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Abstract 

While the number of human cases of mosquito-borne diseases has increased in North America in the last 
decade, accurate modeling of mosquito population density has remained a challenge. Longitudinal mosquito 
trap data over the many years needed for model calibration, and validation is relatively rare. In particular, 
capturing the relative changes in mosquito abundance across seasons is necessary for predicting the risk of 
disease spread as it varies from year to year. We developed a discrete, semi-stochastic, mechanistic process-
based mosquito population model that captures life-cycle egg, larva, pupa, adult stages, and diapause for 
Culex pipiens (Diptera, Culicidae) and Culex restuans (Diptera, Culicidae) mosquito populations. This model 
combines known models for development and survival into a fully connected age-structured model that can 
reproduce mosquito population dynamics. Mosquito development through these stages is a function of time, 
temperature, daylight hours, and aquatic habitat availability. The time-dependent parameters are informed by 
both laboratory studies and mosquito trap data from the Greater Toronto Area. The model incorporates city-
wide water-body gauge and precipitation data as a proxy for aquatic habitat. This approach accounts for the 
nonlinear interaction of temperature and aquatic habitat variability on the mosquito life stages. We demon-
strate that the full model predicts the yearly variations in mosquito populations better than a statistical model 
using the same data sources. This improvement in modeling mosquito abundance can help guide interventions 
for reducing mosquito abundance in mitigating mosquito-borne diseases like West Nile virus.

Key words: Culex pipiens, mosquito, population dynamics, temperature, rainfall

Culex mosquitoes are a primary vector for West Nile virus (WNV) in 
the United States and Canada (Turell et al. 2005; Russell and Hunter 
2012; Public Health Ontario 2013; Giordano et al. 2017, 2018). 
First introduced to the United States in 1999 and to Canada in 2001, 
WNV is a potentially fatal mosquito-borne disease (Pepperell et al. 
2003, Public Health Ontario 2013, Giordano et al. 2017). Culex 
pipiens and Culex restuans are known to transmit WNV in North 

America (Ebel et al. 2005); therefore, being able to predict their 
abundance could provide public health professionals with a system 
to help anticipate and mitigate disease outbreaks. 

Methods of capturing mosquito population dynamics vary 
greatly—including statistical, mechanistic (process-based), and hy-
brid approaches and various combinations of the mosquito life 
cycle. Ewing et al. (2016) examined the effects of temperature on 
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mosquito populations using four delay-differential equations, which 
represent each stage of the mosquito life cycle. However, this study 
did not consider the effects of the availability of standing water on 
aquatic life stage progression. Similarly, Cailly et al. (2012) devel-
oped a model using two systems of ordinary differential equations 
based on the time of year and 10 compartments to comprise the four 
stages of the mosquito life cycle (Cailly et al., 2012). Other mecha-
nistic models that use a series of ordinary or delay-differential equa-
tions were developed by Gong et al. (2007), Wang and Zou (2018), 
and Lou et al. (2019). Some include diapause explicitly (Gong et al. 
2011, Cailly et al. 2012, Yu et al. 2018), while others model only 
within-season dynamics. Statistical approaches to model mosquito 
populations include, but are not limited to, generalized linear models 
(GLM) (Wang et al. 2011), site-specific generalized linear mixed 
models (Yoo 2014), harmonic analysis, and mixed-effects models 
(Yoo et al. 2016). The predictors in these studies include tempera-
ture, precipitation, elevation, remote-sensing indices, and land use.

Culex mosquito development is dependent on surrounding tem-
perature (Tachiiri et al. 2006; Ruiz et al. 2010; Chuang et al. 2012; 
Yoo 2014; Danforth et al. 2016). Therefore, many mosquito pre-
diction studies have focused on temperature-dependent approaches 
(Otero et al. 2006, Lana et al. 2011, Ewing et al. 2016, Wang and 
Zou 2018, Yu et al. 2018). While temperature can capture seasonal 
trends well, studies have concluded that additional factors must be 
considered to accurately capture the fluctuation in mosquito abun-
dance over the seasonal trend (Lana et al. 2011, Ewing et al. 2016). 
The availability of still water has a more significant impact on the 
development of eggs, larva, and pupa than on adults (Hamer et al. 
2011, Yoo et al. 2016). Recent studies have addressed this by in-
cluding temperature and precipitation to better capture the year-
to-year variation in mosquito abundance (Ahumada et al. 2004, 
Morin and Comrie 2010, Wang et al. 2011, Yoo 2014, Yoo et al. 
2016, Valdez et al. 2017). However, these studies have alluded to the 
fact that assessment of the influence of different rainfall regimens 
on mosquito populations needs further examination as the rainfall 
linkage to mosquito habitats, in particular the larval habitat, could 
depend on factors such as slope, river routing, and availability of 
potential habitats for mosquitoes. Some have tackled this by using a 
lag in precipitation measurements or simulated rainfall to produce 
more accurate results (Shone et al. 2014, Valdez et al. 2017, Ratti 
and Wallace 2020, Ratti et al. 2022). We hypothesize that including 
water gauge measurements in addition to temperature will improve 
predictions over temperature and precipitation (see Supp Fig. S1 [on-
line only]).

Models such as CIMSiM (Focks et al. 1993) and Skeeter-Buster 
(Magori et al. 2009) tackle the variation in mosquito abundance 
through detailed modeling of each life stage, using all available data 
on mosquito biology and environmental conditions to minutely cal-
culate the numbers of mosquitoes at each age stage. In the case of 
Skeeter-Buster, spatial heterogeneity, stochastic effects, and the ge-
netic makeup of the population add additional complexity in order 
to capture mosquito dynamics. Similar to these two models, we aim 
to model each life stage using available information on development 
and survival. However, we aim to simplify this process to reduce 
run time and parameter space in order to use this model at larger 
spatial scales, and treating each life stage in aggregate so that the 
model can be adapted to multiple locations and species with only 
slight alterations. In other words, our model falls between the very 
detailed agent-based models and the lower fidelity differential equa-
tion population-level models in order to capture local impacts on 
mosquito life stages while retaining the ability to scale up and run 
the model quickly.

Since we are using data from the Greater Toronto Area (GTA) to 
parameterize and validate our model, we briefly summarize current 
work specific to the GTA. The most recent studies examining mos-
quito abundance within the GTA have focused on the Peel Region 
within the GTA (Wang et al. 2011, Yoo et al. 2016, Yu et al. 2018). 
Wang et al. (2011) analyzed the association between a gamma-
distribution model of mosquito populations with temperature and 
precipitation in a generalized linear model. They concluded that dy-
namical equations should investigate other meteorological factors 
plus all phases of the mosquito life cycle to capture interactive effects 
between environment and mosquito abundance (Wang et al. 2011). 
Yoo et al. (2016) combined a mixed-effects model with a harmonic 
analysis of temperature and precipitation to examine the associa-
tion among land use, population density, elevation, spatial patterns, 
and mosquito abundance (Yoo et al. 2016). The authors concluded 
that this approach fails to capture dynamic interactions between the 
mosquito life cycle and environmental variables over time. Recently, 
Yu et al. (2018) exploited a temperature-dependent response func-
tion for aquatic and adult life stages over a single season (Yu et al. 
2018). Their model used temperature alone to predict mosquito life 
cycle, and the authors concluded that ‘additional variables needed to 
be considered to account for the year to year variability in weather’.

Studies in the GTA have also focused on precipitation as a proxy 
for water habitat availability (Trawinski and Mackay 2008, Wang 
et al. 2011, Yoo et al. 2016). They concluded that inclusion of pre-
cipitation better informs mosquito abundance model predictions as 
impacted by available aquatic habitat (Shone et al. 2006, Valdez et al. 
2017). However, standing water does not necessarily correlate line-
arly with precipitation since the amount of flooding caused by a given 
rainfall volume depends on city infrastructure (Butler et al. 2018), 
terrain conditions, and watershed characteristics (James 1972).

We developed a mechanistic discrete, semi-stochastic, process-
based modeling approach for predicting mosquito abundance that 
incorporates daily municipal water station measurements, daylight 
hours, and temperature to predict Culex pipiens/restuans mosquito 
populations (Fig. 2). The process-based model (PBM) model ac-
counts directly for the mosquito life cycle and development through 
life stages is influenced by environmental variables. This approach 
extends previous models by combining water gauge levels with labo-
ratory and field data in a mechanistic model. This mechanistic model 
is a synthesis of various models that describe the relationship between 
environmental conditions and development/survival of mosquitoes 
at each life stage. To appropriately parameterize the model for Culex 
pipiens/restuans mosquitoes, we used location and species specific 
data on lifespan and development rates as dependent on temper-
ature for the entire life cycle. By explicitly accounting for the life 
stages of mosquitoes, the PBM can assess the impact of tempera-
ture, precipitation, and water resource management approaches on 
seasonal mosquito populations. As a mechanistic model, it can also 
be adapted to include and compare mitigation scenarios. It can be 
generalized to other locales and mosquito species with appropriate 
parameterization. To investigate the accuracy of the process-based 
model, we ran a linear regression model with Gaussian errors to a 
log-transformed response to compare a statistical model with our 
process-based model and underscore the need to include the mos-
quito developmental processes driven by environmental conditions.

Methods

Modeling Approach
We model mosquito abundance in the GTA using two approaches: a 
mechanistic process-based model (PBM) and a statistical model. The 
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PBM is a simulation model that incorporates the dependencies of 
mosquito abundance on exogenous variables mechanistically using 
time- and temperature-dependent equations. It explicitly tracks the 
number and age of mosquitoes in each life stage through time (see 
Fig. 1). The ‘statistical’ model is based exclusively on the correlation 
between mosquito trap data and the environmental data feeds using 
a generalized linear model. We then compare our PBM predictions 
with the observed mosquito trap data for the GTA and with the 
linear statistical model. We also compare PBM predictions when 
using stage gauge (water-level) data versus precipitation data to eval-
uate the efficacy of the two different data sources as indicators of 
water availability in the model. All analysis and modeling was done 
using R (v4.0.0; R Core Team 2020).

To compare the models quantitatively, we computed standard 
error metrics, the root mean squared error (RMSE), the mean 

absolute error (MAE), and the R Pearson correlation coefficient, 
over the training set, testing set, and the entire dataset as a whole. 
When trap data are used to evaluate the predictions made by a 
model, accuracy is most frequently measured using root mean 
square error (Yu et al. 2018), or correlation coefficients (Shaman 
et al. 2002), thus motivating our inclusion of those metrics in our 
analysis. Any error metric selected will be biased based on its un-
derlying objective function, thus using multiple error metrics to 
evaluate performance allows multiple views. Multiple metrics also 
allow for researchers to more easily compare across models, many 
of which use a subset of our chosen metrics. We also evaluated 
the differences between predicted and observed peak number of 
mosquitoes since our new model was motivated by better capturing 
year-to-year differences in the mosquito population. As our trap 
data are observational, comparing alternative measures like the 

Fig. 1. Schematic representation of the Process Based Mosquito Model. Environmental mortality, dependent on water availability and/or temperature is applied 
across the age distribution prior to shifting the age of each surviving member based on the temperature dependent developmental velocity. Once an individual 
is 100% developed, they transition to the next stage, and if a non-diapausing adult, lay eggs.
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peak number of mosquitoes, can add insight into performance and 
quality of the model output.

Data Sources The mosquito trap data for the GTA were obtained 
from Public Health Ontario’s WNV mosquito database, where 
public health units trap female mosquitoes every week in order to 
train and test both models. These data are available upon request 
and approval from the Public Health Ontario. A total of 115,338 
records were collected over 16 yr between 2002 and 2017 from 
2,722 trap sites. The dates for the observation data start on Jun 6, 
2004, and end on Sept 27, 2017. In the study region, the mosquito 
season lasts about 17  wk between late May and October (weeks 
24–40). Our mosquito trap observation data include not only 
mosquitoes commonly known for carrying WNV such as C. pipiens 
and C. restuans but also mosquitoes from other genera such as Aedes 
and Ochlerotatus. We only considered total counts of combined 
C. pipiens and C. restuans for our model. Public Health Ontario 
identifiers grouped both species as a single entry, C. pipiens/restuans 
to speed up identification, thus reducing cost and effort. Similarly, we 
filter the data set further to only include those trap sites with lat/long 
coordinates within the bounds of the GTA. While mosquitoes are 
not explicitly sorted by sex in the data, we assume that mosquitoes 
counted in trap data are active female mosquitoes, as most traps 
(85%) used in our data set are light traps (LT). We computed the 
average number of C. pipiens/restuans mosquitoes per trap per day. 
The average number of mosquitoes was calculated as the sum of the 
total number of mosquito counts recorded on a particular day and 
then divided by the number of traps sites that had observations for 
that day.

Both models also employ three types of temporally varying ex-
ogenous data to link mosquito abundance to the concurrent en-
vironmental conditions, 1) daylight hours, 2) water availability 
(precipitation or water levels), and 3) temperature. Daylight hours 
were calculated based on the day of the year and the latitude of 
Toronto using the CBM model with the US government standard 
day length definition (Forsythe et al. 1995). Temperature and 

precipitation data were collected using the R package ‘rclimateca’ 
(Dunnington 2019), which fetches data from the Environment 
Canada climate archives. Water levels for the riverways and 
lakes of the GTA were collected from the Rpackage ‘tidyhydat’ 
(Albers 2017), which accesses historical and real-time national 
‘hydrometric’ stage gauge data from Water Survey of Canada 
data sources. Information about the boundaries and definitions 
of the Ontario watersheds were gathered from Land Information 
Ontario website, last revised on April 1, 2010. Figure 2 shows 
a map overlaying the mosquito trap sites and the water station 
locations.

The Process-based Model
Research within laboratory settings has informed understanding of 
mosquito development and how it depends on temperature and envi-
ronmental factors (see Fig. 1). While these are performed in controlled 
rather than natural settings, we use the mathematical relationships 
between temperature and mosquito life cycle parameters determined 
by lab studies within the PBM and adjust for the time-varying envi-
ronmental inputs in the wild. The PBM incorporates different devel-
opment rates and death rates for eggs, larvae and pupae, and adult 
mosquitoes. We describe in the subsequent subsections the algorithm 
for calculating development progression in and out of the life stages. 
The final output of the algorithm is a daily prediction for the abun-
dance of the average number of host-seeking female mosquitoes 
found in a single trap over 13 yr of data. The model is inspired by 
a partial differential equation approach where mosquitoes develop 
through life stages via lab-informed kinetics equations that describe 
the effect of environmental impacts of water availability and tem-
perature on mortality and developmental velocity. These differential 
equations are discretized and so that the previous day’s population 
distribution can first be affected by environmental mortality effects 
and then adjusted to update the age distribution of all stages ac-
cording to the developmental velocity. Throughout we will refer to 
daylight hours as DL, average daily temperature in Celsius as Tc and 
normalized average water availability as H2O.

Fig. 2. Mosquito trap locations shown on a map of GTA Map (black). Hydrometric stations used for stage gauge water level data are shown in orange.
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Egg Development We use the Eyring equation (Eyring, 1935) to 
model the developmental progression of mosquito eggs to larva. 
We assume that eggs do not compete for nutrients but that the 
development rate, vE(t), is based on the ambient temperature and 
time. Thus we use the daily average temperature as the input value 
for the Eyring equation:

vE(t) = Ψegg(Tc + 273.15)e−AEegg/R(Tc+273.15) (1)

where Ψegg and −AEegg are fit using non-linear least squares of the 
Erying equation from laboratory and field studies (Madder et al. 
1983). This fit is shown in Fig. 3. R is the ideal gas constant of pro-
portionality that relates the energy scale in physics to the tempera-
ture scale. We impose the restriction that if the daily temperature 
feed is below 10.02°C, then vE(t) = 0 (Madder et al. 1983, Tachiiri et 
al. 2006). Additionally, if the temperature drops below freezing, the 
environment becomes too inhospitable for the aquatic stages, and all 
eggs in the model die. 

The rate of increase in the egg population depends on the number 
of adult female mosquitoes calculated to be transitioning from one 
gonotrophic cycle to the next (and not in diapause).

Larva and Pupa Development We combine the larva and pupa stages 
into one group and model the rate of development through this 
stage via the Briere equation (Briere et al. 1999). This model does 
not consider these two stages separately, nor do we consider instars, 
as we found additional age stages did not significantly improve the 
fit to justify the additional complexity and subsequent parameters. 
We fit this function to identified laboratory and field observations in 
larva and pupa development in order to extrapolate them to depend 
on environmental real-time data:

vLP(t) = ΘTTc(Tc − Tmin)
√
Tc − Tmax (2)

where the values of ΘT, Tmin, and Tmax are derived based on labo-
ratory and field data (Madder et al. 1983) fit to the Briere equa-
tion. Tmin and Tmax are understood to be lower and upper bounds on 
temperature for which larva and pupa can develop, based on the fit 
to data. Additional data and observations would alter these values. 
This fit is shown in Fig. 3. The daily temperature data feed, Tc, is 
in degrees Celsius. We impose the same restriction, halting devel-
opment, as we did for the eggs when the temperature drops below 
10.02°C.

We diverge from our previous assumption of neglecting compe-
tition to include a density-dependent death rate for the larva/pupa 
stage, modeled by applying an approximation to a quadratic loss 
differential equation as in Ratti and Wallace (2020) and Wallace et 
al. (2017) to the combined larvae/pupae population (denoted as LP), 
dLP/dt = −δ ∗ (LP)2 and delta is calculated as

δ = e(α1+α2∗H2O) (3)

The parameters α1 and α2 are fitted to the observed trap data. 
Note that the rate of change, δ, used in the quadratic loss function 
depends on aquatic habitat availability H2O, incorporating either 
precipitation or water stage gauge levels as a proxy. This observation 
underscores the fact that it is in standing water that Culex pipiens/
restuans larva and pupa thrive. This model has an age-structured 
population so we diverge from this simple differential equation for 
density-dependent death, by approximating density dependence 
based on the sum of all individuals in the larvae/pupae age stage. The 
precise discrete approximation can be found in Supplementary ma-
terial. In addition to accounting for competition for resources, it has 
been established that prey density can serve as a proxy for predation 
(Edwards and Brindley 1996, 1999). As this part of the model is fit to 

our trap data rather than laboratory/field data, the fitted parameters 
will necessarily account for mortality impacts beyond competition. 
As the larval and pupal stages are also aquatic, freezing events cause 
all members of this stage to die in the model. Outside of this condi-
tion, we do not incorporate additional temperature-dependent en-
vironmental mortality as a simplifying assumption, although it has 
been shown that pupal and larval survival rates decline significantly 
below 15°C (Shelton 1973).

Adult Development The adult mosquito life stages are identified 
by the number of times the average mosquito goes through a 
gonotrophic cycle. At the end of each gonotrophic cycle, the female 
mosquitoes seek to lay eggs at or near water. Thus the number of 
newly laid eggs depends upon the number of female mosquitoes 
ovipositing at any given time. We will first focus on the method 
for which the developmental rate of adult mosquitoes, vAD(t), is 
calculated. Adult mosquitoes may not transition linearly through 
all four gonotrophic cycles (Samarawickrema 1967). There is 
a significant variation in wild adult mosquito lifespan, so we 
incorporate this variability through a random variable, M. We 
follow closely the method of age distributions used to inform age 
progression as described in Goodsman et al. (2018). We diverge 
slightly from Goodsman et al. in that a Gamma distribution is 
used for the rate of development of the adult mosquito population, 
i.e., M ∼ Γ(vAD(t), 1). The gamma distribution, Γ(α, β)has an 
expected value of α/β. Thus, the expected value of the random 
variable used to model the rate of development M is vAD(t). It 
is the calculation of the value of vAD(t) which exploits the rate 
dependence upon temperature

vAD(t) = AD1 + AD2 ∗ Tc (4)

where AD1 and AD2 are derived from fits to laboratory and field 
data (Ciota et al. 2014) (see Fig. 3), and Tc is the data feed of the 
daily average temperature in degrees Celsius. This will adjust the 
shape of the gamma distribution based on temperature while at 
the same time maintaining the observed behavior that extremely 
high or low temperatures yield slower development rates or may 
result in early death. We impose the same restriction, halting adult 
development, as for the eggs and larvae/pupae, when the tempera-
ture drops below 10.02°C.

Adult mosquitoes are assumed to have a temperature-dependent 
death rate. We model the death rate using an exponential decay dif-
ferential equation dA/dt = −δADA, where the rate of change within 
this equation is the Eyring equation (Sharpe and DeMichele 1977). 
For the adult application of the Eyring equation, we use the fol-
lowing form:

−δAD = (Ψadult(Tc + 273.15)e−AEadult/R(Tc+273.15)) (5)

where Ψadult and −AEadult are derived using non-linear least squares 
of the Erying equation from laboratory and field studies (Madder et 
al. 1983) (see Fig. 3); R is the ideal gas constant; and Tc is the average 
daily temperature data feed in Celsius.

Diapause is modeled through a logistic regression, which relates 
the probability of a mosquito being in diapause to the number of 
daylight hours. Studies have shown that diapause induction and 
termination depend on a combination of temperature and day-
light hours, although the precise dynamics are difficult to measure 
(Nelms et al. 2013). As the cycles of temperature and daylight hours 
mirror each other, we will assume the proportion of mosquitoes 
in diapause is dependent only on daylight hours, to limit the 
number of fitted parameters. We use the logistic form to impose 
a cyclical diapause behavior dependent on daylight hours in lieu 

http://academic.oup.com/jme/article-lookup/doi/10.1093/jme/tjac127#supplementary-data
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of a laboratory-derived function. The following formula yields the 
resulting proportion of adult mosquitoes in a given time step which 
are now in diapause:

diapprob =
1

1+ e−(β0+β1DL) (6)

Where β0 and β1 are fitted from the observed trap data, and DL is 
the number of daylight hours per day-step as recorded in the data 
feed for the GTA. We impose β0 < 0 in order to force a larger propor-
tion (at least 50%) of mosquitoes not in diapause when the days are 
longer. Functionally, the mosquitoes that are in diapause do not lay 
eggs or progress developmentally in the model.
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Fig. 3. Functional fits of temperature dependent life history traits for Culex pipiens/restuans mosquitoes from which parameters in Table 1 were obtained. Data 
gathered from (Madder et al. 1983; Ciota et al. 2014). Each data were fit to a linear, Erying, and Briere model, and the model with the lowest AIC was selected for 
use in the process based model. The values used in these fits can be found in Supp Tables S1 and S2 (online only).
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Eggs are added to the first age of the egg domain at each time step 
by adult oviposition using the following formula:

Oviposition totals = Ovirate(1− diapprob)(g1 + g2 + g3 + g4)(7)

where Ovirate is fitted to the observed trap data and gi is the total 
number of adult female mosquitoes transitioning from adult 
gonotrophic stage i to i + 1for i = 1, . . . , 4. The calculation of diapprob 
thus forces the oviposition totals to be informed by the maximum 
average number of daylight hours per day. Note that Ovirate will di-
verge from observed oviposition rates (Madder et al. 1983), as the 
model considers these the eggs that will progress to the larval/pupal 
stage barring a freezing event, not the total eggs or egg rafts laid by 
each adult. The mosquito abundance prediction per day is the sum of 
the total calculated active mosquitoes. We define active mosquitoes 
as female mosquitoes that have transitioned from one gonotrophic 
cycle to the next. These active mosquitoes are actively looking for an 
oviposition location, e.g., (g1 + g2 + g3 + g4) for each day.

For detailed tracking of the total number of mosquitoes on 
any given day, each stage (eggs, larva-pupa, and four adult female 
stages) is split into 100 evenly spaced compartments through which 
individuals move based on development rates as described above (a 
discretization of time and development which is heuristically similar 
to solving a partial differential equation across time and develop-
mental age). Individuals at the end of the compartments are moved 
up to the next stage when development rates push them past the 
end of their current stage. See Fig. 1 for a visual overview of the 
simulation process. Additionally, the precise discrete time/age equa-
tions used in the simulation process can be found in Supplementary 
material.

Parameters We divided the PBM model’s 15 parameters into two 
groups: parameters that we treat as fixed (9) and those that we 
fit during the process of training the model (6). The nine fixed 
parameters are derived from two laboratory and field studies on life 
history traits of C. pipiens/restuans mosquitoes (Madder et al. 1983, 
Ciota et al. 2014). Each set of data on developmental velocities 
and longevity were fit to a linear, Eyring (Eyring 1935) and Briere 
(Briere et al. 1999) model and the best one selected based on the 
Akaike information criterion (Sakamoto et al. 1986). These fixed 
parameter values can be found in Table 1 and the fits to the selected 
model can be seen in Fig. 3. The remaining six parameters are fit as 
a part of the training process of the model. These parameters did not 
have clear biological and data analogs as they incorporated various 
overlapping mechanisms observed in nature into a single parameter 
or a single function. The model is trained on the first nine years 
(405 observations) of observed trap data and tested on the final five 
years of the time series (179 observations). We employ a nonlinear 
least squares approach using the Nelder–Mead minimization 
algorithm (Nelder and Mead 1965) in the optim function included 

in base R to find the parameter estimates that minimize the sum of 
squared differences between the modeled active (females seeking a 
blood meal) population trajectory and the observed trap data. The 
parameters that result from the fitting process using both the average 
normalized precipitation and water station level data can be found 
in Table 2.

The Statistical Model
In light of the importance of environmental variables in calculating 
mosquito abundance, we investigated these data streams without a 
mechanistic model to see whether the data are sufficient to deter-
mine the fluctuations in the abundance of mosquitoes. Using a linear 
model, we aimed to describe the relationships between the mosquito 
trap data and our environmental variables (temperature, daylight 
hours, and precipitation/water levels).

log(observed mosquitoes) = β1DL+ β2H2O+ β3Tc + E

This method required setting any observed mosquito averages that 
were equal to zero to some small value E > 0 as the analysis was 
performed on a log scale. For this data set, there was only one such 
observation recorded. In the event of a higher proportion of observed 
zeroes zero-inflated regression methods could be implemented (Zuur 
and Ieno 2016). This linear model was trained in R using glm and 
the same training data as the PBM.

Results

The output of both models using the parameters given in Tables 1 
and 2 for the PBM and Table 3 for the statistical models is displayed 
in Figs. 4 and 5, respectively. The PBM with either water or pre-
cipitation inputs uniformly outperformed its statistical counterpart 

Table 1. Description of parameters within the PBM model which 
were derived from published laboratory findings on the effect of 
temperature on life history of Culex pipiens/restuans mosquitoes 
(Madder et al., 1983; Ciota et al., 2014). Plots of the fits can be found 
in Fig. 3.

Variable Description Value 

Ψe Eyring equation for egg development rate 232,403
AEe Eyring equation for egg development (neg.) 46,229
ΘT Briere eqn for larval–pupal development rate 1.161 × 10−4
Tmin Min temp larval–pupal development rate 10.07 C◦

Tmax Max temp larval–pupal development rate 34.20 C◦

AD1 Adult development rate -0.111252
AD2 Adult development rate 0.013427
Ψad Adult mortality rate 13,327
AEad Adult mortality rate (negative) 53,135

Table 2. Description of parameters within the PBM model which were fitted using the Nelder–Mead Algorithm, constraining β0 < 0, to en-
force biologically reasonable diapause behavior either using the Water Station Level Data Feed, Water Level or using the Precipitation Data 
Feed, Precip.

Variable Description Water level Precip 

β0 Diapause intercept −4.731 × 10−6 −4.043 × 10−7

β1 Slope proportion in diapause (neg.) 0.4671 0.5015
Ovirate Oviposition rate 9.1700 7.2710
Init Initial condition in each age stage 9.8047 10.8090
α1 Density-dependent mortality rate parameter −6.2720 −6.8147
α2 Density-dependent mortality rate parameter −29.2248 −25.9874

http://academic.oup.com/jme/article-lookup/doi/10.1093/jme/tjac127#supplementary-data
http://academic.oup.com/jme/article-lookup/doi/10.1093/jme/tjac127#supplementary-data
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along all error metrics. For example, the PBM trained on normalized 
averaged water station levels had an RMSE of 4.706 as compared 
to 6.574 for the statistical model with the same data feed across the 
complete data set. The PBM with normalized averaged precipita-
tion did not perform nearly as well, as evidenced by lower RMSE 
for the PBM with water stations across all data splits, but with an 
RMSE of 5.278 over the complete data set it still outperformed the 
analogous statistical model which had an RMSE of 6.527. This was 
true of the training and testing data splits. The results from MAE, 
which does not penalize for large errors nearly as much as RMSE, 
displays similar results. Finally, the R Pearson correlation values 
for the PBM are all above 0.6 while all correlation values for the 
statistical model are under 0.4. This comparison supports the obser-
vation that a process-based model capturing mosquito population 
dynamics provides predictive value above and beyond a standard 
exclusively data-driven approach. Table 4 summarizes the three 
standard error metrics for the two model types and the two water 
availability inputs.

In terms of the error metrics, the performance of the PBM with 
water station levels and precipitation is similar, although the errors 
for the water station data are lower across all three data splits. 
The only metric for which the precipitation data out-performed 
the water station data is the correlation for the test data set, 0.701 
versus 0.687. The year with the best performance for both data 
feeds in training is 2005, with root mean squared error, relative to 
the number of observed mosquitoes that year, of 0.00679 for water 
station data and 0.00740 for the precipiation data. The worst per-
forming testing year is 2009 for both data feeds (RRMSE: 0.01708 
[Water Levels], 0.02126 [Precip]), where there are clearly two outlier 
observations that the model did not capture. For the testing years, 
2016 is the best performing (RRMSE: 0.01163 [Water Levels], 
0.01003 [Precip]), while 2015 and 2013 are the worst performing 
years for water station precipitation data, respectively (RRMSE: 
0.01537 [Water Levels], 0.01710 [Precip]). Of note is that 2017, 
which has the highest peak of all years tested is among the best of 
the testing years for the model driven by water station data, while it 
is among the worst performing years for the model based on precipi-
tation data. While these differences exist, numerically the differences 
between the values are quiet small year to year, making it difficult to 
determine the best overall model. For further distinction between the 
two data feeds and their predictive power in the PBM, we can turn to 
more alternative measures like the difference between the modeled 
peak and the observed peak. Table 5 contains the differences in the 
peak predicted by the models for the 5 yr of testing data.

The PBM with water station-level data reproduces the inter-
annual variation as observed in the trap data. In particular, we see in 
Fig. 4 that it better captures the peak behavior of four of the 5 yr in 

Table 3. Linear model coefficients for the two statistical models 
trained using daylight hours, temperature, and the two water feeds 
Precipitation and Water Station Levels.

 Precipitation Water level 

(Intercept) −4.06 −4.01
Daylight hours (DL) 0.30 0.31
H2O (Precip or Water) −1.30 −3.29
Temperature °C 0.09 0.08
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Fig. 4. Mosquito abundance predictions from our process-based model using water stage gauge (orange) and precipitation (blue) data overlaid on observed 
mosquito trap averages (black dots) in the GTA from 2004 through 2017. The vertical red line (y = 3,300 day-steps equivalently January of 2013) indicates the 
separation between the training data used to fit parameters and the withheld testing data.
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the testing set. It averages a difference of 3.16 mosquitoes per trap 
at the peak compared to 12.09 for the PBM with precipitation data. 
This is reflected quantitatively in Table 5 where the PBM with water-
level data has the smallest difference in magnitude of the peaks from 
the data for all testing years besides 2016. In fact, the only instance 
of the statistical model out-performing the PBM is in 2016, where 
the precipitation informed statistical model had the lowest magni-
tude difference in the peak. The predicted abundance of the PBM 
with water station-level data indicates that it has a demonstrable ef-
fect in capturing the magnitude of the observed mosquito abundance 
data, especially in flooding years, e.g., 2013 and 2017.

Figure 6 shows the total egg, larvae/pupae, and adult populations 
alongside the active mosquito population that is used to train the 

model. The ranges for the total egg, total larvae/pupae, and adult 
population are significantly larger, as the active mosquitoes is a 
small subset of the adult population that is transitioning between 
gonotrophic stages. The eggs and larvae/pupae stages closely mirror 
the dynamics of the active (egg laying) population; however, the 
dynamics of the total population reflects more complex behavior, 
with adult mosquitoes coming to an equilibrium at the beginning of 
winter, and dying off as temperatures drop.

Discussion and Conclusion

Our model was parameterized for and fit to C. pipiens/restuans trap 
data from the GTA, and shows considerable predictive value in the 
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Table 4. Comparison of the errors for the PBM and the statistical GLM built using either water level or precipitation measurements. For 
the purposes of comparing to other published models, relative errors can be obtained by dividing the above values of RMSE and MAE by 
5,409.224.

Error metric Model type 

Train Test Complete

Precip Water Precip Water Precip Water 

RMSE PBM 4.852 4.284 6.135 5.543 5.278 4.706
Statistical 5.991 5.985 7.602 7.743 6.527 6.574

MAE PBM 3.270 2.906 4.382 4.095 3.611 3.270
Statistical 4.172 4.144 5.483 5.633 4.574 4.600

R
Pearson

PBM 0.636 0.717 0.701 0.687 0.629 0.712
Statistical 0.383 0.383 0.383 0.395 0.376 0.370
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test data set over a standard statistical approach, as it has lower 
errors and is better able to capture the inter-annual variation in peak 
mosquito observations. Our model has further advantage over the 
basic statistical framework because we are able to generate popula-
tion estimates for all the life stages modeled using our mechanistic 
approach. The PBM can use various environmental data streams to 
drive the dynamics of the model and in particular we investigated 
the efficacy of two different sources of hydrological data, precipita-
tion and water gauge data. We found that both can capture the sea-
sonal dynamics of mosquito abundance; however, the water station 
gauge measurements capture the amplitudes of the peak number of 
mosquitoes better than precipitation measurements.

Though temperature and precipitation levels, when used as drivers 
or predictors in mosquito population models, provide an excellent 
correlation to observed populations, we observed that model accu-
racy for peak mosquito abundance can be improved by adding water 
station levels as a proxy for water habitat availability. Because they 
are a function of absorption and runoff processes on the ground, 
water levels measured at hydrological stations may be more reli-
able representations of standing water availability than precipitation 
measurements, which are known to be highly spatially variable (Smith 
et al. 2004). Over-bank flow, as measured by river water gauges, is 
a direct quantification of flooding. Combining flood-level informa-
tion with temperature and daylight hours drivers better predicted the 
abnormally high mosquito population years than a predictive model 
that incorporated just the latter two variables. The water station levels 
also appear to incorporate the lag between mosquito populations and 
aquatic habitat availability. This may be because precipitation meas-
ures are taken during rainfall. In contrast, the water station levels are 
taken at locations where rainwater flows and collects in the following 
hours and days. Thus water stage gauge data could better inform 
standing water needed for C. pipiens/restuans aquatic life stages.

The optimal combination of life cycle attributes, data sources, 
and methods that best captures changes in the year-to-year abun-
dance of mosquito populations is still unclear. For this study, we used 
measurements of water in natural habitats (precipitation and water 
gauge data) as a proxy for aquatic habitat availability to approxi-
mate the dynamics of C. pipiens/restuans mosquitoes in an urban/
suburban environment. Some mosquito species breed primarily in 
human created aquatic sites. Applications of this model to other 
mosquito species or locations may require more explicit modeling of 
this behavior to accurately capture mosquito aquatic dynamics. The 

complexity of the inter-dependence of the mosquito life cycle with 
environmental factors has led to the wide variety of models with var-
iation in accuracy and assessment of the usefulness of different data 
streams cited here. In terms of data streams used, data processing, 
and methods for calibration and validation, our models are com-
parable to existing research. Temperature is used as the dominant 
climatic variable in most models, and precipitation appears almost 
as frequently. When climate data are collected from multiple stations 
within the region of interest, daily averages are often used for both 
the environmental data and mosquito counts, which we mirrored in 
our study. Some existing models include non-climatic factors such 
as diapause or varying forms of density-dependent competition 
(Ahumada et al. 2004, Watanabe et al. 2017, Lou et al. 2019). As 
outlined in the introduction and above, it is difficult to capture the 
high year-to-year variation in abundance of C. pipiens/restuans mos-
quito populations with temperature alone. We agree with Otero et 
al. (2006) that incorporating age structure in a mechanistic model is 
an important aspect of capturing the year-to-year variation.

Our model controls the progression from one life stage to the 
next independently to reflect actual mosquito development and can 
guide control measures and account for weather conditions that differ 
from the previously observed input. It has the advantage of tracking 
every stage of the mosquito life cycle from eggs through host-seeking 
females, which is important in determining how many adult females 
are active in a given period for pathogen spread. Although statistical 
models can identify the significance of environmental factors related to 
mosquito abundance, they do not include mechanistic determinants of 
how the factors influence abundance biologically. Mechanistic models 
can account for the interactions among the environmental parameters 
and mosquito abundance. Furthermore, the mechanistic approach 
generates additional information outside of a quality of fit. The PBM 
can generate daily population estimates for all modeled age stages, 
not just the population that is matched to data as we saw in Fig. 6. 
Thus, the PBM model provides more insight into these populations 
that could lead to targeted mitigation and interventions, broader 
modeling applications, and the ability to flexibly fit to multiple types 
of data if available. Somewhat unusually, the PBM performs better 
than a standard statistical model in predicting mosquito abundance. 
Qualitatively, all four models match the timing of the seasons present 
in the data. However, the clearest difference between the models can 
be seen in the magnitude of the modeled peaks. The mechanistic PBM 
better captures year-to-year variation in the peak of the mosquito 
season compared to the purely statistical model. This is likely because 
there are nonlinear and lagged interactions between mosquito popu-
lation dynamics and the exogenous variables we use to predict them 
that are difficult for statistical models to capture.

The PBM model does not require new initial conditions every 
year, instead explicitly modeling diapause triggered by daylight hours 
and weather inputs to determine emergence and densities early in the 
year. This reduces the number of parameters that need to be fitted 
to data and allows the model to be run in perpetuity. We ran the 
model for 13 yr across the entire GTA with no re-initialization, in-
stead of being restricted to a single year at a time. As a result of this, 
the PBM does produce more noisy behavior at the beginning of the 
season than the statistical model does. To account for stochasticity, 
particularly at the beginning and end of seasons, the models uses a 
gamma distribution to stochastically model the rate of development 
of the adult mosquito population. This stochastic behavior interacts 
with the changing diapause behavior as the days lengthen, causing 
the model to output the low levels of active mosquitoes early in 
the season. We currently have no way to validate this behavior as 
mosquito trapping in Ontario begins in June while this behavior is 
observed in the model in April and May each year.

Table 5. The difference between observed peak mosquito average 
and the predicted peak values of the corresponding season based 
on the use of the water data feed versus the precipitation data feed 
in the PBM and the Statistical GLM are listed as absolute values 
for the test data years. The smallest difference between the four 
models is highlighted in green. The PBM model with water gauge 
data out-performs both the statistical models as well as the PBM 
with precipitation data 4 out of 5 yr.

Year Model Type Peak Diff Water Peak Diff Precipitation 

2013 PBM 1.18 21.36
Statistical 23.43 21.90

2014 PBM 1.87 8.90
Statistical 5.57 5.03

2015 PBM 2.01 10.16
Statistical 7.80 6.99

2016 PBM 9.38 7.37
Statistical 7.43 6.95

2017 PBM 1.36 12.63
Statistical 11.29 10.25
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Our PBM could be particularly useful when applied to the effects 
of climate change on mosquito-borne disease risk. Since the availa-
bility of standing water in cities is directly impacted by precipitation, 
it is essential for local agencies to be able to anticipate how increases 
in precipitation and flooding, along with temperature change, will 
impact risk of WNV in the future effectively. Climate change has 
already been shown to cause more extreme weather patterns, which 
could lead to increased rainfall, flooding, and soil moisture in tem-
perate regions like Toronto (Pyke et al. 2011, Kienzle et al. 2012). 
Knowing the fluctuation in the size of mosquito populations during 
peak seasons of activity will establish a basis for the severity of public 
risk for contraction of the WNV and other mosquito-borne diseases.

Water levels within an urban area will almost certainly depend 
not only on weather but also on water management strategies. 
Municipalities often have complex systems for managing stormwater 
as well as infrastructure for modulating water levels in municipal 

rivers and waterways (Villarreal et al. 2004, Perez-Pedini et al. 2005, 
Pitt and Clark 2008, Tingsanchali 2012). Stormwater management 
affects the availability of breeding habitats for mosquitoes in urban 
settings and can impact the flushing of mosquito populations (Water 
of 2005, Bélanger 2008). The GTA focuses its water management 
strategy around local water management, working to divert water 
within regional sub-basins (Bélanger 2008, Di Gironimo et al. 2013, 
Toronto and Authority 2019). Previous stormwater management 
reports have noted that this strategy can cause localized flooding 
events (Di Gironimo et al. 2013). 2013 was an extreme flood year in 
Toronto. Based on our results, the process-based model does better 
than the linear model of forecasting mosquito responses to this ‘ex-
treme’ event. In future work, it will be important to consider other 
areas with varying water management strategies to see whether the 
importance of water station data holds. Thus, water levels may not 
be a better predictor than precipitation in some regions. That was a 
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motivation for developing the model to use either precipitation or 
water-level data.

One limitation of this model is that as a result of being trained 
on averages per trap per day, all populations will necessarily be 
average population sizes per trap area per day. To obtain total pop-
ulation sizes for the entire study area, one must scale by the number 
of traps. Many traps go in and out of commission, and it is not 
clear from the data which traps are live on a given day besides 
the ones that report mosquitoes that day. We plan in future work 
to develop processes by which population sizes over a region or 
study area can be adjusted to account for numbers of traps on a 
given day.

Our process-based discrete, semi-stochastic model is also limited 
in that we do not have the mathematical theory to rigorously iden-
tify equilibria or quantify uncertainty outside of parameter sensi-
tivity as we would with a differential equations model. The focus of 
this model, however, was not a mathematical analysis but a novel 
method for fusing environmental data along with a laboratory-
based understanding of the progression of C. pipiens/restuans life 
stages for creating a model which could replicate field observations 
of mosquito abundance. In particular, we wanted to capture better 
the year-to-year variation in abundance resulting from flooding or 
other environmental drivers. Our model has demonstrated that data 
alone are not as informative as the fusion of data and developmental 
dynamics. We have also highlighted that the type of data streams 
used matters. The use of water stage gauge measurements resulted 
in a more accurate prediction of the magnitude of population size 
throughout the years, particularly in flood years. We plan to do fu-
ture research on testing the model at additional locations across 
North America, adapting to other mosquito species, and coupling 
the mosquito dynamics explicit to models for human case counts of 
mosquito-borne diseases.
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