instance,
FAM83H-AS1, TUG1, PVT1 and LINC00511. EZH2 has been demon-
strated that are universally overexpressed in cancer, and which are
known to influence DNAm levels [82]. A wide spectrum of IncRNAs
was found to act as scaffold to bind with EZH2 and recruit it to the
promoter region of target genes and repress their expression [83].
Interestingly, many of these IncRNAs have also been identified to act
as ceRNAs by interacting with miRNAs. For instance, the well-known
cancer IncRNA PVT1 was demonstrated associated with miRNAs
including miR-128, miR-214, miR-195, etc. in multiple cancer types,
such as bladder cancer [84], colon cancer [85] and lung cancer [86],
whereas the TUGI targets including miR-145 [87], miR-26a [88],
miR-29c [89]. This observation indicated that IncRNAs may play dual
roles in a context specific manner by which to define a precise tran-
scriptional regulation circuitry.

The IncRNA modulators that identified presents widespread tran-
scriptional dysregulation and widely expressed in multiple tissues,

which highlight their critical roles in cancer development. This was
validated by functional annotation to the cancer hallmarks of their
target genes. In addition, similar IncRNA mediated DNA methylation
perturbations were observed for cancer types originated from same
tissue. Functions of these cancer type specific IncRNA modulators
manly involved in development of specific tissue, such as colon or
lung. As one of the hallmarks of tumor cells is the lack of differentia-
tion, it is not very surprise that many tissue specific genes were pref-
erentially targeted in cancer. Furthermore, many IncRNAs were
mainly involved in immune response pathways. The important role
of epigenetics in determine immunity and immune therapy for can-
cers has been well demonstrated [90]. Our observation provides com-
prehensive understanding on how IncRNAs regulate immune
response by epigenetic mechanisms and also novel insights into
IncRNA based immune therapy.

In summary, our analysis indicated that IncRNAs represent an
additional layer of genome wide DNA methylation modulator in can-
cer. Our results provide a valuable resource for dissecting the driving
force of gene expression regulation related to tumorigenesis and can-
cer development. The IncRNA modulators predicted here deserve fol-
low-up work on both experimental and computational study in order
to elucidate their specific rules. Continued investigation will aid in
the development of better therapies for human cancer and other
diseases.
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