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ABSTRACT

Nowadays, the massive amount of data generated
by modern sequencing technologies provides an un-
precedented opportunity to find genes associated
with cancer patient prognosis, connecting basic and
translational research. However, treating high dimen-
sionality of gene expression data and integrating it
with clinical variables are major challenges to per-
form these analyses. Here, we present Reboot, an
integrative approach to find and validate genes and
transcripts (splicing isoforms) associated with can-
cer patient prognosis from high dimensional expres-
sion datasets. Reboot innovates by using a multivari-
ate strategy with penalized Cox regression (LASSO
method) combined with a bootstrap approach, in ad-
dition to statistical tests and plots to support the
findings. Applying Reboot on data from 154 glioblas-
toma patients, we identified a three-gene signature
(IKBIP, OSMR, PODNL1) whose increased derived
risk score was significantly associated with worse
patients’ prognosis. Similarly, Reboot was able to
find a seven-splicing isoforms signature related to
worse overall survival in 177 pancreatic adenocar-
cinoma patients with elevated risk scores after uni-
and multivariate analyses. In summary, Reboot is an
efficient, intuitive and straightforward way of find-
ing genes or splicing isoforms signatures relevant to
patient prognosis, which can democratize this kind
of analysis and shed light on still under-investigated
cancer-related genes and splicing isoforms.

INTRODUCTION

The improvement of prognostic prediction and the iden-
tification of potential biomarkers and therapeutic targets
are major interests in oncology (1,2). To achieve these
goals, large consortiums have been created, generated and
made available an unprecedented amount of data, which
includes clinical (e.g. survival time, tumor recurrence and
treatment) and molecular information (e.g. mutation and
gene expression profiles) from cancer patients (3,4). In par-
ticular, a number of studies have shown that alterations
in gene expression (5,6) and in splicing profiles (7,8) are
pivotal to tumorigenesis. Once these alterations are es-
tablished, researchers are often interested in pinpointing
genes or splicing isoforms impacting the prognosis of pa-
tients, which are naturally suitable therapeutic targets or
biomarkers.

In this scenario, Cox regression models are the gold stan-
dard methodology to find genes or splicing isoforms associ-
ated with cancer patient survival. Most commonly, analyses
performed on datasets with a large number of covariates are
either based on simple univariate regression models or their
derived forms for variable selection (9). However, multivari-
ate regression models are more suitable for multifactorial
phenomena due to their ability to provide synergistic and
antagonistic interrelation for explanatory variables (10,11),
a typical condition when dealing with complex diseases like
cancer.

Nevertheless, such traditional models are susceptible to
data idiosyncrasy. For instance, considering the high num-
ber of covariates usually present in gene expression data, it
may be a challenging task to build Cox models accounting
for all of them with high accuracy (12). In a first attempt to
overcome this limitation, some methods such as the Least
Absolute Shrinkage and Selection Operator (LASSO) have
been implemented to simultaneously estimate coefficients
and treat data high dimensionality using variable selection
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techniques (13). Nonetheless, these implementations ordi-
narily exhibit poor performance for large datasets, e.g. gene
expression data generated by RNA sequencing methodolo-
gies, leading to struggling in the algorithms’ convergence
steps. Additionally, high collinearity and low variance of
gene expression may result in incorrect estimations of the
individual contributions of genes and even the identification
of redundant variables in a derived model (14). Moreover,
finding and testing the prognostic value or biomarker po-
tential of a gene set is a demanding task for researchers and
clinicians without extensive bioinformatics training (15). To
aid, several computational tools have been created, but still
with flaws inherent to them, namely (i) finding genes that
are suitable for accomplishing the user’s goals; (ii) difficul-
ties to determine the exact data type and even the appro-
priate method for user’s experiments; (iii) impossibility to
customize analyses and inputs, among others (16). An easy-
to-use command-line tool is routinely a worthy and more
powerful option.

Here, we present Reboot, an algorithm to identify and
validate gene or transcript (splicing isoform) signatures
highly associated with patient prognosis from high dimen-
sional datasets. Reboot innovates by using a multivariate
strategy with penalized Cox regression––LASSO method
combined with a bootstrap approach. Our algorithm deals
with collinear variables inherent in gene expression data by
preventing redundancies and incorrect estimates, thereby
removing genes with low impact on survival, i.e. low ex-
pression variance among individuals. Reboot provides com-
plementary statistical tests to bolster gene signatures asso-
ciated with patient survival or any other endpoint chosen.
Furthermore, Reboot generates supporting figures, such as
Kaplan–Meier curves and forest plots to facilitate the in-
terpretation of survival outcomes. Finally, Reboot seeks
not only genes but also splicing isoforms (transcripts) as-
sociated with patient prognosis, successfully managing to
cope with the escalation of the analysis and incorporating
a deeper level of transcriptomic data interpretation to sur-
vival analyses in a practical way.

MATERIALS AND METHODS

Usage and performance

Expression and clinical data from TCGA (https://portal.
gdc.cancer.gov/) were obtained from individuals that pre-
sented only a single primary glioblastoma tumor by an in-
house R script (toyfordocker.R found in https://galantelab.
github.io/reboot). Exclusively for this analysis, gene expres-
sion values were obtained (in FPKM) from pre-processed
TCGA datasets. The same 50 randomly picked genes were
used in all assays with exception of concomitant variation
of both group size and number of iterations, in which 500
genes were randomly picked. For time comparisons, laptop
and server specifications are: CPU: Intel(R) Xeon(R) Sil-
ver 4114, 2.20 GHz, 128 GB of RAM; and CPU: Intel(R)
Core (TM) i7-8550U 1.80 GHz, 16 GB of RAM, respec-
tively. All-time assays were computed with the parameter
‘M’ and all others were set default unless otherwise stated.
All linear regressions (Pearson’s correlation) and plots were
generated in R.

Gene and transcript expression profiles

We used Kallisto (17) with GENCODE (https://www.
gencodegenes.org; v29, as reference to the human transcrip-
tome) to obtain the transcript expression profiles and (with
a further step using tximport (18). This approach was used
in normal (708 esophagus samples from The Genotype-
Tissue Expression [GTEx]) and in cancer samples from The
Cancer Genome Atlas (154 samples from glioblastoma, 248
samples from Low grade glioma grade II, 180 samples from
triple- negative breast cancer (classified according to (19))
872 samples non-triple negative breast cancer, 82 samples
from esophageal adenocarcinoma and 177 samples from
pancreatic adenocarcinoma. To 167 pancreatic samples, we
used Kallisto’s result available through the UCSC Xena
portal (toil.xenahubs.net/).

Differential gene expression

Differential gene expression of GBM versus LGG-II, NTN-
BRCA versus TN-BRCA, PAAD versus (normal) pancreas,
ESCA × (normal) esophagus samples from TCGA (cancer
samples) and GTEx (normal samples) was performed using
DESeq2 (20), and we considered as up-regulated only genes
presenting a |log2FoldChange| ≥ 2 and false discovery rate
(FDR) adjusted P-value < 0.05.

Differential transcript expression

All analysis of differential transcripts usage was performed
using SUPPA2 (Trincado et al. 2018; version 2.3). We con-
sidered as significant only transcripts presenting a |�PSI| ≥
0.1 and FDR adjusted P-value ≤ 0.05.

Functional analyses

For Gene Ontology (GO) enrichment analysis, we used
ShinyGO (21) and REVIGO (22) web tools. ShinyGO was
also used to evaluate cancer hallmarks from the Molec-
ular Signatures Database - MSigDB (www.gsea-msigdb.
org/gsea/msigdb/) and KEGG pathways (www.genome.jp/
kegg/). Only functional terms with an FDR < 0.01 (hyper-
geometric test) were considered relevant. Protein–protein
interaction analysis was performed in Cytoscape (23) using
the STRING database (24).

3D structure prediction

MCFL2-201, MCF2L-232, HTT-201 and HTT-202 tran-
script nucleotide sequences were submitted to ORFfinder
(25) with default values. The longest positive open reading
frames (ORFs) were then submitted to Pfam (26). Finally,
the amino acid sequences of all transcripts were submitted
to Phyre2 (27); version 2.0 for 3D structure prediction in
‘intensive’ mode.

Drugs and target prediction

To evaluate the clinical relevance of genes and transcripts,
we obtained information from three databases: (i) Genes
considered either successful, patented, under clinical trial
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or research drug targets according to the Therapeutic Tar-
get Database (TTD) (28); (ii) Drugs and targets informa-
tion from the Clinical Interpretation of Variants in Can-
cer (CIViC) (29); and (iii) Genes directly linked to clini-
cal action from the TARGET database (https://ocg.cancer.
gov/programs/target). Data from these three databases were
then overlapped with the lists of genes and transcripts
present in the signatures generated by Reboot.

Comparison of Reboot against similar tools

We compared Reboot against other similar tools available
in the literature (HDMAC) (30), Biospear (31), BhGLM
(32) and KM-Plotter (33). Twelve features were evaluated
in the comparison: (i) ‘Penalized cox regression’: employ-
ment of an algorithm that uses LASSO, Ridge or elastic net
regression models; (ii) ‘Bootstrap’: implementation of boot-
strap resampling of features; (iii) ‘Web interface’: possibil-
ity of running the tool totally or partially in a web inter-
face; (iv) ‘Detailed documentation’: availability of extensive
documentation, including usage examples and commands,
explanation about main parameters and installation guide;
(v) ‘High dimensional data’: computational and method-
ological support to the analyses of >1000 genes; (vi) ‘Eval-
uation of clinical parameters’: support to the analysis of
clinical data in a multivariate way; (vii) ‘Pre-filtering’: pre-
checking steps to evaluate the viability of input variables,
e.g. filters of variance and Schoenfeld test; (viii) ‘Integra-
tive approach’: support to both identification of molecu-
lar signatures and survival analysis based on produced sig-
natures in an integrative way; (ix) ‘Validation’: support to
computational validation of obtained molecular signatures
in independent datasets; (x) ‘Graphical signature’: availabil-
ity of graphical representations for signature regression pa-
rameters; (xi) ‘Graphical survival’: availability of graphical
outputs in survival analyses, such as Kaplan–Meier curves,
score, Hazard ratio visualization; and (xii) ‘Command line’:
availability of a command line interface to facilitate the au-
thorization of repetitive tasks (runnings) and integration to
other pipelines.

Reboot web interface

Reboot’s web application is implemented in PHP (https:
//www.php.net) while interface visual contents are con-
structed using HTML and CSS. Our web application embed
gene and transcript signatures generated from four TCGA
tumor datasets, namely: BRCA, ESCA, GBM and PAAD.

RESULTS

Implementation

Reboot comprises two major modules: regression and sur-
vival (Figure 1). These two modules were designed to work
independently, allowing users to identify genetic signatures
using the ‘regression’ module, and to test the significance
of these signatures in prognosis using the ‘survival’ module,
possibly with additional validation datasets. Moreover, we
also provide a ‘complete’ mode option which enables the
integrated execution of the two modules in case the same
dataset is intended to be used in both analyses.

The Reboot ‘regression’ module is an easy-to-run step,
which encapsulates statistical models to identify genes or
splicing isoforms (transcripts) signatures. In brief, this mod-
ule starts by checking if the provided dataset has a minimum
of 20 variables to perform bootstrap iterations, otherwise
a single regression is performed. A minimum of 10 sam-
ples is required, given that every iteration performs a 10-
fold cross-validation log likelihood task meant for an op-
timal choice of the LASSO coefficient. Additionally, data
attributes with variance lower than a user-defined or de-
fault cutoff are removed. This step also checks for minimum
variability of endpoint statuses, therefore datasets with 10
or more samples that are not variable enough are hindered.
Next, a Schoenfeld test (34) is applied in a univariate way for
each remaining attribute in the dataset using the packages
‘survival’ (35) and ‘survminer’ (Kassambara et al., 2019).
Every attribute that fails this proportional hazard assump-
tion test is automatically removed from the analysis. After
that, a Spearman’s correlation filter is applied to every itera-
tion of the bootstrap process based on the settable fraction
of pairs with a correlation coefficient >0.8 and a P-value
< 0.05. Lastly, also during the bootstrap process, random
samplings of attributes to be evaluated in a multivariate
analysis are executed. Regression itself is performed using a
Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm from the R packages ‘penalized’ (36) and ‘sur-
vival’.

The next step in Reboot is the ‘survival’ module, which is
also easily executable. It receives and tests a gene/transcript
signature produced in the previous (regression) module. In
this step, the Reboot algorithm first produces and assigns a
score for each sample based on the gene/transcript signa-
ture coefficients obtained from the ‘regression’ module and
their corresponding expression values using the following

formula:
n∑

n = 1
C ∗ E, where ‘C’ is the coefficient and ‘E’ is

the expression value. Next, the Schoenfeld test is applied
to verify whether the score addresses the Cox model as-
sumptions. Based on the median value (default) of the ob-
tained scores, all individuals being tested are stratified into
two groups, ‘low’ or ‘high’ score. The log-rank test is then
performed in order to assess the relevance of the observed
differences and to evaluate the relevance of the signature
score as a prognostic factor for a given event, such as overall
survival, progression- or recurrence-free survival. Finally, a
Kaplan–Meier survival curve is generated using the R pack-
age ‘survcomp’ (37). Of note, Reboot offers a multivari-
ate option that allows extension of the survival model with
additional clinical variables, e.g. therapy, age and gender.
If this option is chosen, after applying the Schoenfeld test
to all variables, multiple univariate analyses are performed
and only those under a minimal threshold (see Materials
and Methods section) are selected for the final multivariate
model and illustrated in a forest plot using the R package
‘forestmodel’.

Moreover, Reboot has an alternative to the use of the
median value as a cutoff to stratify patients into ‘low’ and
‘high’ groups based on gene or transcript expression: a re-
ceiver operator characteristic (ROC) curve with the nearest
neighbor estimate (NNE) method and the Youden statistics
(38). In this case, a patient-oriented bootstrap resampling
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Figure 1. Reboot pipeline automatically integrates robust statistical tests, provides plots and allows users to control parameters straightforwardly. In module
I, gene or transcript expression data are filtered for variance and Cox proportional hazard assumptions. Then, genes go through a random bootstrap
resampling selection for LASSO regression and signature generation in case they are not significantly correlated. In module II, a signature-based score is
created and applied in survival analysis. Users are able to perform multivariate analyses, with or without bootstrap resampling and ROC curves, if clinical
data are available. Plots are automatically yielded to the users.

strategy is performed using the R package ‘sjstats’ (https:
//CRAN.R-project.org/package = sjstats). In order to de-
rive highly confident and robust results, additional filters
are applied such as null data removal, the minimum number
of co-variables available and proportionality requirements
(39). As a consequence, these filters ensure that the final
dataset is composed of at least 70% of patients’ data present
in the original one. Additionally, the final dataset also has
a minimum of two co-variables to be tested with the score,
whose less abundant category’s frequency is not <20%. Af-
ter 100 cycles, the relevance frequency of each co-variable
with the event is calculated and only the ones with at least
25% are plotted.

Usage and performance

Reboot was designed to be easy-to-install and of straight-
forward use. To generate a genetic signature, Reboot only
requires a matrix of survival data along with gene or tran-
script expression values as input in the form of a ‘.tsv’ file
(https://galantelab.github.io/reboot for further details). In
order to test a genetic signature, Reboot requires in addition
to survival and expression data, a signature matrix with the
previously produced regression coefficients (‘.tsv’ file auto-
matically incorporated in ‘Complete’ mode), which may be
manually filtered down for further analyses with a more
stringent list of coefficients to avoid false positives (Supple-
mentary Figure S1). In case a multivariate survival analysis
is requested by the user, an additional file containing clini-
cal variables to be tested should also be provided (‘.tsv’ file).
Supplementary Figure S2 shows examples of inputs to Re-
boot.

As output, Reboot generates two main textual results
(‘.tsv’ files): (i) a list of genes or transcripts that comprise the
genetic signature and their corresponding regression coeffi-

cients, which explain the contribution of each gene or tran-
script to the signature, and (ii) the survival impact of the sig-
nature score, including hazard ratio estimates, log-rank P-
values, number of samples and median survival per group,
among others. In addition, multiple plots are produced: (i)
a lollipop plot, displaying the ten most significant gene or
transcript coefficients comprising the signature; (ii) a coef-
ficient histogram, displaying the distribution of all coeffi-
cients in the signature; (iii) a proportional hazard assump-
tions plot (Schoenfeld test); and (iv) a Kaplan–Meier plot
(Figure 1). In case the multivariate option is chosen, Re-
boot returns all files and figures generated in the univariate
analysis plus an additional ‘.tsv’ file containing the survival
results of the signature score along with all other clinical
variables, also visible as a forest plot. Furthermore, if the
score stratification is performed with the ROC method, the
curve is also available. Finally, a histogram of co-variable
frequencies is also provided in case the multivariate option
was done with bootstrap resampling.

In order to analyze the performance and features of Re-
boot, we built a toy dataset containing clinical (Supplemen-
tary Table S1) and randomly picked gene expression data
(Supplementary Table S2) from the Cancer Genome Atlas
(TCGA). Correlation between the number of iterations and
execution time was assessed by varying the number of it-
erations and keeping group size and number of instances
(patients) constant in two independent tests using either a
server or a laptop (see Materials and Methods section for
details). As expected, a linear behavior for running time was
observed and server performance was slightly better than
laptop’s performance. Considering Reboot modules sepa-
rately, ‘regression’ massively accounts for the total running
time, as expected (Figure 2A and B). Variations in group
size or number of patients were also performed, generating
similar results (Supplementary Figure S3).

https://CRAN.R-project.org/package%20=%20sjstats
https://galantelab.github.io/reboot
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Figure 2. Reboot is computationally efficient, working well in laptops and servers. (A) Evaluation of total execution time for a complete run of Reboot
in a server and a laptop according to the number of iterations. Number of iterations varied from 100 to 1000 in steps of 100, keeping group size 20 for
145 patients and 50 randomly chosen genes. Survival was performed in multivariate mode. (B) Table with extracted parameters obtained in (A). (C) Time
assay comparing the impact of group size and the number of iterations on execution time. Group size and the number of iterations varied from 3 to 243 in
powers of 3 and from 2 to 32 in powers of 2, respectively, in both curves. Legend attribution corresponds to the variable that changed in powers of 3. (D)
Coefficient distribution profile obtained from LASSO and Ridge algorithms. (E) Frequency distribution of attribute selection performed with group size
variation. Theoretical average is shown in dashed lines.
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The frequency of sampling for the analysis follows a dis-
tribution in which the expected average is given by equation
(1), where ‘G’ is the group size, ‘B’ the number of iterations,
and ‘N’ the total number of attributes.

f = BG
N

(1)

Since ‘B’ and ‘G’ are both directly proportional to at-
tribute frequency, we also sought to compute time correla-
tion of different increasing rates of group size and number
of iterations with time. For this analysis, a larger group of
500 genes was randomly selected, similar to data retrieved
previously (Supplementary Table S3). Both variables were
increased by powers of 2 and 3 and multiplied, resulting in
two curves containing points with the same frequency (Fig-
ure 2C). Group size increase showed lower time consump-
tion for small frequency values, whereas the number of it-
erations remains linear, even for high values, indicating its
superior efficiency for high attribute coverage (Figure 2C).

Additionally, LASSO and Ridge regressions (40) were
run with a group size of 10 and 1000 iterations and distri-
butions were built using only non-zero coefficients in order
to assess the algorithm’s performances (Figure 2D). As ex-
pected, the LASSO strategy used in Reboot compresses co-
efficients more efficiently, denoted by the highly populated
regions around zero in relation to Ridge (Figure 2D).

Finally, data obtained for Supplementary Figure S3A
was used to compute gene frequency, according to equation
(1), by varying ‘G’ (Figure 2E). Mean standard deviation
for all eight distributions was 4.93, contributing to a reli-
able uniformity of variable assessment despite the stochas-
tic process associated with the iterative process. Therefore,
the frequency of each attribute is recommended to be N/G.
In accordance with equation (1), ‘B’ may be chosen in terms
of equation (2).

B = (N/G)2 (2)

Given that a free variation of ‘B’ performs better in terms
of computational time and prevents bias, ‘G’ may be chosen
for restricted lower values and ‘B’ estimated, with no restric-
tions.

Benchmarking Reboot

In terms of features, Reboot was compared to other similar
tools currently available in the literature (30–33) in order
to evaluate the effectiveness of the steps for jointly or sep-
arately obtaining molecular signatures and validating them
through survival analysis. Our tool is unique considering: (i)
the availability of pre-filtering steps, which is essential in this
kind of analysis of bootstrap procedure for signature extrac-
tion; (ii) integration; (iii) validation in an external cohort;
and (iv) and its modularity of running. The last two features
are, together, a trademark of Reboot, allowing users to not
only test the generated signature score instantly but also val-
idate it on independent datasets. Other Reboot’s function-
alities are shared in a scattered way among the other tools
deeply evaluated here (Supplementary Table S4).

In terms of Reboot’s algorithm, Penalized Cox regression
models are available in all assessed tools except KM-Plotter
(33), which has a slightly different purpose. KM-Plotter has

a web page available to users, as well as HD-MAC (30).
However, these two tools have their web page services as
the only source to perform analyses, whereas Reboot’s web
page is intended for exploration and relatively simpler anal-
yses. This is vital, since KM-Plotter is not able to deal with
high-dimensional data and HD-MAC (in our hand) fre-
quently throws nonspecific errors when one attempts to in-
put high dimensional data (>1000 genes). Reboot has a
web based version and the command line option (recom-
mended), which is the unique alternative for Biospear (31)
and BhGLM (32).

Furthermore, the availability of many automated graphi-
cal resources in Reboot provides useful paths for quick and
deeper analysis procedures. For instance, only Reboot and
HD-MAC are able to evaluate clinical data in multivari-
ate Cox regression analysis, while KM-Plotter only allows
one to subset the raw dataset based on clinical parameters.
Moreover, Reboot provides full detailed documentation in
order to allow users to better explore features and parame-
ters, which is similar to what is found in Biospear (31). Alto-
gether, Reboot’s unique features greatly facilitate the identi-
fication, evaluation and validation of prognostic biomark-
ers in a straightforward way, while allowing the fine-tuning
of computational parameters during the processing of large
amounts of data.

Using Reboot to identify genes related to prognosis in
glioblastoma

To show how straightforward, useful and fast Reboot
can be, we have applied it to a previously selected set of
1013 protein-coding genes up-regulated in glioblastoma
(GBM) in comparison to low-grade glioma (LGG) patients
(log2FoldChange ≥ 2 and FDR adjusted P-value < 0.05;
Supplementary Table S5). Reboot was executed using the
‘regression’ module parameters ‘-G 10 -P 0.3 -V 0.01 -B
1000’ and its execution took 1.15 h in a standard server (see
Materials and Methods section). As a result, we identified
255 genes associated with patients’ overall survival (Supple-
mentary Table S6).

To determine whether these 255 genes could be impor-
tant in GBM patient prognosis, we further investigated
them. First, we performed functional enrichment analy-
sis that revealed 131 genes (51.37%) associated with sev-
eral hallmarks of cancer according to the Molecular Sig-
natures Database (FDR < 0.01, hypergeometric test; Sup-
plementary Table S7, Figure 3A). Among the top 10 en-
riched hallmarks, we found 49 genes linked to at least
two hallmarks relevant for glioblastoma progression and
invasion, including those defining epithelial–mesenchymal
transition (41), encoding components of blood coagula-
tion (42), as well as genes up-regulated in response to hy-
poxia (43) and/or by KRAS activation (44), among oth-
ers. Genes associated with GBM patients’ survival were also
enriched in a number of GO biological processes (Supple-
mentary Table S8) and glioblastoma-related KEGG path-
ways (Supplementary Table S9) (FDR < 0.01, hypergeo-
metric test; Figure 3B). GO groups include, but are not lim-
ited to, processes related to inflammatory response, cell ad-
hesion, proliferation and motility, while the glioblastoma-
related KEGG pathways with the greatest number of genes
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Figure 3. Functional enrichment analyses of genes associated with glioblastoma patients’ overall survival using Reboot. (A) Top 10 enriched hallmarks
of cancer and genes associated with at least 2 of them. (B) Groups of enriched GO biological processes and glioblastoma-related KEGG pathways. (C)
Network of protein–protein interactions from STRING database with cancer driver genes highlighted in bold. (D) Schematic diagram of how up-regulation
of 15 genes in glioblastoma may lead to activation of the PI3K-Akt signaling pathway, a summarized KEGG’s representation with gene products highlighted
in blue (or in grayscale).

were proteoglycans/pathways in cancer, PI3K-Akt signal-
ing pathway and focal adhesion.

We also conducted a protein-protein interaction analysis
using these 255 genes, which displayed a highly connected
gene network comprising four cancer driver genes accord-
ing to the Cancer Gene Census (CGC) database (45); Figure
3C: COL1A1, EGFR, CDK4 and CDKN2C. Moreover,
according to CGC, other six driver genes were observed in
the produced signature, most of them having an oncogenic
role (Supplementary Table S10). Several genes associated

with GBM initiation and progression were also observed in
the network, including EGFR, MMP2, HSPG2 and var-
ious members of the collagen gene family (e.g. COL1A1,
COL1A2 and COL5A1), which encode components of the
extracellular matrix. Of note, fibronectin (FN1) was the
top enriched gene in our network. An intracranial GBM
xenograft model (46) showed that expression of FN1 pro-
motes cell proliferation and resistance to ionizing irradia-
tion, facilitates cell invasion and enhances angiogenic tu-
mor growth. More recently, Liao et al. (47) provided evi-
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dence that fibronectin silencing in gliomas is associated with
disruption of the PI3K-AKT signaling pathway and sub-
sequent inhibition of cell proliferation, as well as promo-
tion of cell apoptosis and senescence. Accordingly, we ob-
served 15 genes highly expressed in GBM, mostly encod-
ing activators of the PI3K-AKT signaling pathway (Fig-
ure 3D), which is frequently activated in glioblastoma (ap-
proximately 90%; (48). Of those, we found around 30 genes
(e.g. EGFR, CDK4, RUNX1, IL6, RRM2 and VEGFA)
with enough support to be considered clinically relevant
from either TARGET, TTD or CIViC databases. Further-
more, other four genes are patented targets for drugs and 27
genes are under clinical trials studies according to the TTD
database (Supplementary Table S11). Altogether, these 255
candidates contain many genes already reported as relevant
to GBM origin, maintenance and progression, suggesting
that Reboot consistently selected a gene list potentially re-
lated to prognosis in glioblastoma.

Using Reboot to identify a minimal gene signature relevant to
GBM survival

Next, we sought to determine the minimum gene set
with the highest regression coefficients that are capable
of explaining differences in overall survival (OS) of GBM
patients using Reboot ‘survival’ module in multivariate
mode (run in docker with parameters ‘-M -C’; execution
time ∼10 s in a standard laptop). Out of the total 255
genes associated with patients’ overall survival using Re-
boot (Figure 4A; Supplementary Table S6), we identified
three candidates: IKBIP, OSMR and PODNL1. They are
among the top 10 genes identified as the most relevant
for the prognosis of GBM patients (Figure 4B) and are
overexpressed in glioblastoma samples in comparison to
low-grade glioma (LGG) (Figure 4C). Moreover, IKBIP,
OSMR and PODNL1 combined score has a significant im-
pact on survival of GBM patients (HR = 0.48 95% CI:
[0.32–0.71], P-value < 0.001; Figure 4D). The median OS
for patients with a high score (>0.34) was 335 days, yet for
the low score group was 468 days. More importantly, the
obtained risk score remained significant (HR = 0.53 95%
CI: [0.33–0.86), P-value = 0.01, Figure 4E) even when con-
sidered together with relevant clinical parameters for GBM
patients, including age at diagnosis, chromosome 19/20 co-
gain, G-CIMP, IDH1 mutation and MGMT methylation
status.

In addition, we attempted to validate this three-gene sig-
nature in an independent cohort of 71 primary glioblastoma
patients from the Chinese Glioma Genome Atlas, CGGA
(47). Similarly, higher combined scores tended to be asso-
ciated with worse prognosis of GBM patients (HR = 0.66
95% CI: [0.38–1.15], P-value = 0.14; Supplementary Figure
S4). The median OS for patients with higher scores (>0.44)
was 381 days versus 550 days for the low score group. Al-
though we observed a clear separation between the higher
and lower score groups in the CGGA cohort, the lack of sta-
tistical support might be explained by the smaller CGGA
cohort size and sequencing depth (71 samples, ∼22.5 mil-
lion reads on average) compared to TCGA (154 samples,
∼64.8 million reads on average). Therefore, this result indi-
cated that Reboot efficiently selected a minimal gene signa-

ture whose high expression is associated with worse GBM
prognosis.

Finding alternative splicing isoforms signature relevant to
pancreatic adenocarcinoma patients’ prognosis with Reboot

Next, we used Reboot to find splicing isoforms related to
pancreatic adenocarcinoma (PAAD) patients’ prognosis.
We chose this tumor type due to the acclaimed need for new
biomarkers in pancreatic ductal adenocarcinoma (PDAC)
(49). Moreover, recent studies have provided insights into
the importance of alternative splicing for the tumorigene-
sis, clinical outcomes and identification of novel therapeutic
targets in PAAD, evidencing the need for the identification
of splicing isoforms relevant to prognosis in this tumor type
(49–51). Using SUPPA2 tool (see Materials and Methods
section), we found a complete set of alternative splicing iso-
forms (ASI) between pancreatic adenocarcinomas (PAAD)
and healthy pancreatic samples, which fed the Reboot’s al-
gorithm to perform the signature (module I) and the sur-
vival (module II) analyses (Figure 5A).

We found 386 significant alternative splicing isoforms, of
which 224 and 162 were up-regulated and down-regulated,
respectively, in PAAD versus healthy pancreas tissue (Fig-
ure 5B). To prove the robustness of Reboot in candidate se-
lection, we randomly split the initial ASI data into train-
ing (70%) and validation (30%) sets (Figure 5C). When ap-
plying the ‘regression’ module on the training dataset (pa-
rameters: -B 100 -G 10 -P 0.3 -V 0.036 -F FALSE; execu-
tion time of 4.71 minutes in a standard laptop), a signa-
ture with 62 transcripts emerged (Supplementary Table S12
and Supplementary Figure S5). Of those, we found isoforms
of three genes with clinical relevance: FCGR2A, RB1 and
NAPRT, based on data from TARGET, TTD and CIViC
databases (Supplementary Table S11). After setting a cut-
off of 0.035 to coefficients, Reboot found a minimal signa-
ture of seven transcripts presenting significant survival re-
sults: CENPF-201, MLKL-202, NUP54-201, MCF2L-201,
TFDP1-207, BBS1-206 and HTT-202 (Figure 5C and Sup-
plementary Figure S6; Supplementary Table S12).

When testing the signature with module II (survival) of
Reboot on the validation dataset (53 patients; parameters:
-M TRUE -R FALSE -F FALSE; execution time ∼5 s in a
standard laptop), we found that patients with higher scores
(values above the median) had worse overall survival (HR:
0.2791 [0.1191–0.6541]; P-value = 0.0018; Figure 5C and
Supplementary Figure S6C). The median OS for patients
in the high score group (>0.17) was 684 days, whereas this
value could not be calculated in the low score group since
less than half of the patients died. Furthermore, this re-
sult remained statistically significant after the multivariate
analysis, accounting for relevant clinical variables such as
age, gender, race, tumor node metastasis (TNM) classifica-
tion (52), histology and grade (HR: 0.3806 [0.1569–0.923];
P-value = 0.0326; Supplementary Figure S6D). Addition-
ally, the same results were observed when applying the score
on the training dataset, as expected (Supplementary Figure
S6A and B), where the median OS for patients in the high
score group (>0.28) was 517 days versus 1332 days for the
low score group. Of note, other endpoints such as disease-
specific (DSS), progression-free (PFI) or disease-free inter-



NAR Cancer, 2021, Vol. 3, No. 2 9

Figure 4. Reboot’s application on the glioblastoma dataset. (A) Histogram displaying the distribution of all gene coefficients obtained using Reboot
‘regression’. (B) Top 10 genes identified as relevant for the prognosis of GBM patients. (C) Boxplots displaying the expression values of a 3-gene signature
identified in GBM patients with Reboot (Wilcoxon test; **P<0.01, ***P<0.001). (D) Kaplan–Meier curve based on the 3-gene signature score identified
in GBM patients with Reboot. (E) Forest plot of a multivariate model including the 3-gene signature score adjusted for clinical parameters relevant to
prognosis in glioblastoma.

val (DFI) may be used instead in order to better fit the data
and meet survival requirements (53).

Further investigation was performed for transcripts with
major contributions to the genetic score (Supplementary
Figure S6). MCF2L-201, which had a significant positive
score, lacks three protein domains (RhoGEF, Spectrin and
CRAL TRIO 2), which are all present in the canonical iso-
form MCF2L-232 (Figure 5D). Regarding the HTT gene,
the HTT-202 isoform, which scored negatively in our signa-
ture, lacks the huntingtin protein region DUF3652, present
in the canonical isoform HTT-201 (Supplementary Figure
S7). Taken together, these results demonstrate that Reboot
is effective not only to identify relevant genes but also splic-
ing isoforms potentially related to cancer.

Using Reboot in other tumor types

To further illustrate the usefulness of Reboot, we also an-
alyzed two additional aggressive tumor types using RNA-
Seq and clinical data from TCGA: TN BRCA and ESCA.
Similar to our previous analyses, Reboot found significant
molecular signatures based on gene and transcript expres-
sion to these tumors (Supplementary Figure S8). For exam-
ple, ESCA signature comprises the collagen gene COL4A5
(54), the membrane gene XK (55) and the intracellular sig-
naling messenger DGKA (56). BRCA gene signature in-
cludes ATP6V1H, a v-ATPase commonly associated with

aggressiveness of different cancer types; MAF1 that reg-
ulates RNA-polymerase III and oncogenic pathways (57)
and ST14 (suppression of tumorigenicity 14 gene), a pro-
tease previously described in association with BRCA (58).

In the transcripts analyses, the minimum isoform based
signature for ESCA and TN-BRCA contain one (PDHA1-
204) and two (SLC22A31 and CSAG3-202) transcripts, re-
spectively. PDHA1-204, similar to its canonical counter-
part PDHA1-206, maintains its functional domain, but
has an extra set of 38 amino acids at the N-terminal por-
tion. SLC22A31 belongs to the SLC family, subclassified
as an organic ion transporter-related (Oat-related) subclade
(59), although specific assays targeting SLC22A31 haven’t
been reported, many associations with disease and promis-
ing therapeutic targets are expected for SLCs (60). The
other transcript, CSAG3-202 is a non-coding version of the
canonical CSAG3 (chondrosarcoma-associated gene) tran-
script. Surprisingly, this gene is part of a large repeated
DNA structure whose expression is majorly in (normal)
testis and in cancer samples (61). This gene has also been
shown to bind to SIRT1, enhancing its activity and promot-
ing tumorigenesis (62).

In terms of treatment options available or under current
research for the full list of genes/transcripts in the signa-
tures, we found some interesting potential gene targets for
TN BRCA (Supplementary Table S11). CCL5 is under a
phase 1 clinical trial for autoimmune diabetes, while ST14,



10 NAR Cancer, 2021, Vol. 3, No. 2

Figure 5. Reboot selects alternative splicing isoforms associated with pancreatic adenocarcinoma tumorigenesis and its patient’s prognosis. (A) Selection
of alternative splicing isoform (ASI) based on transcript expression data from healthy and tumoral pancreas. (B) MA plot showing the mean expression
(in TPM) and �PSI (percent spliced in) values of all ASI. Highlighted ASIs compose the seven-transcripts signature generated with Reboot. (C) ASI
data were split into training (70%) and validation (30%) set to find a transcript signature in survival analysis. Kaplan–Meiers made by Reboot when
using both the training (HR: 0.4428 [0.2719–0.7211]; P = 8e-04) and the validation dataset (HR: 0.2791 [0.1191–0.6541]; P = 0.0018) showed a worse
survival outcome for patients with higher scores (above median value). Follow-up time (days) is shown in the bottom for each group. (D) MCF2L mapping
on the reference genome (1). Canonical (longer: MCF2L-232) and ASI (shorter: MCF2L-201) isoforms, respectively (2). Protein domains encoded from
canonical (MCF2L-232) and ASI (MCF2L-201) isoforms, respectively (3). Predicted 3D protein structure for canonical (MCF2L-232) and ASI (MCF2L-
201) transcripts (4).

found in the minimal gene signature analysis, is patented-
recorded and whose proposed functions include an impor-
tant role in breast cancer invasion and metastasis accord-
ing to the TTD database. Remarkably, the majority of po-
tential new targets for TN BRCA were found in the ‘tran-
scripts’ analysis (Supplementary table S11). For instance,
both genes NRG1 and CHEK1 have their variations in
expression associated with either pre-clinical (CHEK1) or
clinical (NRG1) evidence level for drugs against lung small
cell carcinoma (CHEK1, prexasertib in combination with
olaparib or cisplatin) and lung non-small cell carcinoma
(NRG1, patritumab) according to CIViC database.

This pattern was even more evident for ESCA, where iso-
forms of genes MUTYH, IL15RA and MAP3K4 showed
up for TTD database (Supplementary Table S11), even
though there are only clinical trials (phase 2) for drugs tar-
geting the interleukin IL15RA. However, many tumor types
and non-cancer diseases are being studied under these tri-
als such as pancreatic, bladder and lung cancers. As for
MUTYH and MAP3K4, there is only evidence in litera-
ture for treatment of degenerative diseases (MUTYH) and
melanoma (MAP3K4). It is important to note that these
‘transcripts’-derived predictions require experimental vali-
dation in order to directly test the influence of the expres-
sion variations found for the isoforms reported in this work.

All gene and transcript signatures derived from GBM,
PAAD, BRCA and ESCA tumors are fully available at

Reboot’s web interface (https://www.bioinfo.mochsl.org.br/
reboot/) and may be validated in user-provided datasets.

DISCUSSION

In the past few years, advances in RNA sequencing tech-
nology have provided us an unprecedented opportunity to
find novel gene signatures acting as prognostic or diagnostic
biomarkers in cancer (63). Notwithstanding, treating high
dimensionality of gene expression integrated with clinical
variables is a major challenge when performing survival
analysis, notably by researchers without extensive training
in computational biology. It is therefore an urgent task to es-
tablish robust and straightforward methods capable of han-
dling large datasets and finding these potential biomarkers.
Here we describe Reboot, a user-friendly algorithm to seek,
evaluate and validate genes and splicing isoforms signatures
acting as prognostic or diagnostic biomarkers in cancer. Re-
boot is original and efficient: (i) it combines a multivariate
strategy with penalized Cox regression (LASSO method)
and a bootstrap approach, plus a variety of statistical tests
to find genes or transcripts candidates; (ii) it is easy-to-use,
well documented and of simple installation in a standard
laptop; (iii) it includes effortless steps to visualize results
and to facilitate data interpretation and further analyses in
a convenient execution time.

https://www.bioinfo.mochsl.org.br/reboot/
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As genetic analyses get wider in order to capture the
complexity of intricate diseases such as cancer, a full tran-
scriptome (genes and transcripts [splicing isoforms]) inves-
tigation becomes crucial, which significantly raises the di-
mension of input datasets (64). Availability of tools that
manage to escalate genetic score analysis with high di-
mensional datasets, such as those found in gene expres-
sion data using RNA sequencing, are scarce (31,32). In this
context, Reboot’s main purpose is to allow users, starting
from high dimensional datasets, to find consistent genes
or splicing isoforms signatures related to patient progno-
sis with viable performance. In addition to its command-
line interface, which is the most common option for high-
performance bioinformatics tools, Reboot is also available
in a web interface. To enable the identification of genetic
signatures, beyond all filters exclusively implemented in Re-
boot to automate the data pre-processing step, it uses the
LASSO algorithm, a well-established method for variable
selection. However, given the high collinearity and low vari-
ance of gene expression data, LASSO alone––and simi-
lar algorithms, e.g. Ridge or elastic net––may not prop-
erly converge in a confident, non-redundant set of prog-
nostic biomarkers (30–32). To overcome this issue, Reboot
associates LASSO with an authentic bootstrapping strat-
egy, thus allowing the selection of a more reliable set of
genes from a wide range of input dataset dimensions. Be-
yond that, to the best of our knowledge, there is no state-of-
the-art pipeline that automatically integrates the identifica-
tion of prognostic biomarker signatures from high dimen-
sional data to posterior computational validation of gene
and transcript (splicing isoform) signatures, including clin-
ical data for multivariate analyses. Moreover, another Re-
boot’s trademark is its modularity, where users can either
perform a complete analysis (from signature generation to
its performance test) or a validation alone, with effortless
interpretation of the findings through a number of text and
graphical representations. This is outstanding, since some
tools prioritize the graphical outputs of their survival anal-
yses (31–33), while others focus on using clinical variables
either as subsetting criteria (33) or for multivariate analysis,
indeed (30).

We selected and tested Reboot on multiple TCGA tumor
datasets. In particular, we focused our analyses on glioblas-
toma (GBM) and pancreatic adenocarcinoma (PAAD), two
cancer types presenting a poor survival rate and limited
therapeutic options for their patients (65,66). First, we iden-
tified prognostic genes in GBM associated with various
processes relevant for glioblastoma tumorigenesis, progres-
sion and invasion, e.g. epithelial–mesenchymal transition,
inflammatory response and cell proliferation. This list in-
cludes genes already described as related to GBM or other
gliomas. For instance, MMP2 is highly expressed in gliomas
and it was recently associated with stimulation of vasculo-
genic mimicry in glioma cells (67). HSPG2, in glioma tis-
sues, is related to the transformation of the brain extracel-
lular matrix into the tumour microenvironment and repre-
sents a negative prognostic factor in overall and relapse-free
survival (68). In particular, the epidermal growth factor re-
ceptor (EGFR) is a primary driver of glioblastoma tumori-
genesis, contributing mainly to cell proliferation and inva-
sion (50). Moreover, this gene is a predicted successful target

for drugs such as Cetuximab in colorectal cancer (69) or La-
patinib in breast cancer (70) according to the Therapeutic
Target Database (TTD) (28).

Next, using the ‘survival’ module in multivariate mode,
Reboot found a signature containing a minimal of three
genes (IKBIP, OSMR and PODNL1) associated with GBM
patients’ overall survival. Interestingly, they have emerged
as prominent genes in glioblastoma’s studies. IKBIP has
been described as a novel p53 target with pro-apoptotic ac-
tivity, whose high expression is associated with poor prog-
nosis in GBM (71,72). Although in our results MGMT
methylation was not considered a significant co-variable,
another study has identified the gene IKBIP as part of
a signature that predicts prognosis only in GBM patients
with methylated MGMT promoter (73). OSMR, charac-
terized as a novel key regulator of glioblastoma tumorige-
nesis through EGFRvIII-STAT3 signaling, also correlates
with poor prognosis in GBM patients both independently
and also as part of a 4-gene signature (71,74). Interestingly,
PODNL1 encodes a protein involved in extracellular ma-
trix formation with an unclear role in GBM tumorigenesis.
The latter gene up-regulation has also been correlated with
the poorest survival rates in GBM patients in distinct stud-
ies (75,76). Altogether, it is clear that Reboot identified a
valuable set of genes to be further and deeper investigated
in GBM.

Second, we used Reboot to seek for alternative splic-
ing isoforms associated with pancreatic adenocarcinoma
(PAAD) patients’ prognosis. Indeed, we found in our sig-
nature the transcript RB1-201 and, according to the CIViC
database, there is preclinical evidence of drugs (e.g. doxoru-
bicin, gemcitabine, mitomycin and fluorouracil) to be used
in PAAD patients overexpressing RB1 gene (77). Curiously,
we found the yet poorly explored gene FCGR2A (associ-
ated with transcript FCGR2A-201 found in our signature)
as a predicted successful target for drugs such as SM-101 in
non-cancer diseases like Idiopathic thrombocytopenic pur-
pura (78), according to the Therapeutic Target Database
(TTD) (28). As for cancer, the CIViC database shows clin-
ical evidence that breast cancer patients could be treated
with trastuzumab if the missense variant H167R is present
in this gene (79). Therefore, it is reasonable to think that
variations in expression of FCGR2A or related isoforms
may be good therapeutic targets as well in the future.

As illustrated in our analyses, a genetic score obtained
from differentially expressed transcripts stratifies patients
with worse and better prognosis as efficiently as from
gene analyses. Interestingly, a signature score with only
seven transcripts was enough to yield statistical signifi-
cance in the survival analysis of PAAD patients. Among
them, only three isoforms are canonical (CENPF, MLKL,
NUP54). Some of these genes (e.g. CENPF, MLKL,
TFDP1, MCF2L) have a known influence on cancer, while
others (e.g. NUP54, BBS1 and HTT) have been superfi-
cially studied under the tumoral context. CENPF, for in-
stance, has been related to worse outcomes and survival
in several cancer types (80,81). Another outstanding ex-
ample is the MLKL gene, which was shown to be up-
regulated in pancreatic cancer, as we observed with Reboot,
especially in tumor-invasion conditions (82). The transcrip-
tion factor TFDP1 is a gene with significant somatic copy
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number alterations and corresponding somatic gene ex-
pression changes were observed in papillary thyroid car-
cinomas (83), even though whose functions remain un-
covered in cancer. Additionally, it is considered a prog-
nostic marker in liver cancer (unfavorable), stomach can-
cer (favorable) and renal cancer (favorable) according to
The Human Protein Atlas (84). Inconsistencies in these re-
sults may have arisen from a possible divergence of the
role of different isoforms from this gene. Our results in-
dicate that an isoform (TFDP1-207, down-regulated in
our analysis) other than the canonical (TFDP1-201, up-
regulated in our data) is of great significance for PAAD
patient prognosis, an evidence that more detailed scrutiny
is required for this gene (https://www.proteinatlas.org/
ENSG00000198176-TFDP1/pathology). Taken together, it
is clear that transcript-centered analysis may shed light on
more detailed molecular mechanisms that would not be
possible in a gene-based approach.

Among the best-scored transcripts, MCF2L-201, which
was found to be up-regulated in PAAD, is a compelling
example. The canonical isoform of the MCF2L gene
(MCF2L-232) encodes DBL from the guanine exchange
factor protein family, known to directly interact and reg-
ulate important factors for cell cycle such as Cdc42 and
RhoA complexes (85). It has been shown that the mini-
mal and sufficient catalytic activity of DBL is composed of
a DH and a PH domain linked in tandem (86). Although
MCF2L-201 does not present a DH domain, it keeps a PH
and a SH3 domain. PH domains perform essential contact
with Cdc42 and RhoA in the DBL structure (87). They
are also known to be responsible for protein subcellular
localization and phosphoinositide interaction (88). More-
over, SH3 (Src homology 3) domains are abundant in onco-
genic pathways such as cell migration and proliferation, dis-
tributed along with many different protein structures (89).
SH3 domains have also been implicated in pancreatic can-
cer, specifically due to its relevance for oncogenic path-
ways (90). Although only a few isoforms of MCF2L have
been initially explored, such as MCF2L-203––which does
not catalyze guanine nucleotide exchange on CDC42––and
MCF2L-205––which, on the other hand, activates CDC42
(91)––MCF2L-201 requires further investigation. Details
about how the PH-SH3 protein may act and its role in
pancreatic cancer deserve deeper analyses, even though our
study provides some guidance on that.

The Huntingtin gene is mostly known to cause Hunting-
ton’s disease, being even referenced in a patent to be used
as a new therapeutic target to treat this disease (92), by the
expansion of the trinucleotide CAG in its first exon. Despite
that, it has a wide tissue expression and its trinucleotide ex-
pansion has been correlated to tumor progression, includ-
ing metastasis, and inversely correlated to carcinogenesis
(93). Huntingtin transcript HTT-202 is non-canonical and
we found it down-regulated in pancreatic tumors. Its protein
structure presents neither the characteristic polymorphic
trinucleotide repetitive region nor the main huntingtin an-
notated domain: DUF3652; thus, its function is an enigma.
A similar case involves the BBS1 gene since it is most known
for its association with the Bardet-Biedl Syndrome (BBS)
(94). More interesting is the fact that higher expression of
BBS1 was related to better survival in patients with malig-

nant pleural mesothelioma (95), although in our PAAD sig-
nature this gene was down-regulated. Furthermore, BBS1
was part of a 15-gene signature associated with bone metas-
tasis in breast carcinomas. Specifically, its up-regulation was
correlated to the epithelial to mesenchymal transition status
of the tumor (96). Overall, Reboot’s algorithm makes splic-
ing isoform expression analysis feasible in cancer prognosis.

In conclusion, Reboot is a novel algorithm to seek, eval-
uate, and validate genes and transcripts (splicing isoform)
signatures acting as prognostic or diagnostic biomarkers in
cancer. Reboot brings novelties by combining a multivariate
strategy with penalized Cox regression (LASSO method)
and a bootstrap approach, plus a variety of statistical tests
to find genes and transcripts candidates. Moreover, Reboot
shows its usefulness by identifying prognostic genes and a
minimal set of genes associated with glioblastoma patients’
survival and a splicing isoforms signature associated with
pancreatic adenocarcinoma. Additionally, Reboot has good
performance even running in standard laptops. We believe
that Reboot will be of immediate interest to the cancer re-
search community because it will accelerate and democra-
tize the search for genes and transcripts biomarkers, even by
researchers and clinicians without extensive bioinformatics
training.

DATA AVAILABILITY

Reboot is implemented in R version 4 and available both
as an R script and Docker image that are freely available
under the GNU General Public Licence version 3 (GPL3)
at https://galantelab.github.io/reboot/. Reboot updates will
be announced at its webpage. Docker images will be released
along with new versions. Reboot is also available through a
web interface at https://www.bioinfo.mochsl.org.br/reboot/.
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