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Prey use reliable public information in order to assess local habitat

conditions such as predation risks, competitive interactions, and for-

aging opportunities (Dall et al. 2005), allowing for context appro-

priate behavioral decisions. However, public information can often

differ widely in reliability (Feyten and Brown 2018), increasing the

potential costs associated with behavioral decision making (Dall

et al. 2005). The reliability of public information is expected to de-

crease with increased uncertainty of environmental conditions

(Koops 2004; Dall et al. 2005), where ecological uncertainty is the

ambiguity about the current state of the environment due to imper-

fect or incomplete information (Dall et al. 2005; Munoz and

Blumstein 2012; Feyten and Brown 2018). Consequently, prey have

at their disposal a variety of sources of public information, ranging

from known or reliable (e.g., genetically fixed conspecific alarm

cues; learned predator cues) to unknown or unreliable (e.g., neopho-

bic responses to novel cues; Ferrari et al. 2007; Brown et al. 2013;

Feyten and Brown 2018). The effect of ecological uncertainty, and

the resulting reliability of information, becomes increasingly com-

plex when we consider that prey integrate information from mul-

tiple sources in order to make behavioral decisions (i.e., sensory

complementarity; Lima and Steury 2005; Munoz and Blumstein

2012).

Error management theory (Johnson et al. 2013) predicts that as

risks become more uncertain (i.e., higher proportion of unknown vs.

known information), prey should shift to a more risk-averse tactic

(i.e., become more cautious). Thus, we predict that when prey face

multiple unreliable (i.e., unknown) cues, they should “overestimate”

risk compared with when they faced cues of mixed reliability. To

test this question, we conducted in situ predator inspection trials,

which are a well-established estimate of perceived predation risk

(Brown et al. 2013). We paired known and unknown visual risk-

assessment cues (predator models) with a known, unknown, and

control chemosensory risk-assessment cues (alarm cue, lemon odor,

and stream water, respectively; see Supplementary Materials). We

found that the number of guppies present was not influenced by

predator models (F1,72 ¼3.36, P¼0.07), chemosensory cues

(F2,72 ¼1.80, P¼0.17), or the interaction of predator models and

chemosensory cues (F2,72 ¼0.21, P¼0.81, Figure 1A), allowing us to

directly compare latency to inspect as a measure of “perceived pre-

dation risk.” We found that the mean latency to inspect was shaped

by both the predator model and chemosensory cue (interaction:

F2,72 ¼9.44, P<0.001), as well as by the chemosensory cue alone

(F2,72 ¼30.37, P<0.001), but not by predator model alone

(F1,72 ¼2.49, P¼0.12, Figure 1B). Post hoc t-tests demonstrate that

the latency to inspect was significantly longer when a novel chemo-

sensory cue was paired with a novel predator model, compared with

when it was paired with a known predator model (t ¼�4.12,

df ¼ 22, P<0.001, Figure 1B). However, the latency to inspect

did not differ between the known versus novel predator models

when paired with a known chemosensory cue (t ¼1.42, df ¼ 22,

P¼0.17) or a stream water control (t ¼�0.63, df ¼ 22, P¼0.54).

When prey are faced with cues of mixed reliability, they appear to

rely on the known cue to assess the level of acute threat (the known

cue is dominant; Munoz and Blumstein 2012). However, guppies

exhibited the highest level of perceived predation risk when exposed

to two unknown sources of information, compared with when at

least one source of information was known (i.e., reliable). We sug-

gest that in the absence of at least one source of known (i.e., reliable)

information, there are additive effects of sensory complementarity

(i.e., enhancement of redundant information; Munoz and Blumstein

2012), such that guppies “overestimate” the level of perceived pre-

dation risk.

Having a combination of genetically fixed, learned, and neophobic

responses may allow prey to minimize costs while making optimal
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decisions in the face of predation risk. For example, learning can be

costly since prey must survive initial predator encounters (Ferrari

et al. 2007; Brown et al. 2013), use energy and time which might

otherwise be invested in other fitness activities (Dall et al. 2005), and

potentially face unknown (i.e., unreliable) cues before they can gain

experience and learn how to respond. Meanwhile, neophobic

responses can be costly when the missed opportunities of engaging in

other fitness-related activities accrue. Indeed, if neither the reliable nor

unreliable cue conveys an actual threat, the neophobic response to

these cues will diminish in a process akin to latent inhibition.

Similarly, if prey are faced with two unknown cues which do not en-

tail risk, we expect neophobic predator avoidance responses to fade.

However, background levels of risk influence how quickly the re-

sponse is inhibited (Brown et al. 2015). Taken together, we propose

that prey can respond to a combination of unreliable “unknown” and

reliable known sources of information by using genetically fixed

responses, learning, and neophobia. Furthermore, prey can integrate

this diversity of information sources in order to optimize behavioral

decision making.
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Figure 1. Mean (6SE) number of guppies present (A) and latency to inspect

(B) the known or novel visual cues (predator models) paired with known

(alarm cue; gray bars), unknown (lemon odor; striped bars), or control

(stream water; white bars) chemosensory cues. An increase in latency to in-

spect is consistent with increased perceived predation risk (Brown et al.

2013). N ¼ 12 per treatment combination.
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