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Abstract

Deceptive behavior is common in human social interactions. Researchers have been trying

to uncover the cognitive process and neural basis underlying deception due to its theoretical

and practical significance. We used Event-related potentials (ERPs) to investigate the neu-

ral correlates of deception when the participants completed a hazard judgment task. Pic-

tures conveying or not conveying hazard information were presented to the participants who

were then requested to discriminate the hazard content (safe or hazardous) and make a

response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiolog-

ical data were recorded during the entire experiment. Results showed that deceptive

responses, compared to truthful responses, were associated with longer reaction time (RT),

lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cogni-

tively more demanding process to respond deceptively. The decrement in LPP correlated

negatively with the increment in RT for deceptive relative to truthful responses, regardless of

hazard content. In addition, hazardous information evoked larger N1 and P300 than safe

information, reflecting an early processing bias and a later evaluative categorization process

based on motivational significance, respectively. Finally, the interaction between honesty

(truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that decep-

tive responses towards safe information required more effort than deceptive responses

towards hazardous information. Overall, these results demonstrate the neurocognitive sub-

strates underlying deception about hazard information.

Introduction

Deception is an act by which an individual deliberately withholds the truth and attempts to

convince the others to accept the incorrect information as true, typically for attaining some

benefit or avoiding a loss[1]. We were taught to always tell the truth since childhood, and even
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learned a lot from fairy tales that portrayed severe consequences of lying. A well-known victim

of such consequences is a shepherd boy from Aesop’s Fables who tricked twice the villagers

into believing that a danger was arising: wolves were coming at his sheep on the hill. But later

on no one trusted him again even if the wolves truly appeared, resulting in a tragic ending with

all his sheep killed by the wolves. As a matter of fact, in many cases deceptive acts could induce

confusion about the situation and distrust on the liar. Though deception is frequently thought

to be morally unacceptable, it is not rare in human social interactions, sometimes for malicious

reasons and sometimes for benign ones[2]. Therefore, researchers have gained increasing

interest in uncovering the cognitive process and the underlying neural mechanism for decep-

tion and truth-telling in the recent decade [3–10].

As Pfister et al. [8] noted, two distinct perspectives with quite different experimental

approaches have been adopted by existing researches. The first is concerned with lie detection,

a prominent approach of which is Concealed Information Test (CIT, also known as Guilty

Knowledge Test, GKT)[11,12]. Typical CITs comprise three types of stimuli: deception-rele-

vant probe stimuli that are known by the subjects who are requested to make incorrect

responses in order to conceal their knowledge to these stimuli, target stimuli that are known

by the subjects and request honest responses, and irrelevant stimuli that are unknown to the

subjects prior to the experiment and require honest responses. Knowledge about the probe sti-

muli could be inferred if the physiological responses are stronger for probe stimuli than irrele-

vant stimuli because the concealed information is thought to be meaningful for the subject

[11,13,14]. However, results acquired from CIT-based researches do not directly enhance our

theoretical understanding of deceptive behavior due to the excessive dependence of the para-

digm on recognition of meaningful items [8]. Consequently, many researchers have adopted a

second perspective that is concerned with active lying, which requests the subjects to make a

truthful or deceptive response towards a presented stimuli [4,6,15,16]. Furedy et al. [17] pro-

posed the Differentiation of Deception Paradigm (DDP), which required the same set of sti-

muli be answered twice, once truthfully and once deceptively, and thus eliminated the possible

confounds brought by stimulus significance and probability. Take Johnson and his colleagues’

work as example, subjects were presented with old and new words with equal probability, and

instructed to respond truthfully or deceptively about whether they know the words [3,4,18].

Such a DDP-based old/new paradigm that exploits episodic memory effect has been widely

used [19,20].

More recently, researchers have paid close attention to the deceptive process involving

evaluation that is likely to occur in daily lives instead of relying on memorially based response

conflicts in the old/new paradigm. Dong et al. [15], for instance, presented attractive and unat-

tractive facial photos to the subjects following a cue word, “truthful” or “deceptive”, and

instructed them to make a judgment on the attractiveness of the facial stimuli according to the

cue. It revealed that deceptive response to attractive faces required a longer RT and triggered

higher LPC amplitude than deceptive response to unattractive faces. Moreover, truthful and

deceptive behavior concerning the evaluation of attitude[21], emotion [16,22], self-relevance

[23] and interpersonal familiarity [9] were investigated, and the moderating roles of the evalu-

ations on truthful and deceptive responses were also observed.

However, so far little attention has been paid to the effect on neurocognitive activity when

deception involves hazard information, suggesting a gap in the research. Indeed, deceptions

that relate to hazard information are not uncommon, which could sometimes cause drastic

consequences. For instance, some promoters might claim their new products or technologies

with potential hazard to be absolutely safe, and a parent might prevent his child from attending

a safe activity by claiming it to be dangerous. Furthermore, there is well established literature

showing that hazardous/risky information is processed differently from safe information in
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the brain [24–31]. Hazardous/risky information, in contrast to safe information, has been

found to elicit stronger activations in medial prefrontal cortex [24,25,31], anterior insula

[29,31], ventral anterior cingulate cortex and posterior cingulate cortex[24–26,29], etc. Mean-

while, ERPs studies suggested that hazardous/risky information evoke larger P200 and LPP

amplitudes than safe information [26–28]. Therefore, the primary aim of the current study

was to uncover the neural correlates of deception when it is associated with hazard evaluation

via electrophysiological techniques.

The cue for response type, and the hazard content of the target pictures were manipulated

on a trial-by-trial basis in a cue-target paradigm using factorial design. A cue indicating the

response condition of each trial (truthful or deceptive) was followed by the presentation of the

target, a picture conveying or not conveying hazard information. Participants were asked to

discriminate the hazard content of the target picture and make a response according to the

cue. At the behavioral level, RT and accuracy merit close attention. According to the prior lit-

erature, lying, compared with truth-telling, is consistently associated with longer RT, implicat-

ing that lying is cognitively more demanding[7–9,16,23]. Meanwhile, there are different

findings concerning response accuracy: some researchers have reported lower accuracy for

lying versus truth-telling [18,23], while others haven’t observed such a difference [9,15,16].

ERPs components of interest were the N1, N2, P300 and late positive potential/complex (LPP/

LPC). The frontal N1 component, as the first negativity arising around 100ms after stimulus

onset, is susceptible to attention orientation at the early stage. Smith et al. [32] observed an

enlarged N1 response for unpleasant stimuli than pleasant stimuli over the anterior sites when

asked the participants to rate the valence and arousal of emotional pictures. In addition, larger

N1 amplitude was evoked by threatening stimuli relative to neutral and positive stimuli, which

was thought to index a stronger emotional response and the processing bias for threatening

information [33]. The N2, a negative-going component occurs around 200–350 ms over ante-

rior sites, has been hypothesized to play a critical role in cognitive control, and more specifi-

cally, in conflict detection[34,35]. Wu et al. [36] asked participants to make deceptive and

honest response that were either self-determined or forced, which for the first time observed

that lying elicited greater N2 amplitude than truth-telling. N2 amplitude may be increased

because lying triggers response conflict between an initial impulse to tell the truth and the

opposing objective to lie [7,23]. The P300 is a positive component peaking at approximately

300–400 ms, distributed from frontal to parietal scalp sites and typically maximal over central-

parietal regions. Motivationally significant stimuli have been found to elicit greater P300 com-

ponent [37]. For instance, larger P300 amplitude was evoked by emotional stimuli compared

to neutral stimuli, reflecting increased allocation of attentional resources based on emotional

significance[38,39]. Moreover, P300 is associated with evaluative categorizations, which could

differentiate emotional or threatening stimuli from neutral stimuli during active evaluation

[40,41]. The LPP/LPC, a positivity belonging to the P300 family, generally arises at about 400

ms and lasts for several hundred milliseconds. As Johnson et al. [4] and Dong et al. [15] noted,

an attenuated LPC was induced by deceptive relative to truthful responses, suggesting the

inhibition of truthful responses and the increase of cognitive load for preparing deceptive

responses, which drew the processing resources away from the primary task of responding

truthfully.

In sum, the current study attempted to extend previous deception results by investigating

the behavioral and electrophysiological correlates of deception about hazard information.

In accordance with previous studies, behaviorally, we hypothesized a longer RT and lower

accuracy for deceptive than for truthful responses. With regard to the neural correlates, we

expected the following: (1) an increased N2 and an attenuated LPP for deceptive versus truth-

ful responses, (2) a more negative N1 and an increased P300 for hazardous items compared
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with safe items, and (3) lying about hazardous and safe items would be distinct from each

other, which was reflected by the LPP.

Method

Participants

Twenty-two undergraduates or graduate students (4 females), ranging in age from 20 to 30

years (Mean±SD = 22.94±1.95), were recruited from Zhejiang University. All subjects were

right-handed, had normal or corrected-to-normal vision, and reported no history of neurolog-

ical disorders or mental diseases. The experiment conformed to the Declaration of Helsinki

and was approved by the Neuromanagement Laboratory Ethics Committee at Zhejiang Uni-

versity. All subjects gave written informed consent prior to the experiment and were paid for

their participation. Data from three subjects were discarded, two for excessive artifacts during

EEG recording and one for misunderstanding the rules of the task, resulting in nineteen valid

subjects for the final data analysis.

Materials

The stimuli were 20 safety signs or public information graphical symbols selected according to

the recommendation list of the Chinese National Standard [42,43]as they are clearly discern-

ible in terms of whether they convey hazard information. All pictures were processed by Pho-

toshop software (Adobe Photoshop 13.0; Adobe Systems Incorporated, San Jose, California,

USA) to ensure consistency in background, brightness, contrast and color saturation, and

adjusted to a uniform size (561 by 472 pixels). Based upon previous studies on safety warnings

[28,44,45], the pictures were classified by the strength of perceived hazard into a hazardous

group with high hazard level and a safe group with low hazard level (10 pictures in each

group). To confirm the classification, twenty-three subjects who did not participate in the

electrophysiological experiment rated the strength of perceived hazard of the pictures using

a seven-point Likert scale (1 = very low, 7 = very high). Paired t-test showed a significant

difference in the mean hazard levels between the two groups (hazardous group = 5.80, safe

group = 3.16; t(22) = 9.466, p = 0.000). The alpha reliability coefficients were 0.775 and 0.944

for hazardous and safe groups, respectively.

Procedure

Subjects were comfortably seated in a dim, sound-attenuated and electrically shielded room

to complete two blocks of trials. A keypad was provided to the subjects to make responses.

The experimental procedure was introduced on paper handouts and the subjects were

challenged to lie as skillfully as they could to deceive our experimenter. Before the formal

experiment, each subject had 20 practice trials to become familiar with the experimental

procedure. Stimuli were delivered by E-Prime 2.0 (Psychology Software Tools Inc., Pitts-

burgh, PA, USA) and presented on the computer screen against a grey background at a dis-

tance of 90 cm from the subject. As illustrated in Fig 1, in each trial, a central fixation cross

was presented for 250 ms, followed by an empty screen for a random duration of 400–600

ms. Then, a cue word, “truthful” or”deceptive” (in Chinese), appeared at the center of the

screen for 1500ms, after which a picture embodying or not embodying hazard information

was presented with a visual angle of 6.621˚×5.093˚. The subjects were asked to make a corre-

sponding response to the picture stimulus according to the cue. In truthful condition, sub-

jects were requested to make a truthful “safe” or “hazardous” judgment on the picture; while

in deceptive condition, they were instructed to make a deceptive “safe” or “hazardous”
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judgment by giving an opposite response. Therefore, four experimental conditions (i.e.,

truthful/safe, truthful/hazardous, deceptive/safe and deceptive/hazardous) were included in

this task. The subject had to respond as soon as possible, and the response deadline was set

to 1500 ms. Response keys were counterbalanced among the subjects such that half of them

were required to press “1” for hazardous and “3” for safe while the other half received oppo-

site instructions. After the picture stimulus vanished, an inter-trial interval lasted for 500

ms. In each condition, there were 10 different pictures, each of which was shown for four

times; thus, there were 160 trials altogether. The order of the trials was random within each

block.

EEG data acquisition

Electroencephalogram (EEG) was recorded with an electrode cap with 64 Ag/AgCl electrodes

mounted according to the extended international 10–20 system, with online band-pass-filtered

from 0.05 to 100 Hz, and sampled at 1000 Hz using Neuroscan Synamp2 Amplifer (Scan 4.5,

Neurosoft Labs, Inc. Sterling, USA). Electrooculogram (EOG) was recorded from electrodes

placed 1.0cm lateral to the external canthi of both eyes (horizontal EOG), and above and below

the left eye (vertical EOG). The electrode on the cephalic region was applied as the ground.

The left mastoid served as on-line reference, and EEGs were off-line re-referenced to the alge-

braically computed average of the left and right mastoids. Impedances were maintained below

5kO throughout the experiment.

Fig 1. A single trial of the experimental procedure. Subjects first saw a cue word “truthful” or “deceptive” before the presentation of a

picture stimulus, and were instructed to make responses (“safe” or “hazardous”) on the picture stimulus according to the cue.

https://doi.org/10.1371/journal.pone.0182892.g001
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Data reduction and analysis

For the behavioral data, two-way repeated measures ANOVAs were conducted to compare RT

and accuracy across four conditions, 2(honesty: truthful, deceptive) × 2(safety: safe, hazard-

ous). Only correct responses were included for RT analysis.

For the ERP data, during the offline EEG analysis, vertical and horizontal EOG artifacts

were corrected using the method proposed by Semlitsch et al.[46], followed by digital filtering

through a zero phase shift (low pass at 30 Hz, 24 dB/octave). Stimulus-locked data were seg-

mented into epochs comprised of 200 ms before stimulus onset and 1000 ms after the onset.

The entire epoch was then baseline-corrected by the 200ms interval prior to the stimulus

onset. Trials containing amplifier clipping, bursts of electromyography activity, or peak-to-

peak deflection exceeding±100 μV were excluded from averaging. Among all participants,

more than 30 valid trials for each condition remained and entered the data processing, which

are suggested to be sufficient to achieve stable and reliable measurements of Event-related

potentials[47]. The recorded EEGs over each recording site for each participant were averaged

separately within each of the experimental conditions.

Based on visual observation of the grand average waveforms as well as previous ERP studies

on deception [7,8,15,23] and hazardous/risky information processing [26,27], four ERP com-

ponents—N1, N2, P300 and LPP—were analyzed. Six electrodes (F3, FZ, F4, FC3, FCZ and

FC4) in the frontal-central areas were selected for N1 and N2 analysis, nine electrodes (C3,

CZ, C4, CP3, CPZ, CP4, P3, PZ and P4) in the central-parietal areas were selected for P300

analysis, and fifteen electrodes (F3, FZ, F4, FC3, FCZ, FC4, C3, CZ, C4, CP3, CPZ, CP4, P3,

PZ and P4) distributed from the frontal to parietal areas were selected for LPP analysis. ERP

amplitudes in the time windows of 80-130ms, 220-250ms, 280-400ms and 430-700ms post–

onset of the target stimuli were averaged for N1, N2, P300 and LPP analysis respectively. The

amplitude values of the N1 and N2 were separately submitted to 2 (honesty: truthful, decep-

tive) × 2 (safety: safe, hazardous) × 6 (electrodes: F3, FZ, F4, FC3, FCZ, FC4) repeated measure

ANOVAs. Similar analyses were performed for P300 with nine electrodes and LPP with fifteen

electrodes included. The Greenhouse-Geisser correction was applied in all statistical analysis

when necessary (uncorrected df and corrected p-value were reported). A simple effect analysis

was conducted when the interaction effect was significant.

In addition, correlation analyses were performed at the group level in order to explore if

there were functional connections between one’s brain activity and behavioral performance,

and more specifically, between the mean amplitude of LPP and RT/accuracy. We defined two

contrasts corresponding to the simple main effect of honesty (deceptive/safe—truthful/safe,

deceptive/hazardous—truthful/hazardous) and an interaction contrast [(deceptive/safe—

truthful/safe)–(deceptive/hazardous—truthful/hazardous)]. The values for LPP, RT and accu-

racy were computed according to these contrasts before entering the two-tailed Pearson corre-

lation analyses.

Results

Behavioral results

The ANOVA analysis for RT (Fig 2) revealed a main effect of honesty (F1,18 = 54.325,

p = 0.000, η2
partial = 0.751), but not safety (F1,18 = 0.732, p = 0.403, η2

partial = 0.039). Generally,

the RT for a deceptive response (M = 732.12ms, S.D. = 113.21) was longer than that for a truth-

ful response (M = 668.02ms, S.D. = 93.66). The interaction effect between honesty and safety

was significant (F1,18 = 7.469, p = 0.014, η2
partial = 0.293), and the simple effect analysis demon-

strated that it took much longer for a deceptive response relative to truthful response in both

Neurocognitive mechanisms underlying deceptive hazard evaluation
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safe and hazardous conditions (ps�0.001), but the difference between deceptive-to-safe and

truthful-to-safe items (mean difference = 86.74 ms) was significantly larger than that between

deceptive-to-hazardous and truthful-to-hazardous items (mean difference = 41.45 ms)

(t = 2.733, p = 0.014).

A similar pattern was observed for response accuracy, which also showed a main effect of

honesty (F1,18 = 13.746, p = 0.002, η2
partial = 0.433) but not safety (F1,18 = 0.044, p = 0.836,

η2
partial = 0.002). The accuracy for deceptive responses (M = 0.867, S.D. = 0.082) was lower

than that for truthful responses (M = 0.913, S.D. = 0.062). Moreover, a significant interaction

between honesty and safety was observed (F1,18 = 10.220, p = 0.005, η2
partial = 0.362), and the

simple effect analysis demonstrated that the accuracy was lower for truthful-to-hazardous than

truthful-to-safe items (F1,18 = 5.914, p = 0.026, η2
partial = 0.247), but higher for deceptive-to-

hazardous than deceptive-to-safe items (F1,18 = 5.554, p = 0.030, η2
partial = 0.236).

ERP results

The ERP grand average waveforms at the middle electrodes FZ, FCZ, CZ, CPZ and PZ are pre-

sented in Fig 3. For a clear overview, the results of the three-way repeated measure ANOVAs

on mean amplitudes of the N1, N2, P300 and LPP components are summarized in Table 1. In

general, the deceptive condition evoked augmented N2 and reduced LPP components relative

to the truthful condition (for N2: Mdeceptive = -0.232 μV, S.D.deceptive = 4.916; Mtruthful =

0.429 μV, S.D.truthful = 5.064; for LPP: Mdeceptive = 6.524μV, S.D.deceptive = 3.092; Mtruthful =

7.719 μV, S.D.truthful = 3.167). The difference waveforms between deceptive and truthful

conditions at frontal electrodes FZ and FCZ are displayed in Fig 4. Meanwhile, the hazardous

condition elicited increased N1 and P300 amplitudes relative to the safe condition (for N1:

Mhazardous = -2.264 μV, S.D.hazardous = 1.912; Msafe = -1.400 μV, S.D.safe = 1.842; for P300:

Mhazardous = 7.259μV, S.D.hazardous = 3.430; Msafe = 6.116 μV, S.D.safe = 3.012).

Since the analyses on the N1 and LPP revealed significant interactions between honesty and

safety, simple effect analyses were performed respectively for these two components. For the

N1 component, truthful-to-hazardous items (M = -2.530 μV, S.D. = 2.090) elicited a more neg-

ative deflection than truthful-to-safe items (M = -1.092 μV, S.D. = 1.939) (F1,18 = 15.039,

p = 0.001, η2
partial = 0.455), yet deceptive-to-hazardous and deceptive-to-safe items didn’t

show a difference (F1,18 = 0.522, p = 0.479, η2
partial = 0.028). For the LPP component,

Fig 2. RT and accuracy for each condition. The error bars denote standard error of the mean.

https://doi.org/10.1371/journal.pone.0182892.g002
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deceptive-to-hazardous items (M = 7.307 μV, S.D. = 3.158) induced a more positive deflection

compared with deceptive-to-safe (M = 5.742μV, S.D. = 3.323) (F1,18 = 12.268, p = 0.003,

η2
partial = 0.404), but no difference was found between truthful-to-hazardous and truthful-to-

safe items (F1,18 = 0.358, p = 0.557, η2
partial = 0.019).

Correlation analyses results

Three contrasts of interest were performed separately, all of which showed significant negative

correlations between LPP amplitude and RT (Fig 5): for the contrast (deceptive/safe—truthful/

safe), r = -0.479, p = 0.038; for the contrast (deceptive/hazardous—truthful/hazardous), r =

-0.495, p = 0.031; for the interaction contrast [(deceptive/safe—truthful/safe)—(deceptive/haz-

ardous—truthful/hazardous)], r = -0.535, p = 0.018. However, no significant correlations were

found between LPP amplitude and accuracy.

Fig 3. The grand average waveforms at channel FZ, FCZ, CZ, CPZ and PZ showing the potentials produced in response to the

presentation of the target stimulus. Positive voltage is plotted downwards.

https://doi.org/10.1371/journal.pone.0182892.g003

Table 1. Results of the ANOVAs on mean amplitudes for N1, N2, P300 and LPP components.

N1

(80-130ms)

N2

(220-250ms)

P300

(280-400ms)

LPP

(430-700ms)

Honesty F 0.042 4.738* 2.592 10.750**

Safety F 9.739** 1.338 6.414* 2.831

Electrodes F 5.429* 17.213*** 11.836*** 14.266***

Honesty × Safety F 4.571* 3.225 1.945 5.471*

For Honesty, Safety and Honesty × Safety, for all components, df = (1, 18). For Electrodes, for N1 and N2, df = (5, 90); for P300, df = (8, 144); for LPP, df =

(14, 252).

*p <0.05,

**p<0.01,

***p<0.001.

https://doi.org/10.1371/journal.pone.0182892.t001
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Discussion

In the present study, we explored the behavioral and electrophysiological correlates of decep-

tion about hazard information using a cue-target experimental paradigm. Results showed that

deceptive responses, in contrast to truthful responses, were associated with longer RT, lower

accuracy, increased N2 and reduced LPP. Further analysis revealed negative correlations

between the increments in LPP amplitude and the decrements in RT for deceptive versus

truthful responses, regardless of hazard content. Meanwhile, hazardous items evoked larger

N1 and P300 than safe items. Additionally, interaction effects between honesty and safety were

observed on RT, accuracy, N1 and LPP.

Behaviorally, the prolonged RT and reduced accuracy suggest that deception entails more

conflict and control, coinciding with previous studies using a similar paradigm [7–9,16,23].

Therefore, deception is a cognitively more demanding process than truth-telling. In order to

tell a lie, one has to recognize what is true (the first step) and ensure that the actual response is

different from the truthful one (the second step). The second step might result in extra pro-

cessing time and reduced accuracy [8]. The interaction of honesty and safety on RT revealed

Fig 4. The difference waveforms between deceptive and truthful conditions at frontal electrodes FZ and FCZ.

https://doi.org/10.1371/journal.pone.0182892.g004

Fig 5. Correlations between LPP amplitude and RT. The values for LPP and RT were computed according to the contrasts before

entering the two-tailed Pearson correlation analyses.

https://doi.org/10.1371/journal.pone.0182892.g005
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larger RT difference between deceptive-to-safe and truthful-to-safe items versus that between

deceptive-to-hazardous and truthful-to-hazardous items, suggesting it much more cognitively

demanding to lie than tell the truth when the information is safe. Moreover, hazardous infor-

mation is retrieved with more ease and processed more deeply than safe information in the

deceptive condition, as evidenced by the higher accuracy for deceptive-to-hazardous instead of

deceptive-to-safe items.

The main effect of honesty on neural correlates showed more pronounced N2 and LPP

components for deceptive responses. N2 has been found to play a critical role in the detec-

tion of conflict [34,35]. Wu et al. [36], for the first time, observed a larger N2 for lying than

truth-telling when they asked participants to make deceptive or honest response with a

revised old/new paradigm. The response conflict between an initial impulse to tell the truth

and the opposed objective to lie may give rise to the N2 deflection [23,36]. Consistent with

most prior work, given its spatial-temporal features and sensitivity to deception, the N2 here

might represent the conflict detection and response inhibition process, implying that more

executive control process is required for deceptive responses[7,23,34,36]. However, an

exceptional finding was reported by Pfister et al. [8], which showed enlarged N2 for truthful

responses rather than deceptive responses when the participants were asked to indicate the

location of a knife truthfully or deceptively. They assumed that N2 was functionally linked to

P300 and sensitive to general processing demands. A likely interpretation for the divergence

between Pfister et al. [8] and the present study might be that, in their study, the participants

could freely choose whether to lie in each trial before the appearance of the target, which

didn’t seem to pose a noticeable degree of response conflict to the participants when execut-

ing a deceptive response.

The LPP, an obvious component of P300 family, was observed at 430–700 ms. Due to its

occurrence in tasks involving stimulus evaluation and memory updating, LPP is often associ-

ated with elaborate processing related to stimulus significance, such as memory encoding,

storage and retrieval [48,49]. The cognitive load hypothesis in lying suggests a dual task charac-

ter of lying, with different tasks requiring division of attention [7,50]. In a pioneering study on

the electrophysiological signature of active lying, a reduced LPC was observed for deceptive

responses relative to truthful responses, implicating that the monitoring and inhibition of

truthful responses induced higher demand on cognitive processing and drew attentional

resources away from the primary task of responding truthfully so as to make a deceptive

response[4]. Similarly, a large number of studies have shown attenuated P300 amplitude for

lying compared to truth-telling [3,7,23,36]. It’s worth noting that the LPP from the current

study reflects the same cognitive processes as the P300 from those studies since they had simi-

lar scalp distribution, arose at around 400ms and sustained for several hundred milliseconds,

and most importantly, were sensitive to deception. In line with previous studies, the attenuated

LPP here indicates that attentional resources are drawn away from the primary task of

responding truthfully in order to inhibit the truth and execute a deceptive response. The longer

RT and lower accuracy for deceptive versus truthful responses also support this interpretation.

More importantly, the decrements in LPP amplitude correlated negatively with the increments

in RT for deceptive relative to truthful responses, no matter for safe or hazardous items, sug-

gesting possible functional connections between neurocognitive activity and corresponding

behavioral performance. The more the LPP decreases, the more the RT increases. As the

amplitude of LPP is well recognized to reflect the available attentional resources, which

decrease in proportion to the amount of resources allocated to secondary tasks (e.g., respond-

ing deceptively)[3,4,7,15,21], this finding suggest that those participants who exhibited more

LPP reduction needed to devote greater effort to completing deceptive responses and corre-

spondingly, showed more reduction in behavioral efficiency (i.e., a higher increase in RT).
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The main effect of safety showed N1 and P300 differentiations between safe and hazardous

items. A more negative N1 for hazardous versus safe items indicates a stronger emotional

response towards hazardous items at a relatively early processing stage. Previous studies have

reported enlarged N1 responses for unpleasant stimuli compared to pleasant stimuli over the

anterior sites [32], and for threatening stimuli relative to neutral and positive stimuli[33]. Such

processing bias ensures that processing resources are more readily oriented towards evolution-

ary significant information [37]. However, the N1 differentiation between safe and hazardous

items was found only for truthful condition. We speculate that the objective to lie inflicts

higher cognitive load on the participants, which reduces the resources available for early pro-

cessing. With regard to P300, it has been hypothesized to reflect task-related categorization

and higher-order processes that demand attentional resources for evaluating and categorizing

stimuli [51]. Correll et al. [40]engaged participants in a video game in which they had to dis-

criminate whether the man in a photo was armed, and found augmented P300 for armed com-

pared to unarmed targets. Studies using emotional, risky and aesthetics stimulus with active

judgment tasks have shown similar P300 modulations[26,41,52]. In the present study, hazard-

ous items are safety signs conveying potential hazard information, which is crucial for human

survival and preservation; therefore, hazardous items are evolutionarily more salient than safe

items. Hence the increase in P300 amplitude for hazardous versus safe items might indicate

that, hazardous items, with stronger motivational significance, mobilizes more attentional

resources during hazard evaluation and categorization. Such an evaluation and categorization

process is crucial in this task because the participants have to find out what is true before mak-

ing an actual response corresponding to the cue.

Interestingly, interaction effects were found between honesty and safety in LPP component.

Deceptive-to-safe items triggered reduced LPP amplitude compared to deceptive-to-hazardous

items. According to the prior discussion on LPP, the decrement in LPC might signal the inhi-

bition of truthful responses in order to perform a deceptive response [4,15]. Thereby we

suppose that it requires more effort to inhibit the truthful responses when lying about safe

compared to hazardous items. A possible explanation might be that hazardous items, given its

stronger motivational relevance, recruit more sustained attentional resources and is more elab-

orately processed relative to safe items, which enhance the efficiency of the cognitive process

and make it less difficult to respond deceptively. Previous studies have provided numerous

assertions that evolutionarily salient information is more likely to evoke the motivation system

and obtain sustained high-level attentional processing, which could be indicated by increased

LPP amplitude[37,38,48,53]. Schupp et al. [53], for instance, asked the participants to view

emotional pictures and observed larger LPP for stimuli depicting scenes of threat and mutila-

tion than neural stimuli, which was indicative of heightened attention to stimuli that activate

defensive motivational system. Similarly, emotionally arousing stimuli has consistently been

found to induce augmented LPP component[27,38,39,48,54]. Therefore, we speculate that

the larger LPP amplitude for deceptive-to-hazardous versus deceptive-to-safe items represents

the enhanced attentional processing triggered by the stronger motivational significance of haz-

ardous stimuli, which makes it easier to inhibit the truthful responses and make opposite

responses. In consonance with the ERPs result, lower accuracy for deceptive-to-safe instead of

deceptive-to-hazardous items also confirms it more difficult to respond deceptively towards

safe items than hazardous items. Further analysis on the interaction contrast showed negative

correlation between LPP amplitude and RT, which indicated that the interaction between hon-

esty and safety on LPP might be functionally responsible for the interaction on RT.

Although the DDP has been widely used by deception studies in laboratory settings

[3,4,9,15,16,18], the limitation to our current protocol is notable. Since the deceptive responses

were directed but not spontaneous, we might have identified only a subset of the neurocognitive
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processes engaged in deception in real life, i.e., those specifically involving in inhibiting a prepo-

tent truthful response and engendering its opposite. Those neurocognitive processes might be

mainly activated by the response reversal, but such a response reversal is inherent in a lying sce-

nario[6]. Apart from response reversal, the decision process leading to spontaneous deception

also merits close attention [2,55]. Therefore, though the findings of the current study are infor-

mative, it would be helpful to consider spontaneous deception of hazard information in future

studies.

Conclusion

To summarize, by asking participants to perform hazard judgment tasks with a cue-target par-

adigm, the current findings suggest that deceptive responses are more cognitively demanding

than truthful responses, as indexed by longer RT, lower accuracy, enlarged N2, and decreased

LPP component. The decrements in LPP amplitude correlated negatively with the increments

in RT for deceptive relative to truthful responses regardless of hazard content. In addition,

larger N1 and P300 were elicited by the hazardous items instead of safe items, indicating an

early processing bias and a later evaluative categorization based on motivational significance,

respectively. More importantly, the interaction between deception and hazard content in accu-

racy and LPP component implicates it more effortful to respond deceptively towards safe

information than hazardous information. It extends and complements previous deception

results, which further proves that deceptive responses are dependent on the content of lying,

and more specifically, hazard information in the current study.
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