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Abstract: Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are
distributed in Asia, especially in the southeast region, and Thailand. They have been widely
used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections,
fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments,
asthma, wounds, rheumatism, epilepsy, and skin diseases. Objective: Herein, we reported a
comprehensive review, including the traditional applications, biological and pharmacological
advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019.
Materials and methods: All the information and reported studies concerning Kaempheria plants
were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed,
Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species
was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering
(AHC), based on the main chemical classes of compounds. Results: Approximately 141 chemical
constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane,
labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids,
tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene
skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria
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were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial,
anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective,
anti-allergenic, and anti-nociceptive were demonstrated. Conclusions: Up to date, significant
advances in phytochemical and pharmacological studies of different Kaempheria species have been
witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and
in vivo biological studies. In addition, these traditional uses and reported biological results could be
correlated via the chemical characterization of these plants. All these data will support the biologists
in the elucidation of the biological mechanisms of these plants.

Keywords: Kaempferia; traditional medicine; diterpenoids; flavonoids; phenolic; biosynthesis

1. Introduction

From the first known civilization, medicinal plants have met primary care and health needs around
the world [1–3]. Natural products, derived from plants, have enriched the pharmaceutical industry since
time immemorial. So far, people of the developing countries depend upon the traditional medicines
to cure daily aliments [4]. The medicinal plants are characterized by a diversity of chemical and
pharmacological constituents, owing to their complicity and the abundance of secondary metabolites.
There are several factors that caused the variations of the secondary metabolites such as ecological
zones, weather, climates, and other natural factors via the effects on the biosynthetic pathways [1–3].

Zingiberaceae (the ginger family) is distributed worldwide comprising 52 genera and more than
1300 plant species [5,6]. Kaempferia is a diverse family with members distributed widely throughout
Southeast Asia and Thailand, including some 60 species [5]. Several Kaempferia species are used
widely in folk medicine, including K. parviflora, K. pulchra, and K. galanga, (Figure 1). In Laos and Thai,
traditional medicines derived from K. parviflora rhizomes are reported for the treatment of inflammation,
hypertension, erectile dysfunction, abdominal ailments [6,7], and improvement of the vitality and blood
flow [8]. Japanese use the extract of K. parviflora as a food supplement and for the treatment of metabolic
disorders [9]. K. pulchra is used extensively as a carminative, diuretic, deodorant, and euglycemic,
as well as for the treatment of urinary tract infections, fevers, and coughs [4]. The rhizomes of K. galanga
are used as an anti-tussive, expectorant, anti-pyretic, diuretic, anabolic, and carminative, as well as for
the curing of gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases [10].
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Figure 1. Traditional medicinal used Kaempheria species.

Extracts and purified compounds from select Kaempferia species are used for the treatment of
knee osteoarthritis and the inhibition of a breast cancer resistance protein (BCRP), anti-inflammatory,
anti-acne, anticholinesterase, anti-obesity-induced dermatopathy, wound healing, anti-drug resistant
strains of Mycobacterium tuberculosis, neuroprotective, anti-nociceptive, human immunodeficiency
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virus type-1 (HIV-1) inhibitory activity, in vitro anti-allergenic, and larvicidal activity against Aedes
aegypti [4,6–11]. The scientific literature such as, Google Scholar, Scifinder, PubMed, Springer, Elsevier,
Wiley, Web of Science, were screened in the period between 1972–2019 in order to collect the up-to-date
information of the traditional uses/applications, biological studies, and chemical characterization of
Kaempheria species. All these collected data were addressed and summarized in our review article to
highlight the potential ethnopharmacological importance of these plants.

2. Materials and Methods

The scientific literature such as Google Scholar, Scifinder, PubMed, Springer, Elsevier, Wiley,
Web of Science, etc., including all the traditional uses/applications, biological studies, and chemical
characterization of Kaempheria species were collected between 1972–2019. All these collected data were
adjusted and summarized in our review article due to the potential ethnopharmacological importance
of these plants.

The correlation between the Kaempheria species was evaluated based on the main chemical
classes of compounds. The data matrix of seven Kaempferia species (K. angustifolia, K. elegans,
K. galanga, K. marginata, K. parviflora, K. pulchra, and K. roscoeana) and six chemical classes (abietanes,
labdanes and clerodanes, flavonoids, phenolic compounds, and chalcones) were subjected to principal
component analysis (PCA) to identify correlation between different Kaempferia species. In addition, the
similarity based on the Pearson correlation coefficient was determined via subjecting the dataset to
an agglomerative hierarchical cluster (AHC). The PCA and AHC were performed using an XLSTAT
statistical computer software package (version 2018, Addinsoft, NY, USA, www.xlstat.com).

3. Distribution

Zingiberaceae (the ginger family) comprises 52 genera and more than 1300 plant species. Kaempferia
is distributed worldwide with diverse members occurring throughout southeast tropical Asian countries
such as Indonesia, India, Malaysia, Myanmar, Cambodia, and China, as well as Thailand, including
some 60 species [5]. K. pulchra is a perennial herbal plant and widely cultivated in numerous tropical
countries, involving Indonesia, Malaysia, Myanmar, and Thailand [12].

4. Traditional Uses

Several Kaempferia species are used widely in folk medicine, including K. parviflora, K. pulchra, and
K. galanga (Figure 1). In Laos and Thai, traditional medicines derived from K. parviflora rhizomes are
reported for the treatment of inflammation, hypertension, erectile dysfunction, abdominal ailments [6,7],
and improvement of the vitality and blood flow [8]. Japanese folk medicine documented a positive
effect of K. parviflora extract when used as a food supplement and for the treatment of metabolic
disorders [9]. K. pulchra is used extensively as a carminative, diuretic, deodorant, and euglycemic,
as well as for the treatment of urinary tract infections, fevers, and coughs [4]. K. galanga is sold as an
industrial crop in the market, and its rhizome has been used as a flavor spice of various cooking [13].
The rhizomes of K. galanga is used as an anti-tussive, expectorant, anti-pyretic, diuretic, anabolic,
carminative, as well as for curing of gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy,
and skin diseases [10]. In Malaysian folk medicines, several gingers belonging to the Zingiberaceae
family especially, Kaempheria genus, are used in the treatment of several diseases such as stomach
ailments, vomiting, cough, bruises, epilepsy, nausea, rheumatism, sore throat, wounds, eyewash,
sore eyes, childbirth, liver complaints, muscular pains, ringworm, asthma, fever, malignancies, swelling,
and several other disorders [14].

5. Biological Activity

Extracts and purified compounds of Kaempferia species are used for the treatment of knee
osteoarthritis and the inhibition of a breast cancer resistance protein (BCRP), anti-inflammatory,
anti-acne, anticholinesterase, anti-obesity-induced dermatopathy, wound healing, anti-drug resistant
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strains of Mycobacterium tuberculosis, neuroprotective, anti-nociceptive, human immunodeficiency
virus type-1 (HIV-1) inhibitory activity, in vitro anti-allergenic, and larvicidal activity against Aedes
aegypti [11]. Kaempheria plant extracts and isolated compounds demonstrate numerous and promising
biological and pharmaceutical activities, which are summarized in Figure 2.
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5.1. Anticancer Activity

Rhizome ethanolic extracts of K. galanga and the purified component ethyl trans
p-methoxycinnamate (105) demonstrate moderate cytotoxic activity against human cholangiocarcinoma
(CL-6) cells with IC50 of 64.2 and 49.4 µg mL−1, respectively. Significant cholangiocarcinoma
(CCA) efficacy as indicated by suppressing tumor growth and lung metastasis in CL6-xenografed
mice [15] is also observed. Swapana et al. [16] documented that K. galanga isopimarene diterpenoids,
sandaracopimaradiene-9α-ol (2), kaempulchraol I (14), and kaempulchraol L (17) exhibit promising
activity against human lung cancer with IC50 of 75 µM, 74 µM, and 76 µM, respectively, and mouth
squamous cell carcinoma (HSC-2) inhibition with IC50 of 70 µM, 53 µM, and 58 µM, respectively [16].
The latter compound, isolated from K. pulchra, is reported to have weak anti-proliferative activity
against human pancreatic and cervix cancers [17]. Chawengrum et al. [18] stated that K. pulchra labdene
diterpenoids, (−)-kolavelool (81), and (−)-2β-hydroxykolavelool (82) exhibit cytotoxic activity against
human leukemia cells (HL-60) with IC50 values of 9.0 ± 0.66 and 9.6 ± 0.88 µg mL−1, respectively [18].
Acetone, petroleum ether, chloroform, and MeOH extracts of K. galanga rhizomes show moderate
cytotoxicity in a brine shrimp lethality bioassay compared with vincristine sulfate as the reference
compound [19]. Moreover, a methanolic extract of K. galanga rhizomes induces Ehrlich ascites carcinoma
(EAC) cell death in a dose-dependent manner [20]. 5,7-Dimethoxyflavone (86) isolated from K. galanga
was found to reduce cancer resistance to tyrosine kinase inhibitors (TKI) by inhibiting breast cancer
resistance protein (BCRP), one of the efflux transporters that increased efflux of TKI out of cancer cells.
This was observed both in vitro with a dose-dependent increase in the intracellular concentration of
sorafenib in MDCK/BCRP1 breast cancer resistance cells, with an EC50 of 8.78 µM as well as in vivo
by increasing sorafenib AUC in mice tissues when co-administered with compound 88, as reported
by kinetic results [21]. The isolated methyl-β-D-galactopyranoside specific lectin from the rhizome
of K. rotunda exhibited in vitro antitumor activity against Ehrlich ascites carcinoma cells at a pH
between 6–9 and a temperature range between 30–80 ◦C. Tumor inhibition was also observed in vivo in
EAC-bearing mice [22].
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The cytotoxicity of MeOH, petroleum ether, and EtOAc extracts against C33A cancer cells via
MTT and scratch assays compared with essential oils of K. galanga rhizomes showed activity for the
EtOAc and MeOH fractions at 1000 µg mL−1 with 11% and 14% cell viability and weak efficacy with
petroleum ether extracted essential oils in a MTT assay. Cell growth inhibition was observed with
all extracts in the scratch assay [23]. Compound (140) isolated from K. angustifolia was described
to have strong activity with an IC50 of 1.4 µg mL−1, which was comparable to 5-fluorouracil as
a reference drug. Compound (138) also showed moderate inhibition against human lung cancer.
2′-Hydroxy-4,4′,6′-trimethoxychalcone (flavokawain A; 119) exhibited potent activity against HL-60
and MCF-7 cell lines. The results of Tang et al. [24] revealed that flavokawain A (119) exhibited
cytotoxic activity against MCF-7 and HT-29 cell lines with GI50 values of 17.5 µM (5.5 µg mL−1) and
45.3 µM (14.2 µg mL−1), respectively. Kaempfolienol (65) and zeylenol (133) were also found to have
moderate activity against HL-60 and MCF-7 cells with IC50 values <30 µg mL−1 and against HL-60
only with an IC50 value of 11.6 µg mL−1 respectively [24].

5.2. Anti-Obesity Activity

An ethanolic extract, a polymethoxyflavonoid-rich fraction (PMF) and a
polymethoxyflavonoid-poor fraction from K. parviflora were screened against an obesity-induced
dermatopathy system using Tsumura Suzuki obese diabetes (TSOD) mice as an obesity model (Hidaka,
Horikawa, Akase, Makihara, Ogami, Tomozawa, Tsubata, Ibuki, and Matsumoto) [11]. The ethanolic
extract reduced mouse body weight and the thickness of the subcutaneous fat layer more than the
PMF fraction that is used as a dietary supplement in controlling skin disorders caused by obesity [11].

5.3. Anti-HIV Activity

Viral protein R (Vpr) is one of the HIV accessory proteins that can be targeted for controlling
viral replication and pathogenesis. A CHCl3 fraction of K. pulchra exhibits Vpr-inhibitory activity
at 25l g mL−1. In addition, isopimarene type diterpenoids isolated from the rhizomes of the
plants, kaempulchraol B (43), kaempulchraol D (45), kaempulchraol G (46), kaempulchraol Q (20),
kaempulchraol T (36), kaempulchraol U (50), and W (22) inhibit the expression of Vpr at concentrations
from 1.56 to 6.25 µM [25].

5.4. Antimicrobial Activity

Arabietatriene (62) isolated from K. roscoeana exhibits antibacterial activity against Gram-positive
bacteria Staphylococcus epidermidis and Bacillus cereus [26]. Anticopalic acid (72), anticopalol (77),
and 8(17)-labden-15-ol (68) isolated from K. elegans also exhibited antibacterial activity against B.
cereus [18]. Acetone, petroleum ether, chloroform, and MeOH extracts of K. galanga rhizomes exhibit
moderate antibacterial activity against Gram-positive and Gram-negative bacteria in comparison with
ciprofloxacin [19]. Ethyl p-methoxycinnamate (105) also isolated from K. galanga rhizomes have been
shown based on a resazurin micro-titer assay to inhibit Mycobacterium tuberculosis H37Ra, H37Rv,
multidrug-resistant, and drug-susceptible isolates with MIC 0.242–0.485 mM [27]. Its essential oil
also displays strong antibacterial activity against Staphylococcus aureus and Salmonella typhimurium,
and weak activity against Escherichia coli [28]. Moreover, essential oils extracted from three varieties
of K. galanga exhibited potent larvicidal activity [29]. An ethyl acetate extract of K. rotunda inhibits
S. aureus and E. coli [30]. A rhizomes extract of K. galanga inhibits Epstein–Barr virus with no cytotoxic
effect in Raji cells [14]. In contrast, isolated diterpenoids from K. roscoeana exhibited no activity
against Plasmodium falciparum (Chloroquine-resistant) [26]. Fauziyah et al. [31] described that an
ethanolic extract of K. galanga alone exhibits 100% growth inhibition of the multi-drug resistant (MDR)
Mycobacterium tuberculosis (isolates at 500 µg mL−1). However, a combination of this extract with
streptomycin, ethambutol, and isoniazid showed inhibition values of 55%, 76%, and 50%, respectively.
Ethanol, methanol, petroleum ether, chloroform, and aqueous extracts of K. galanga rhizome showed
antimicrobial activity against human pathogenic bacteria and fungi, while the ethanolic extract exhibited
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the strongest inhibition of S. aureus using an inhibition zone assay [32]. However, flavokawain A
(119) and other compounds reported from K. angustifolia had no antimicrobial activity against tested
microbes [24].

5.5. Antioxidant Activity

The CHCl3 and MeOH extracts of the rhizomes of K. angustifolia showed strong antioxidant
activity against DPPH expressed with 615.92 mg trolox equivalent (TE)/g of extract. In an azinobis
(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) assay, MeOH extracts showed good antioxidant
properties with a value of 38.87 mg TE/g. However, n-hexane extract exhibited significant antioxidant
activity with 901.76 mg TE/g in a cupric-reducing antioxidant capacity assay, while EtOAc extract
exhibited significant reduction ability against ferric reducing antioxidant power (FRAP) with a value
of 342.23 mg TE/g. Also, kaempfolienol (65) showed potent free radical scavenging activity in a
DPPH assay, as well as, 2′-hydroxy-4,4′,6′-trimethoxychalcone (119) in ABTS, CUPRAC, and FRAP
assays [33,34]. A methanol extract of rhizomes of K. galanga exhibited a concentration-dependent
antioxidant activity in DPPH, ABTS, and nitric oxide (NO) radical scavenging assays [20]. Moreover,
the essential oil extracts of conventionally propagated and in vitro propagated K. galanga had significant
DPPH radical scavenging activity [35]. As well, the ethanol extract of K. rotunda exhibited antioxidant
activity in a DPPH assay with IC50 (67.95 µg mL−1) [30].

5.6. Anti-Inflammatory Activity

The cyclohexane, chloroform, and ethyl acetate extracts with diarylheptanoids isolated from
K. galanga showed a pronounced inhibition of Lipopolysaccharides (LPS)-induced nitric oxide in
macrophage RAW 264.7 cells compared with indomethacin [13]. The EtOH extract and compounds
(1, 52, 53, 119, 120) isolated from K. marginata had promising anti-inflammatory activity based
on the suppression of NO production and inducible nitric oxide synthase (iNOS) mRNA and
cyclooxygenase-2 (COX-2) genes expression [36,37]. Diterpenoids (9–10) isolated from K. pulchra had
topical anti-inflammatory activity in 12-O-tetradecanoylphorbol-13-acetate-induced ear edema in rats
with ID50 330 and 50 µg/ear, respectively. Biological activity may be due to the activation of Maxi-K
channels in neurons and smooth muscles [38]. The ethanol extract of K. parviflora exhibited potent
inhibition of PGE2. The plant extract and 3′,4′,5,7-tetramethoxyflavone (86) were also reported to
exhibit a dose-dependent inhibition of iNOS-mRNA expression. Additionally, H2O, EtOH, EtOAC,
CHCl3, and n-hexane soluble sub-fractions exhibited good in vivo anti-inflammatory activity by
decreasing rat paw edema [39]. An 80% EtOH extract reduced UV-induced COX-2 expression in
mice skin that was attributed to the anti-oxidative activity of polyphenolics against the oxidizing
properties of UV radiation [40]. A 60% EtOH and EtOAc-soluble fraction of 100% methanol extracts
of K. parviflora decreased knee osteoarthritis, which was likely due to methoxylated flavones [41].
Ethyl p-methoxycinnamate (105) isolated from K. galana inhibited cytokines as IL-1 and TNFα and
endothelial function in rats [42].

Tewtrakul, et al. [43] found that the isolated methoxylated flavonoids from
K. parviflora, 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (96), 5-hydroxy-7,4′-dimethoxyflavone (93),
and 5-hydroxy-3,7,4′-trimethoxyflavone (95) exhibited anti-inflammatory activity against the PGE2

production, with IC50 values of 16.1 µM, 24.5 µM, and 30.6 µM, respectively [43]. Tewtrakul and
Subhadhirasakul [44] described methoxyflavones 96, 93, and 95 from a hexane extract of K. parviflora
rhizomes that exhibited activity against NO release in RAW264.7 cells with IC50 values of 16.1 µM,
24.5 µM, and 30.6 µM, respectively. In addition, 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (96) inhibited
PGE2 release with an IC50 value of 16.3 µM, with negative activity on Tumor Necrosis Factor alpha
(TNF-α) with IC50 >100 µM [44]. Petroleum ether extract from K. galanga was active against acute
inflammation at 300 mg/kg in rats and inhibited the inflammation and MPO levels at 100 mg kg−1 in
the chronic model [45].
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5.7. Anticholinesterase Activity

According to Sawasdee et al. [46], a MeOH extract as well as compounds (86–87) isolated from
K. parviflora rhizomes inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with
greater cholinesterase inhibitory toward AChE and BChE for (86), which was an observation of
significance in the treatment of Alzheimer’s disease [46].

5.8. Anti-Mutagenicity Activity

CH2Cl2 and EtOAc soluble fractions of K. parviflora showed anti-mutagenicity and α-glucosidase
inhibitory activity. Isolated methoxylated compounds (86, 97, 84, and 92) from these extracts exhibited
potent activity with IC50 values of 0.40, 0.40, 0.42, and 0.47 nmol/plate, respectively. Compounds
(88, 87, and 91), also showed significant activity with IC50 values of 20.4 µM, 54.3 µM, and 64.3 µM,
respectively [47].

5.9. Effect on Cytochromes CYP 450

The results listed by Ochiai et al. [48] stated that the continued ingestion of (88) isolated from
K. parviflora decreases liver CYP3A expression, which in turn increased levels of compounds metabolized
by CYP3As such as midazolam [48].

5.10. Vascular Activity

The oral administration of CH2Cl2 extract of K. parviflora in middle-aged rats was found to decrease
vascular responses to phenylephrine, increase acetylcholine-induced vasorelaxation and the production
of nitric oxide (NO) from blood vessels, and decrease visceral, subcutaneous fat, fasting serum glucose,
triglyceride, and liver lipid accumulation [49]. The effect of intravenous administration of a CH2Cl2
extract of K. galanga to rats reduced the mean arterial blood pressure [50]. This anti-hypertensive
effect was attributed to ethyl cinnamate, which is a major compound in the extract [50]. The ethanol
extract of rhizomes of K. parviflora caused dose-dependent relaxation on aortic rings as well as ileum
pre-contracted with phenylephrine and acethylcholine [51].

5.11. Adaptogenic Activity

Hexane, chloroform, methanol, and ethanol extracts of K. parviflora exhibited adaptogenic activity
compared with a crude ginseng root powder used as a reference [52]. A single oral dose of K. parviflora
rhizome (60% EtOH extract) increased the whole-body potential expenditure in humans [53]. K. parviflora
was also found to improvement physical fitness and health by decreasing oxidative stress [54].

5.12. Xanthine Oxidase Inhibitory Activity

Among the isolated methoxylated flavonoids from K. parviflora, (87 and 86) inhibit xanthine
oxidase activity with IC50 values of 0.9 and >4 mM, respectively [9].

5.13. Allergenic Activity

Isolated polymethoxyflavones from K. parviflora (86, 97), in addition to CH2Cl2, EtOAc, and
H2O extracts, alleviated type I allergy symptoms through suppressing Rat Basophilic Leukemia cells
(RBL-2H3) cell degranulation, with (92) and (94) showing the highest anti-allergenic activity [55].

5.14. Neurological Activity

A methanolic extract (95% MeOH) of K. parviflora exhibited neuroprotective activity by increasing
rat hippocampus serotonin, norepinephrine, and dopamine levels in comparison with a vehicle-treated
group [56]. An acetone extract of K. galanga rhizomes and leaves also exhibited central nervous system
depressant activity [57].
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5.15. Nociceptive Activity.

A K. galanga rhizome extract exhibited anti-nociceptive activity in rats that was stronger than
aspirin but weaker than morphine. The efficacy was abolished by naloxone, suggesting that the
analgesic effect may be centrally and peripherally mediated [58].

5.16. Wound-Healing Activity

The co-administration of a K. galanga rhizomes extract (95% EtOH) with dexamethazone was
found to have wound-healing activity in mice comparable to dexamethazone only [59].

5.17. Effects on Sexual Performance

Several 7-methoxyflavones (86, 87, 89, 91, 93–95) isolated from K. parviflora rhizomes improved
sexual activity in males through the inhibition of PDE5, with 86 being the most potent [60]. The activity
was attributed to methoxyls present at positions C5 and C7 [60]. K. parviflora rhizome extracts,
standardized to 5% DMF, also improve erectile function in healthy men [61]. A K. parviflora extract as
well as 5,7-dimethoxyflavones augment testosterone production, which decreases age-related diseases
and hypogonadism [62]. Improved testosterone levels, sperm count, and sexual performance was
observed in streptozotocin (STZ)-induced diabetic rats when treated with a K. parviflora extract (aqueous
with 1% Tween-80) [63].

5.18. Miscellaneous

The rhizome extract (95% ethanolic) of K. parviflora reduced obesity via the inhibition of
adipogenesis, lipogenesis, and muscle atrophy in mice [64]. In contrast, the K. parviflora derivatives of
5-hydroxy-7-methoxyflavone induce skeletal muscle hypertrophy [65]. A K. parviflora extract (95%
EtOH) served as a potential anti-acne agent with anti-inflammatory, sebostatic, and anti-propioni
bacteria activity [66].

Recently, K. parviflora alcoholic extract at 3–30 µg mL−1 was evaluated regarding the molecular
mechanisms associated with rheumatoid arthritis for up to 72 h compared with the dexamethasone
as positive control [67]. They documented that the EtOH extract significantly decreased the gene
expression levels of pro-inflammatory cytokines, inflammatory mediators, and matrix-degraded
enzymes, but neither induced apoptosis nor altered the cell cycle. They also reported that the alcoholic
extract inhibits cell migration, reduces the mRNA expression of cadherin-11, and selectively reduces
the phosphorylation of mitogen-activated protein kinases (P38, MAPKs), signal transducers, and
activators of transcription 1 (STAT1) and 3 (STAT3) signaling molecules, without interfering with the
NF-κB pathway [67].

A K. galanga extract (acetone, petroleum ether, chloroform, or methanolic) exhibited
dose-dependent anthelmintic activity with strong paralytic activity within one hour and death
within 80 min at a 25 mg mL−1 concentration [68].

6. Chemical Metabolites of Kaempferia Species

Chemical profiles of Kaempferia exhibited the presence of different types of secondary
metabolites such as terpenoids, especially isopimarane phenolic compounds, diarylheptanoids [13],
flavonoids [69–71], and essential oils [72,73]. This review summarized the reported variety of compound
types, including isopimarane, abietane, labdan, and clerodane diterpenoids, flavonoids, phenolic acids,
phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. Diterpenoids, especially
isopimarane types, were the most reported compounds from the plants of this genus, in addition to
phenolics, flavonoids, and essential oils. Each class will be described and listed in the following items,
and the structures will be summarized in Tables 1–3.
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Table 1. Diterpenoids.
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2 Sandaracopimaradiene-9α-ol α-OH H H H H H H H

3 8(14),15-Sandaracopimaradiene-1α,9α-diol α-OH H α-OH H H H H H K. galanga
K. pulchra

K. sp.4 1,11-Dihydroxypimara-8(14),15-diene H H α-OH H H α-OH H H

5 6β-Hydroxypimara-8(14),15-diene-1-one H β-OH =O H H H H H K. galanga
K. marginata

6 Sandaracopimaradien-6β,9α-diol-l-one α-OH β-OH =O H H H H H K. galanga
7 Boesenberol I α-OH H =O H H H α-OH H

8 Boesenberol J α-OH β-OH =O H H H H H K. galanga

9 Sandaracopimaradien-1α,2α-diol H H α-OH α-OH H H H H
K. roscoeana
K. pulchra

K. marginata
[26,38,75]

10 2α-Acetoxy-sandaracopimaradien-1α-ol H H α-OH α-OAc H H H H K. pulchra
K. marginata

11 Kaempulchraol E α-H β-OH α-OH H H H H H K. galanga
K. pulchra

12 Kaempulchraol F H H α-OH H α-OH H H H K. pulchra

[4,16,17,25,26,74]

13 Kaempulchraol H H β-OH α-OH H α-OH H H H

14 Kaempulchraol I H H α-OH H H H H H
K. galanga
K. pulchra

K. roscoeana

15 Kaempulchraol J H H α-OH H H H =O K. pulchra
16 Kaempulchraol K α-OH β-OAc H H H H H H

17 Kaempulchraol L α-OMe β-OH H H H H H H K. galanga
K. pulchra

18 Kaempulchraol M α-OH H α-OH α-OH H H H H

K. pulchra

19 Kaempulchraol P H β-OH H H H H H H

20 Kaempulchraol Q α-OAc β-OH H H H H H H

21 Kaempulchraol R α-OH H H H H H α-OAc H
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Table 1. Cont.

No Name R R1 R2 R3 R4 R5 R6 R7 Plant Ref

22 Kaempulchraol T H β-OH H H H H α-OAc H

23 Kaempulchraol V α-OH β-OH H H H H β-OAc H

24 Kaempulchraol W α-OH β-OH H H H H β-OH H

25 9 α-Hydroxyisopimara-8(14),15-dien-7-one α-OH H H H H H =O H

26 7β,9 α-Dihydroxypimara-8(14),15-diene α-OH H H H H H β-OH H

27 Isopimara-8(14),15-dien-7-one H H H H H H =O H K. roscoeana [26]

28 (1S,5S,9S,10S,11R,13R)-1,11-Dihydroxypimara-8(14),15-diene H H α-OH H H α-OH H H K. roscoeana
K. marginata

K. pulchra [4,17,25,26,74,75]
29 (1R,2S,5S,9S,10S,11R,13R)-1,2,11-Trihydroxypimara-8(14),15-diene H H α-OH α-OH H α-OH H H

30 7α-Hydroxyisopimara-8(14),15-diene H H H H H H α-OH H K. roscoeana
K. pulchra

31 Sandaracopimaradien- 9α-ol-l-one α-OH H =O H H H H H

K. sp

[76]

32 6β-Acetoxysandaracopimaradien-9α-ol-l-one α-OH β-OAc =O H H H H H

33 Sandaracopimaradien-6β,9α-diol-l-one α-OH β-OH =O H H H H H

34 6β-Acetoxysandaracopimaradien-lα,9α-diol α-OH β-OAc α-OH H H H H H

35 Sandaracopimaradien- lα,6β,9α-triol α-OH β-OH α-OH H H H H H

36 Roscorane B H H H H H α-OH H OH
K. roscoeana [26]37 Roscorane C H β-OH H OH H H OH H

38 Roscorane D H H H OH H H OH OH

39 (1R,2S,5S,7S,9R,10S,13R)-1,2,7-Trihydroxypimara-8(14),15-diene H H H α-OH H H β-OH H
K. marginata

[75]40 (1S,5S,7R,9R,10S,11R,13R)-1,7,11-Trihydroxypimara-8(14),15-diene H β-OH H H H H α-OH H

41 (1R,2S,5S,7S,9R,10S,13R)-1,2-Dihydroxypimara-8(14),15diene-7-one H H H α-OH H H H H
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Table 1. Cont.

No Name R R1 R2 R3 R4 R5 R6 R7 Plant Ref

47 Kaempulchraol N α-OH β-OH H α-OH

48 Kaempulchraol O α-OH β-OH H β-OMe

49 Kaempulchraol S H H =O α-OH

50 Kaempulchraol U H H H α-OH

51 Isopimara-8(9),15-dien-7-one H H =O H K. roscoeana [26]

52 8(14),15-Isopimaradiene-6α-ol H α-OH H —
K. marginata [36]53 1α-Acetoxy-sandaracopimaradiene α-OAc H H -

54 1α-Acetoxy-sandaraco pimaradien-2-one α-OAc =O H -

No Name Structure Plant Ref

55 (2R)-ent-2-Hydroxyisopimara-8(14),15-diene
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Table 1. Cont.

No Name R R1 R2 R3 R4 R5 R6 R7 Plant Ref
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No Name R R1 R2 R3 R4 R5 R6 R7 Plant Ref
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No Name R1 R2 R3 R4 Plant Ref

114 Methyl (2R,3S)-2,3-dihydroxy-3-(4-methoxyphenyl) propanoate Me - -

115 Ethyl-(2R,3S)-2,3-dihydroxy-3-(4-methoxyphenyl) propanoate CH2Me - -

116 (1R,3R,5R)-1,5-Epoxy-3-hydroxy-1-(3,4-dihydroxyphenyl)-7-(3,4-dihydroxy phenyl) heptane H - -
[13]

117 (1R,3R,5R)-1,5-Epoxy-3-hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl) heptane
3-O-β-D-glucopyranoside D-glc - -

118 2‘-hydroxy-4‘,6‘-dimethoxychalcone H - - K. parviflora
K. angustifolia [24,71]

119 2‘-hydroxy-4,4‘,6‘-trimethoxychalcone Me - -

No Name Structure Plant Ref
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5a-O-[α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside]
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6.1. Diterpenoids

Kaempferia plants were characterized with a predominance of diterpenoids, especially the
isopimaranes in addition to abietane, labdane, and clerodane types (Table 1).

6.1.1. Isopimarane-Type Diterpenoids

The isopimaranes reported from the Kaempheria species (Table 1) are characterized with the
presence of two double bonds; one is mostly ∆15(16), while the other is between ∆8(9) or ∆8(14) [4,25,74].
From the rhizomes of K. galanga, 12 usual isopimarenes (1–8, 10, 11, 14, and 17) were observed that
contained a ∆8(14),15 motif in addition to the rarely reported oxygenated seco-isopimarane (56) [16].
From the rhizomes of K. marginata, five isopimarenes with a ∆8(14),15 motif were observed (1, 2,
52–54) [36]. Only one thumbing isopimarenes, roscorane A (57), was reported from K. roscoeana,
which was characterized by only one double bond ∆8(9) and (7-8)-epoxy, as well as the absence of the
exomethylene ∆15(16) [26].

Biosynthesis of Isopimarane-Type Diterpenoids

Isopimarane diterpenoids are the most characteristic compounds for Kaempheria plants.
(E,E,E)-Geranylgeranyl diphosphate (GGPP) is a well-known biosynthesized intermediate of
diterpenoids as described by [80]. GGPP is firstly cyclized via copalyl diphosphate (CPP) synthases
(CPS), and then by the unknown enzyme (PS), affording a charged intermediate (INM). Then, this
intermediate is completely cyclized by the enzymatic reactions via the bifunctional (iso) pimaradiene
synthases (AoCPS-PS, NfCPS-PS, and AfCPS-PS) (Scheme 1), as described by Xu et al. [81].
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6.1.2. Abietane-Type Diterpenoids

Seven abietanes (58–64) (Table 1) have been isolated and characterized from the rhizomes of
K. roscoeana, and one (65) was isolated and characterized from K. angustifolia [26,33,34]. These highly
oxygenated metabolites contain one or more double bonds and an absence of exomethylenes, except
for roscotane D (61), which contains no double bonds.

6.1.3. Labdane and Clerodane Diterpenoids

After isopimarenes, labdane and clerodane represent major diterpenoid classes from the
Kaempheria species. Nineteen highly oxygenated labdanes and clerodanes (66–86) have been
reported from Kaempheria rhizomes (Table 1) [18,26]. From these isolated labdanes, only
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(12Z,14R)-labda-8(17),12-dien-14,15,16-triol (66) has been isolated from K. roscoeana rhizomes.
In contrast, several labdane and clerodane types of diterpenoids have been isolated from K. elegans and
K. pulchra rhizomes collected in Thailand.

6.1.4. Flavonoids

Kaempheria species are characterized by rich biological activity due in part to the presence of a
diversity of flavonoids (86–105) and phenolic compounds (106–137) (Table 2). K. parviflora rhizomes
with flavonoid nuclei contain methoxy groups in specific positions (86–97) [9,55]. Pyrano-flavone,
2”,2”-dimethylpyrano-[5”,6”:8,7]-flavone (105), has been isolated from K. pulchra rhizomes collected
from Thailand [18], and flavanones (97–99) have been isolated and identified from K. parviflora
rhizomes [70,71]. K. galanga contains kaempferol and kaempferide (98, 99) [78].

6.1.5. Phenolic Compounds

From K. galanga rhizomes, diarylheptanoid compounds (116, 117, 122–125) are reported by Yao,
Huang, Wang, and He [13]. From K. marginata rhizomes, curcuminoid (121) was characterized by
Kaewkroek, Wattanapiromsakul, Kongsaeree, and Tewtrakul [36]. From K. galanga, rhizomes phenolic
acids (106–113) were the major compounds isolated, including methoxylated cinnamic acid derivatives.
Two (4-methoxyphenyl)-propanoates (114–115) were also isolated from the K. galanga rhizomes [13,50].
S- and R-isomers at C-4 of phenolic glycosides (135 and 136) as well as a rare phenolic glycoside (137)
were observed in K. previflora rhizomes [79]. All the phenolic compounds (106–137) are summarized in
Table 2.

6.1.6. Steroids and Triterpenes

Steroids represent a minor class of compounds reported from Kaempheria species. Only three
steroids, β-sitosterol (138), β-sitosterol-β-D-glucoside (139), and stigmasterol (140) (Table 3) have
been reported from K. marginata rhizomes [36]. Moreover, only one lanostane type triterpene,
(24S)-24-methyl-lanosta-9(11), 25-dien-3β-ol (141), was isolated from K. angustifolia [24].

6.1.7. Volatile Oils

Kaempheria species were documented as very rich plants with volatile oils such as
K. galanga [29,73,82,83], K. angustiflora [29], and K. marginata [29]. The volatile oil of K. galanga has
been reported as a potential market product in India and over all the world with market values
around 600–700 US$/kg on the international market [83]. Phenylpropanoids and/or cinamates
were represented as major constituents of volatile oils derived from Kaempheria species followed by
monoterpenes [29,73,82]. The phenylpropanoid compound, trans-ethyl cinnamate, was documented
as a principal component of volatile oils of all the studied Kaempheria species up to date with
concentrations varied from 16–35% of the total identified [29,73,82,83]. The volatile oils of Kaempheria
species were reported to have numerous biological activities such as anti-microbial [83], antioxidant [35],
nutraceutical [83], nematicidal toxicity [82], and larvicide activities [29]. Table 4 summarized the main
components (142–157) of the reported volatile oils of Kaempheria species.
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Table 4. Main components of volatile oils of Kaempferia species.

No Name Plant Ref

142 δ-3-Carene

K. galanga [29,35,82,83]

143 E-Ethyl cinnamate

144 Ethyl-p-methoxycinnamate

145 γ-Cadinene

146 1,8-Cineole

147 Trans-cinnamaldehyde

148 Borneol

149 Pentadecane

150 γ-car-3-ene

151 Linoleoyl chloride

152 Caryophyllene oxide

153 Cubenol

154 Caryophyllene

155 Limonene

156 Camphene

157 α-Pinene

7. Principal Components Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) for
Kaempferia Species

To assess the correlation between the various Kaempferia species, chemical classes of different
compounds were subjected to PCA and AHC (Figure 3). According to the similarity, the analysis
showed that we can group the Kaempferia species under three groups: the first group comprised
K. galanga, K. marginata, K. pulchra, and K. roscoeana, and these species are correlated to isopimaranes
compounds. The Pearson correlation coefficient (r) between K. marginata and K. pulchra was the highest
with r = 0.938, while between K. marginata and K. roscoeana, it was 0.771, between K. roscoeana and
K. pulchra, it was 0.766, and between K. marginata and K. galanga, it was 0.615 (Table 5).

Table 5. Proximity matrix (Pearson correlation coefficient) of the seven Kaempferia species based on the
chemical classes reported.

K. angustifolia K. elegans K. galanga K. marginata K. parviflora K. pulchra

K. elegans −0.539
K. galanga −0.042 −0.339

K. marginata −0.500 −0.241 0.615
K. parviflora 0.833 −0.312 0.075 −0.280
K. pulchra −0.675 0.053 0.378 0.938 −0.372

K. roscoeana −0.643 −0.225 0.206 0.771 −0.513 0.766

The second group contained K. angustifolia and K. parviflora (r = 0.833), and this group showed a
close correlation to flavonoids and phenolics. However, the K. elegans was separated alone, and showed
a close relation to labdane and clerodane compounds. The similarities within each group might be
ascribed to the genetic relations, as well as the environmental and microclimatic conditions [1–3].

In a study of a genetic variation of Kaempferia species based on chloroplast DNA [5], K. marginata
and K. galanga were grouped together, which is agreeable with our results (r = 0.615) according to the
PCA data of the present study based on the chemical composition. However, in contrast to the data
from the PCA, K. angustifolia and K. parviflora were separated in different groups, but K. elegans and
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K. parviflora were grouped together. In another recent study, based on the DNA and morphological
characteristics [84], K. angustifolia and K. parviflora were grouped together in agreement with the
chemical variation of the present study.Nutrients 2019, 11, 2396 33 of 38 
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8. Conclusions

Kaempheria species are widely used plants in traditional medicine worldwide. All the biological
activity data for these plants and their isolated constituents have resulted in numerous leads for
medicinal drugs. Mainly, seven rhizomes of Kaempheria plants afforded a vast array of diterpenoids,
especially the isopimarane type, along with significant bioactive methoxylated flavonoids. From all
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these documented chemical and biological results, these plants have been and continue to be a
promising source for medicinal natural products and food industrial products.
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Abbreviations

K. Kaempheria
Sp. Species
PCA Principal component analysis
AHC Agglomerative hierarchical clustering
CCA Significant Cholangiocarcinoma
HSC-2 Mouth squamous cell carcinoma
EAC Ehrlich ascites carcinoma cancer cells
HL-60 Human leukemia cancer cells
CL-6 Human cholangiocarcinoma cells
TKI Tyrosine kinase inhibitors
BCRP Breast cancer resistance protein
MTT (3-[4,5,[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) assay
CH2Cl2 Dichloromethane
BChE Butyrylcholinesterase
NO Nitric oxide
CUPRAC Modified cupric reducing antioxidant capacity
PDE5 Phosphodiesterase type 5 inhibitor
AP Aerial parts
AChE Acetylcholinesterase
RBL-2H3 Rat Basophilic Leukemia cells
P38 Type of mitogen-activated protein kinases
STAT1 and 3 Signal transducers and activators of transcription 1 and 3
MeOH Methanol
EtOAc Ethyl acetate
MCF-7 Breast cancer cells
HT-29 Colorectal adenocarcinoma cell
PMF Polymethoxyflavonoid-rich fraction
TSOD Tsumura Suzuki obese diabetes
GGPP (E,E,E)-Geranylgeranyl diphosphate
CPP Copalyl diphosphate
CPS Copalyl diphosphate synthases
EtOH Ethanol
AChE Acetylcholinesterase
ABTS 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay
Vpr Viral protein R
DPPH 1,1-Diphenyl-2-picrylhydrazyl assay
FRAP Ferric reducing antioxidant power
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CYP3A Cytochrome P450, family 3, subfamily A
NF-κB Nuclear factor pathway
Rh Rhizomes
BChE Butyrylcholinesterase
STZ Streptozotocin
MPO myeloperoxidase
DMF Dimethylformamide
MAPKs Type of mitogen-activated protein kinases
PGE2 Prostaglandin E2
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